


Water quality monitoring on the Rivacre Brook

Interim Report (3)

J.A.B.Bass D.V.Leach





## CONFIDENTIAL

### NERC Institute of Preshwater Ecology

Bastern Rivers Laboratory Monks Wood, Abbots Ripton, Huntingdon P17 2LS

WATER QUALITY MONITORING ON THE RIVACRE BROOK

> Interim Report (3) February 1993

By Jon Bass & David Leach

Project Leader: J.A.B.Bass Contract start date: September 91 Interim Report (3): February 93 Report to: British Nuclear Fuels plc, Capenhurst TFS Project No: T11053q1

This is an unpublished report and should not be cited without permission, which should be sought through the Director of the Institute of Freshwater Ecology in the first instance.

## 1. SUMMARY

Interim Report (3) February 1993

The analysis of macroinvertebrate and water samples from the Rivacre Brook system (September 1992), adjacent to the Capenhurst site are compared and contrasted with the results of earlier monitoring carried out by the Institute of Freshwater Ecology (1989-1992).

Changes in water quality, as indicated by the invertebrates and water samples, appear to be minor.

The Rivacre Brook continues to be classified as "Poor" when the invertebrate communities are equated with the NRA water quality status.

.

:

· · · · ·

. 2

.

## 2. INTRODUCTION

## BACKGROUND

The Institute of Freshwater Ecology was contracted by BNFL to investigate aspects of water quality in the Rivacre Brook system (Gledhill, 1990). In April 1991 at the Windermere Laboratory (Institute of Freshwater Ecology) it was agreed that a continued, but reduced, programme of water quality monitoring using macroinvertebrates was desirable.

Macroinvertebrate and water samples are to be taken at five sites, September (Autumn) 1991 & 1992 and March (Spring) 1992 & 1993.

This interim report (3) compares data collected in September 1992 with that obtained in March 1992, September 1991 (Bass & Leach, (1 & 2) 1992) and the earlier study (Gledhill, (1990).

U

### METHODS

The five sampling stations (Fig.1) include three (1-3) from the stream draining the Capenhurst site; Station 9 - a short distance downstream from the confluence with Rivacre Brook; Station 6, upstream from the confluence (a site sampled for the first time in Autumn 1991). Station numbers and positions (except 6) correspond to those used by Gledhill (1990).

Sampling techniques and processing followed the protocol required for the application of RIVPACS (River InVertebrate Prediction and Classification System), additional information on the abundance of invertebrate species, species diversity and the community structure, permit direct comparison with the earlier study (Gledhill, 1990). Water analyses were undertaken at the Windermere Laboratory.

### 3. INTERIM RESULTS

## Water Analyses

Table 1 permits a direct comparison between water chemistry samples taken in September 1992 and those previously obtained in spring (1989,1990,1992) and autumn (1989,1991).

These are single spot-samples and are not assumed to describe average conditions.

## Substrates and Plant Cover

Table 2 lists the visual estimates of stream bed substrate types, in terms of % cover and the area occupied by plant material at each station. Where available, corresponding data from 1989, 1990, 1991 & spring 1992 are given.

### Macroinvertebrates Recorded

Tables 3-7 (Stations 1,2,3,6,9) present lists of species occurring in September 1992 with their corresponding common names and the invertebrate family to which they belong. The number of each species and family are shown for each station and the BMWP score (a numerical scale of sensitivity to pollution) is included. The format follows that of the earlier reports.

## Diversity Indices and ASPTs

Two diversity indices have been calculated -

Simpson Index and Shannon-Weaver Index (see Gledhill,1990 for details).

The ASPT (average score per taxon) for each station is calculated by dividing the total score (BMWP) by the number of scoring taxa. This index reflects the balance between pollutiontolerant and pollution-intolerant invertebrates found.

Index values in September 1992 and previous results are presented in Table 8.

-<u>-</u>--

## Predicted v. Observed Total Scores (BMWP)

Physical and chemical characteristics of each site were used to generate predictions of faunal composition on a seasonal basis (using the IFE RIVPAC System). As the values of variables used were similar in September 1992 to those used in the earlier study, predicted values are as for "Autumn 1989" (Gledhill, 1990), in the case of station 6, predicted values were generated in 1991. The corresponding total scores (mean values) and their error estimates are presented with the observed total scores (Table 9).

## Environmental Quality Index (EQI)

The assessment of water quality, as used by the NRA, is likely to change shortly. The new proposals include a grading system which incorporates an "ecological override". This would operate when EQI values fall outside their permitted range corresponding to the observed chemical water quality class (Table 10).

Results from earlier samples are presented for comparison with September 1992 data. The consequences of the proposed new EQI approach are set out in Table 11.

## 4. INTERIM CONCLUSIONS

## Water Analyses (Table 1)

Stations 1-3; in September 1992 ammonia (N) levels are intermediate between those previously found. The "spring" and "autumn" data sets show station 1 has consistently produced higher values than stations 2 & 3, it is also noted that higher and more variable concentrations have been recorded at stations 1-3 in 1991 & 1992. Soluble reactive phosphorus was present at the lowest recorded levels, while total oxidised nitrogen and total organic carbon had intermediate concentrations, for all three, the between-station variability has been consistently low Chloride (and by association on each sampling occasion. exhibited higher and variable conductivity) has more concentrations on both visits in 1992 at stations 1-3. While other results appear similar or within the same ranges as previously found.

Station 6; high values for soluble phosphate (expressed as phosphorus), ammonia (N) and total organic carbon were noteworthy. Recent storm flows may have temporarily overloaded the sewage treatment works upstream.

Station 9; generally determinands were in the range recorded previously, though phosphorus had a low concentration, following the trend of sites 1-3. There appeared to be little impact from the contribution derived from station 6, upstream.

## Substrates and Plant Cover (Table 2)

Substrate composition (in terms of visual allocation to particle size designation) has shown shifts in dominance between sand and silt/clay at stations 1-3. It is considered that localised scouring and deposition around temporary accumulations of debris in the ditch bottom has been responsible. Intermittent high flows after heavy rainfall, followed by a return to stagnant conditions maintain an unstable environment for aquatic life.

For station 6, predominately stagnant conditions and a broad channel leads to the high percentage of fine silt / clay recorded, even shortly after flood events.

Station 9 remained the most diverse, in terms of substrates, and in-stream plant growth.

Plants were recorded only at station 9. As on the previous

autumn visits, a small quantity of filamentous algae was present. The small bed of canadian pondweed (<u>Elodea</u> sp.) recorded in Autumn 1991 has remained established at station 9.

## Macroinvertebrates Recorded (tables 3-7)

Species (or families) previously unrecorded -

Stations 1,2 & 3.

New taxa recorded for these stations were : bivalve species(<u>Pisidium casertanum</u> - station 1 & 2, <u>P.subtruncatum</u> station 2): psychomyiid and limnephilid caddis larvae (station 2).

## Station 6.

With limited previous data, it is worth stating that 6 of the 8 families recorded were present on both previous occasions, three of the four most numerous taxa were also dominant at stations 1,2 & 3.

## Station 9.

The limpet, <u>Acroloxus</u> <u>lacustris</u>, mayflies (Baetidae), water boatmen (Corixidae) and a beetle (Haliplidae) were recorded for the first time. Striking changes in abundance -

### **Increases**

Stations 1,2 & 3: a freshwater shrimp, <u>Crangonyx pseudoqracilis</u> (Gammaridae), showed a return to high numbers at these stations.

Station 6: the freshwater hoglouse, <u>Asellus</u> <u>aquaticus</u> (Asellidae), was present in extremely high numbers.

Station 9: the small snail, <u>Potamopyrqus</u> jenkinsi, had undergone a population explosion. This species reproduces parthenogenetically and rapidly changing population densities are recorded frequently. <u>Simulium ornatum</u> (Simuliidae) is associated with the increase in suitable attachment sites, (<u>Elodea</u> plants).

#### Decreases

Station 1,2 & 3: no exceptional declines in faunal components were evident.

Station 6: worms (oligochaetes), showed a small decline in numbers.

Station 9. Few of the groups present showed declines when compared with Autumn 1991 and Spring 1992 data, the leech (<u>Erpobdella octoculata</u>) and caddis larvae (Psychomyiidae) being the exceptions. In addition, a range of less common fauna were absent or reoccurred at all stations, as on previous occasions this may be attributed to chance.

## Diversity Indices & ASPTs (Table 8)

The Simpson Index and the Shannon-Weaver Index utilise the number of different invertebrate taxa and the numbers of <u>individuals</u> within each taxon. In Autumn 1992 the index values at stations 1,2,3 & 9 were intermediate between those recorded previously. In contrast the extremely high relative density of <u>Asellus</u> at station 6, with few other invertebrates, gave the lowest values recorded up to the present.

Changes in ASPT values reflect particularly small shifts in the presence/absence of invertebrate families when the number of families is quite low, as in the Rivacre Brook system. Consequently no clear trends are apparent at individual stations or between stations. It is noteworthy that, over the monitoring programme, the highest ASPT score (station 2) and the lowest ASPT score (station 3) were recorded in Autumn 1992. With the close proximity of these stations to one another it can be inferred that these results do not reflect contrasting conditions moulding the community but result from chance presence/absence of a small number of less common taxa.

## Predicted v. Observed Total Scores (BMWP) (Table 9)

As with the ASPT values, the low total scores are fluctuating in response to the loss or gain of one or two scoring taxa, as illustrated by stations 2 & 3 (Tables 4 & 5). On five of the six sampling occasions station 9 has achieved a higher score than stations 1,2 & 3. It is considered that increased habitat diversity at station 9 (see Table 2), rather than a downstream improvement in water quality may be the cause.

## Environmental Quality Index (EQI) (Table 10 & 11)

Over the six sampling occasions invertebrate community index values have generally been within their appropriate range corresponding to Class 3 ("poor") (predicted from chemical water quality criteria). At station 1 the ecological override dropped the designation to Class 4 ("bad") in 1989 (Spring and Autumn) & 1990. At station 2 this occurred in Spring 1992 and at stations 3 and 6 in Autumn 1992. The ecological override raised the designation to Class 2 ("fair") when applied to station 3 in Spring 1989.

As with other scores and indices (discussed previously) the comparatively small range of taxa occurring gives rise to large fluctuations in values. Some of the downgrading (and the upgrade) may be dismissed as chance, but the system is deliberately robust to incorporate the wide variation encountered in faunal communities.

## 5. ACKNOWLEDGEMENTS

Staff at the Windermere and Wareham laboratories of the Institute of Freshwater Ecology analyzed water samples and ran RIVPACS predictions, respectively.

## 6. REFERENCES

Bass, J.A.B. & Leach, D.V. (1992) Water quality monitoring on the Rivacre Brook.: interim report (1). Report to: British Nuclear Fuels plc, Capenhurst. 22pp.

Bass, J.A.B. & Leach, D.V. (1992) Water quality monitoring on the Rivacre Brook.: interim report (2). Report to: British Nuclear Fuels plc, Capenhurst. 22pp. Gledhill,T. (1990) An assessment and comparison of water quality using macroinvertebrate animals at selected sites on the Rivacre Brook, The Wirral, Cheshire. Report to: British Nuclear Fuels plc, Capenhurst. 36pp (+Appendices).

NRA (1991) Proposals for Statutory Water Quality Objectives. Water Quality Series No. 5, 100pp. Table 1. Water chemistry data\* for Autumn (Au) 1992, with corresponding results from earlier reports (Bass & Leach,1992 & Gledhill,1990).

--- -

. . .

the assessment of the second second

| Station                    | Ammonia<br>NH3.N        | Total Oxidised<br>Nitrogen           | Soluble Reactive<br>Phosphorus | Chloride<br>Cl |
|----------------------------|-------------------------|--------------------------------------|--------------------------------|----------------|
| - Date                     |                         | mg l                                 | mg l                           | mg l           |
| 1 _ 311 02                 |                         | <br>3.77                             | 0.153                          | 38.6           |
| 1 - Au 92                  | 0.256                   | 5 81                                 |                                | 120.5          |
| 1 = 3p + 92<br>1 = 3p + 91 | 0.236                   | 3.34                                 | 0.532                          | 64.8           |
| 1 - Au 91<br>1 - Sp 90     | 0.330                   | 3.96                                 | 0.457                          | 62.0           |
| 1 = 3p = 90<br>1 = An = 89 | 0.162                   | 3.31                                 | 0.356                          | 50.9           |
| 1 - Sp 89                  | 0.007                   | 5.81<br>3.34<br>3.96<br>3.31<br>3.70 |                                | 67.2           |
| 2 311 02                   | 0 153                   | 3 36                                 | 0.188                          | 93.2           |
| 2 - Sp 92                  | 0.198                   | 5.39                                 | 0.682                          | 33.7           |
| 2 - Au 91                  | 0.135                   | 2.44                                 | 0.348                          | 81.7           |
| 2 - Sp 90                  | 0.081                   | 3.96                                 | 0.470                          | 59.0           |
| 2 - Au 89                  | 0.090                   | 3.89                                 |                                | 53.0           |
| 2 - Sp 89                  | 0.006                   | 5.39<br>2.44<br>3.96<br>3.89<br>2.87 | 0.515                          | 74.1           |
| 3 - Au 92                  | 0.274                   | 3.67                                 |                                | 299.4          |
| 3 - Sp 92                  | 0.204                   | 5.98<br>3.69<br>3.48<br>4.33         |                                | 32.2           |
| 3 - Au 91                  | 0.330                   | 3.69                                 |                                | 75.2           |
| 3 - Sp 90                  | 0.069                   | 3.48                                 |                                | 61.0           |
| 3 - Au 89                  | 0.051                   | 4.33                                 | 0.416                          | 53.1 -         |
| 3 - Sp 89                  | 0.008                   | 3.13                                 | 0.504                          | 77.5           |
| 6 - Au 92                  | 1.054                   | <b>4.74</b><br>23.58                 | 8.939                          | 59.5           |
| 6 – Sp 92                  | 0.063                   | 23.58                                | 1.043                          | 62.5           |
| 6 - Au 91                  | 0.032                   | 4.99                                 | 10.060                         | 67.3           |
| 9 - Au 92                  | 0.132                   | 2.84                                 | 0.292                          | 172.3          |
| 9 - Sp 92                  | 0.154                   | 4.63                                 | 0.408                          | 27.2           |
| 9 - Au 91                  | 0.471<br>0.228<br>0.050 | 3.25                                 | 0.678                          | 66.5           |
| 9 - Sp 90                  | 0.228                   | 3.09                                 |                                | 201.2          |
| 9 – Au 89                  | 0.050                   | 2.63                                 | 0.586                          | 261.0          |
| 9 - Sp 89                  | 0.085                   | 2.90                                 | 0.656                          | 46.7           |

continued overleaf

Table 1 (conti.)

| Station<br>- Date | Calcium<br>Carbonate<br>mg l |       | Conductivity<br>uS/cm | pH<br>units |
|-------------------|------------------------------|-------|-----------------------|-------------|
| 1 - Au 92         | 40.40                        | 3.29  | 410                   | 7.1         |
|                   | 72.00                        | 4.23  | 702                   | 9.2         |
| 1 - Au 91         | 45.95                        | 3.55  | 460                   | 7.3         |
| 1 - Sp 90         |                              | 3.26  | _                     | · –         |
| 1 - Au 89         |                              | -     | -                     | -           |
| 1 - Sp 89         | -                            | 3.35  | -                     | -           |
| 2 - Au 92         | 43.75                        | 3.33  | 572                   | 7.2         |
|                   | 49.20                        | 3.16  | 372                   | 7.4         |
|                   | 43.70                        | 3.79  | 490                   | 7.3         |
| 2 - Sp 90         |                              | 3.43  | _                     | -           |
| 2 - Au 89         |                              | -     | _                     | -           |
| 2 - Sp 89         | _                            | 3.43  | -                     | -           |
| 3 - Au 92         | 37.20                        | 3.38  | 1100                  | 7.1         |
|                   | 48.00                        | 3.35  | 370                   | 7.4         |
| 3 - Au 91         | 43.45                        | 4.00  | 487                   | 7.3         |
| 3 - Sp 90         |                              | 3.51  | _                     | -           |
| 3 – Au 89         | 53.75                        | -     | -                     | -           |
| 3 - Sp 89         | -                            | 3.44  | -                     | -           |
| 6 - Au 92         | 150.95                       | 9.65  | 668                   | 7.4         |
| 6 - Sp 92         | 135.70                       | 10.72 | 833                   | 7.4         |
| 6 – Au 91         | 137.30                       | 9.55  | 722                   | 7.6         |
| 9 - Au 92         | 48.79                        | 3.61  | 737                   | 7.4         |
| 9 - Sp 92         | 60.80                        | 4.71  | 369                   | 7.5         |
| 9 - Au 91         | 52.35                        | 4.45  | 465                   | 7.5         |
| 9 - Sp 90         | 81.75                        | 3.97  |                       | -           |
| 9 - Au 89         | 66.25                        | -     | -                     | -           |
| 9 - Sp 89         | -                            | 4.38  | -                     | -           |
|                   |                              |       |                       |             |

\* These are single spot samples and are not assumed to describe average conditions. This should be born in mind as the values are compared with earlier analyses (Bass & Leach, 1991, 1992 & Gledhill, 1990).

•

Table 2. Estimates of stream bed substrate type and plant & cover for Rivacre Brook sampling stations, with corresponding data from earlier studies (Gledhill,1990; Bass & Leach,1992).

# Substrate and vegetation cover (%).

| STATIO | N DATE |             |         |      |       |       |        |
|--------|--------|-------------|---------|------|-------|-------|--------|
|        |        | Boulder/    | Pebble/ | Sand | Silt/ | Algal | Macro- |
|        |        | Cobble      | Gravel  |      | Clay  | cover | phyte  |
| •      |        |             | _       | _    |       |       |        |
| 1. Au  |        | -           | 5       | 5    | 90    | -     | -      |
| Sp     |        | -           | -5      | 20   | 75    | -     | -      |
| Au     |        | -           | 10      | 70   | 20    | -     | -      |
| Sp     |        | -           | 10      | 60   | 30    | -     | -      |
| Au     |        | -           | 10      | 60   | 30    | -     | -      |
| Sp     | . 89   | -           | 10      | 60   | 30    | -     | -      |
| 2. Au  | . 92   | _           | 80      | 10   | 10    | -     | -      |
| Sp     |        | -           | 30      | 20   | 50    | -     | -      |
| Au     |        | -           | 60      | 30   | 10    | -     | -      |
| Sp     |        | -           | 65      | 25   | 10    | 3 .   | -      |
| Au     |        | -           | 65      | 25   | 10    | -     | -      |
| Sp     |        | -           | 70      | 20   | 10    | 20    | -      |
| -      |        |             |         |      |       |       |        |
| 3. Au  | . 92   | 10          | 30      | 50   | 10    | -     | -      |
| Sp     | . 92   | 5           | 15      | 30   | 50    | -     | -      |
| Au     | . 91   | 10          | 50      | 20   | 20    | -     | -      |
| Sp     | . 90   | -           | 60      | 30   | 10    | 40    | -      |
| Au     |        | -           | 60      | 30   | 10    | -     | -      |
| Sp     | . 89   | -           | 80      | 10   | 10    | -     | -      |
| 6. Au  | . 92   | 15          | -       |      | 85    | -     |        |
|        | . 92   | 20          | -       | -    | 80    | 20    | _      |
| Au     |        | 20          | _       | 20   | 60    | _     | -      |
| пц     | • 51   | 20          |         | 20   |       |       |        |
| 9. Au  |        | 30          | 50      | 30   | 10    | 15    | 15     |
| Sp     | . 92   | 30          | 50      | 10   | 10    | 10    | 5      |
| Au     |        | 20          | -       | 20   | 60    | 10    | 10     |
| Sp     | . 90   |             | 75      | 18   | 5     | 40    | -      |
| Au     |        | 2<br>2<br>2 | 80      | 10   | 8     | 10    | -      |
| Sp     |        | 2           | 80      | 10   | 8     | 50    | -      |
| •      |        |             |         |      |       |       |        |

Table 3. Invertebrates recorded from Station 1, with numbers of individual taxa, their BMWP score, number of different taxa and the average score per taxon (ASPT).

i

#### RIVACRE BROOK St.1 29.9.92

| Common<br>name                  | Scientific<br>name                    | Number<br>in sample | Pamily                 | No. per<br>family | Score<br>(BMWP) |
|---------------------------------|---------------------------------------|---------------------|------------------------|-------------------|-----------------|
| Worms                           | Oligochaeta                           | 411                 | "Oligochaeta"          | 411               | 1<br>3          |
| Snails                          | <b>Lymnaea peregra</b><br>Physidae    | 18                  | Lymnaeidae<br>Physidae | 18                | 3               |
| Bivalves                        | Sphaerium corneum<br>Pisidium nitidum | 1<br>13             | Sphaeriidae            | 76                | 3               |
|                                 | P. subtruncatum                       | 50                  |                        |                   |                 |
|                                 | P. casertanum                         | 5                   |                        |                   |                 |
|                                 | P. personatum                         | 7                   |                        |                   |                 |
| Freshwater<br>shrimps<br>Water- | Crangonyx pseudog                     | r. 579              | Gammaridae             | 579               | 6               |
|                                 | Asellus aquaticus                     | 403                 | Asellidae              | 403               | 3               |
| Bugs                            | Corixidae                             | 1                   | Corixidae              | 1                 | 5               |
| Fly larvae<br>Midge             | Diptera sp                            | 1                   | Diptera                | 1                 | -               |
| larvae                          | Chironomidae                          | 107                 | Chironomidae           | 107               | 2               |

Number of different taxa = 9 (8 Scoring taxa) Total number of specimens N = 1597

BMWP score = 26 ASPT = 3.25

Table 4. Invertebrates recorded from Station 2, with numbers of individual taxa, their BMWP score, number of different taxa and the average score per taxon (ASPT).

## RIVACRE BROOK St. 2 29.9.92

| Common<br>name | Scientific<br>name | Number<br>in sample | Family          | No. per<br>family | Score<br>(BMWP) |
|----------------|--------------------|---------------------|-----------------|-------------------|-----------------|
| Worms          | Oligochaeta        | 210                 | "Oligochaeta"   | 210               | 1               |
| Leeches        | Erpobdella octocu  | ilata 39            | Erpobdellidae   | 39                | 3               |
|                | Glossiphonia com   |                     | Glossiphoniidae | <b>)</b> 1        | 3               |
| Snail          | Lymnaea peregra    | 1                   | Lymnaeidae      | <u> </u>          | 3               |
| Pea mussels    | Pisidium nitidum   | 6                   | Sphaeriidae     | 21                | 3               |
|                | P. subtruncatum    | 11                  | •               |                   |                 |
|                | P. casertanum      | 4                   |                 |                   |                 |
| Freshwater     |                    |                     |                 |                   |                 |
| shrimps        | Crangonyx pseudog  | <b>r.</b> 78        | Gammaridae      | 78                | 6               |
| Water-         |                    |                     |                 |                   | -               |
| hoglouse       | Asellus aquaticus  | 384                 | Asellidae       | 384               | 3               |
| Caddisfly      | Tinodes waeneri    | ī                   | Psychomyiidae   | 1                 | 8               |
| 3              | Limnephilidae      | ĩ                   | Lymnephilidae   | ī                 | 7               |
| Midge          | F <b>_</b>         | -                   | -/              | -                 | •               |
| larvae         | Chironomidae       | 33                  | Chironomidae    | 33                | 2               |

Number of different taxa = 10 Total number of specimens N = 769 BMWP score = 39 ASPT = 3.90 Table 5. Invertebrates recorded from Station 3, with numbers of individual taxa, their BMWP score, number of different taxa and the average score per taxon (ASPT).

.

#### RIVACRE BROOK St. 3 29.9.92

| Common<br>name        | Scientific<br>name i | Number<br>in sample |                | No. per<br>family | Score<br>(BMWP) |
|-----------------------|----------------------|---------------------|----------------|-------------------|-----------------|
| Worms                 | Oligochaeta          | 80                  | "Oligochaeta"  | 80                | 1               |
| Leeches<br>Freshwater | Glossiphonia compl   | lanata 1            | Glossiphoniida | e 1               | 3               |
| shrimps<br>Water-     | Crangonyx pseudogi   | . 83                | Gammaridae     | 83                | 6               |
| hoglouse<br>Midge     | Asellus aquaticus    | 440                 | Asellidae      | 440               | 3               |
| larvae                | Chironomidae         | 17                  | Chironomidae   | 17                | 2               |

Number of different taxa = 6

Total number of specimens N = 621

BMWP acore = 15 ASPT = 2.50 Table 6. Invertebrates recorded from Station 6, with numbers of individual taxa, their BMWP score, number of different taxa and the average score per taxon (ASPT).

### RIVACRE BROOK St. 6 29.9.92

| Common<br>name        | Scientific<br>name | Number<br>in sample | Pamily         | No. per<br>family | Score<br>(BMWP) |
|-----------------------|--------------------|---------------------|----------------|-------------------|-----------------|
| Flatworms             | Polycelis sp.      | 1                   | Planariidae    | 1                 | 5               |
| Worms                 | Oligochaeta        | 19                  | "Oligochaeta"  | 19                | 1               |
| Leeches<br>Freshwater | Glossiphonia com   | planata 11          | Glossiphoniid  | ae 11             | 3               |
| shrimps<br>Water-     | Crangonyx pseudo   | <b>gr.</b> 9        | Gammaridae     | 9                 | 6               |
| hoglouse              | Asellus aquaticu   | 6204                | Asellidae      | 6204              | 3               |
| Beetles<br>Midge      | Dytiscidae         | 5                   | Dytiscidae     | 5                 | 5               |
| larvae                | Chironomidae       | . 195               | . Chironomidae | 195               | 2               |
| True fly              | Diptera            | 3                   | Diptera        | 3                 | _               |

,

Number of different taxa = 8 (7 scoring taxa)

Total number of specimens N = 6447

BMWP score = 20 ASPT = 2.86

Table 7. Invertebrates recorded from Station 9, with numbers of individual taxa, their BMWP score, number of different taxa and the average score per taxon (ASPT).

ł

#### RIVACRE BROOK St. 9 29.9.92

| Common<br>name | Scientific<br>name   | Number<br>in sample | Family        | No. per<br>family | Score<br>(BMWP) |
|----------------|----------------------|---------------------|---------------|-------------------|-----------------|
| Worms          | Oligochaeta          | 95                  | "Oligochaeta" | 95                | 1               |
| Leeches        | Glossiphonia co      | mplanata 18         | Glossiphoniid | ae 18             | 3               |
|                | Brpobdella octo      |                     | Brpobdelliida |                   | 3               |
| Snails         | Potamopyrgus je      |                     | Hydrobiidae   | 1100              | 3               |
|                | Lymnaea peregra      |                     | Lymnaeidae    | 2                 | 3<br>3          |
|                | Physa sp.            | 3                   | Physidae      | 3                 | 3               |
| Limpet         | Acroloxus lacus      |                     | Ancylidae     | 2                 | 6               |
| Mite           | Bydracarina          | 1                   | Hydracarina   | 1                 | _               |
| Freshwater     | -                    |                     | •             |                   |                 |
| shrimps        | Crangonyx psued      | ogr. 39             | Gammaridae    | 39                | 6               |
| Water-         | · <b>J I</b> - · · · |                     |               |                   | -               |
| hoglouse       | Asellus aquatic      | us 1079             | Asellidae     | 1079              | 3               |
| Mayfly         | Baetidae             | 2                   | Baetidae      | 2                 | 4               |
| Water          |                      |                     |               | -                 | -               |
| boatman        | Corixidae            | 1                   | Corixidae     | 1                 | 5               |
| Beetles        | Baliplidae           | ī                   | Baliplidae    | ī                 |                 |
|                | Dytiscidae           | 6                   | Dytiscidae    | 6                 | 5               |
| Diptera        | Tipulidae            | 6<br>3              | Tipulidae     | 3                 | 5<br>5<br>5     |
| Midge          |                      | -                   |               | •                 | -               |
| larvae         | Chironomidae         | 22                  | Chironomidae  | 22                | 2               |
| Blackfly       | Simulium ornatu      |                     | Simuliidae    | 108               | 5               |

Number of different taxa = 17 (16 scoring taxa)

Total number of specimens N = 2489

BMWP score = 62 ASPT = 3.87

· .

Table 8. Macroinvertebrate diversity indices and BMWP average score per taxon (ASPT) for Rivacre Brook sampling stations in autumn 1992, a comparison with values obtained previously (Gledhill, 1990; Bass & Leach, 1991 & 1992) are shown.

## RIVACRE BROOK.

| STATION DAT                                                 | E S                  | IMPSON                   | INDEX                | SHANNON-WEAVER<br>INDEX                      | ASPT                                         |
|-------------------------------------------------------------|----------------------|--------------------------|----------------------|----------------------------------------------|----------------------------------------------|
| l. Autumn<br>Spring<br>Autumn<br>Spring<br>Autumn<br>Spring | 92<br>91<br>90<br>89 | 0.7<br>0.6<br>0.6<br>0.6 | 53<br>55<br>56<br>57 | 1.56<br>1.66<br>1.56<br>1.77<br>1.92<br>0.83 | 3.25<br>3.33<br>3.40<br>2.40<br>3.00<br>2.50 |
| 2. Autumn<br>Spring<br>Autumn<br>Spring<br>Autumn<br>Spring | 92<br>91<br>90<br>89 | 0.0<br>0.1<br>0.1<br>0.1 | 53<br>48<br>86<br>85 | 1.43<br>1.37<br>1.37<br>2.93<br>2.99<br>2.60 | 3.90<br>3.04<br>3.25<br>3.64<br>3.45<br>3.50 |
| 3. Autumn<br>Spring<br>Autumn<br>Spring<br>Autumn<br>Spring | 92<br>91<br>90<br>89 | 0.<br>0.<br>0.<br>0.     | 69<br>33<br>81<br>85 | 0.89<br>1.90<br>1.02<br>2.59<br>3.00<br>2.58 | 2.50<br>3.87<br>3.22<br>3.25<br>3.42<br>3.69 |
| 6. Autumn<br>Spring<br>Autumn<br>Spring<br>Autumn<br>Spring | 92<br>91<br>90<br>89 | 0.0<br>0.7<br>-<br>-     | 48                   | 0.18<br>1.32<br>0.56<br>-<br>-               | 2.86<br>3.25<br>3.75<br>-<br>-<br>-          |
| 9. Autumn<br>Spring<br>Autumn<br>Spring<br>Autumn<br>Spring | 92<br>91<br>90<br>89 | 0.<br>0.<br>0.<br>0.     | 54<br>17<br>86<br>74 | 1.19<br>1.68<br>0.68<br>2.88<br>2.42<br>2.81 | 3.87<br>3.54<br>4.06<br>3.56<br>3.64<br>3.75 |

Table 9. RIVPACS predictions of mean Total Scores (BMWP), error limits and observed Total Scores for each Rivacre Brook station (sd - standard deviation, lcl - lower confidence limit, ucl - upper confidence limit). Values are compared with those of the previous studies (Gledhill, 1990; Bass & Leach, 1991 & 1992).

## **BMWP Total Scores**

### ----- predicted ------

| Stn. | date   | mean  | sđ    | lcl    | ucl    | OBSERVED |
|------|--------|-------|-------|--------|--------|----------|
| 1.   | Au. 92 | 115   | 20.67 | 74.48  | 155.52 | 26       |
|      | Sp. 92 |       | 21.54 | 79.48  | 164.22 | 20       |
|      | Au. 91 |       | 20.67 | 74.48  | 155.52 | 34       |
|      | Sp. 90 |       | 21.54 | 79.78  | 164.22 | 12       |
|      | Au. 89 |       | 20.67 | 74.48  | 155.52 | 24       |
|      | Sp. 89 | 122   | 21.54 | 79.78  | 164.22 | 12       |
| 2.   | Au. 92 | 96    | 17.97 | 60.78  | 131.22 | 39       |
|      | Sp. 92 |       | 18.63 | 77.49  | 150.51 | 17       |
|      | Au. 91 |       | 17.97 | 60.78  | 131.22 | 26       |
|      | Sp. 90 | 114   | 18.63 | 77.49  | 150.51 | 40       |
|      | Au. 89 | 96    | 17.97 | 60.78  | 131.22 | 38       |
|      | Sp. 89 | 114   | 18.63 | 77.49  | 150.51 | 35       |
| 3.   | Au. 92 | 107   | 18.72 | 70.31  | 143.69 | 15       |
|      | Sp. 92 | 122   | 20.07 | 82.67  | 161.33 | 31       |
|      | Au. 91 | 107   | 18.72 | 70.31  | 143.69 | 29       |
|      | Sp. 90 | 122   | 20.07 | 82.67  | 161.33 | 26       |
|      | Au. 89 | 107   | 18.72 | 70.31  | 143.69 | 41 -     |
|      | Sp. 89 | 122   | 20.07 | 82.67  | 161.33 | 48       |
| 6.   | Au. 92 | 90.4  | 17.31 | 56.46  | 124.30 | 20       |
|      | Sp. 92 | 105.8 | 18.42 | 69.74  | 141.95 | 26       |
|      | Au. 91 | 90.4  | 17.31 | 56.46  | 124.30 | 30       |
|      | Sp. 90 |       | -     | -      | -      | -        |
|      | Au. 89 |       | -     | -      | -      | -        |
|      | Sp. 89 | ) _   | -     | -      | -      | -        |
| 9.   | Au. 92 |       | 20.95 | 114.94 | 197.06 | 62       |
|      | Sp. 92 |       | 20.37 | 118.07 | 197.93 | 46       |
|      | Au. 91 |       | 20.95 | 114.94 | 197.06 | 61       |
|      | Sp. 90 |       | 20.37 | 118.07 | 197.93 | 32       |
|      | Au. 89 |       | 20.95 | 114.94 | 197.06 | 51       |
|      | Sp. 89 | 158   | 20.37 | 118.07 | 197.93 | 45       |

••

Table 10. Water quality classification, a proposed new system (NRA, 1991) and the corresponding ranges of Environmental Quality Indices (EQIs).

| Current water<br>mean |              | Proposed grading | Corresponding     |
|-----------------------|--------------|------------------|-------------------|
|                       | lity classes | system           | <b>BQI</b> ranges |
| 18                    | "excellent"  | A                | 0.90 -            |
| 1B                    | "good"       | В                | 0.65 - 0.99       |
| 2                     | "fair"       | С                | 0.60 - 0.85       |
| 3                     | "poor"       | D                | 0.40 - 0.65       |
| 4                     | "Bad"        | E                | - 0.55            |

,

Table 11. Environmental quality index (EQI) expressed as BMWP score (Observed/Predicted = EQIs), ASPT (= EQIa), total of scoring taxa (= EQIt) and mean EQI (EQIs+EQIa+EQIt/3). Data for autumn 1992 are compared with spring and autumn 1991 & 1990 (Bass & Leach), and 1989/90 (Gledhill, 1990).

| Enviro<br>Qualit |          |         | stn.1    | stn.2    | stn.3 | stn.6 | stn.9 |
|------------------|----------|---------|----------|----------|-------|-------|-------|
| EQIS             |          |         |          |          |       |       |       |
|                  | Au       | 1992    | 0.23     | 0.41     | 0.14  | 0.22  | 0.40  |
|                  |          | 1992    | 0.16     | 0.15     | 0.25  | 0.26  | 0.29  |
|                  |          | 1991    | 0.30     | 0.27     | 0.27  | 0.33  | 0.39  |
|                  | Sp       | 1990    | 0.10     | 0.35     | 0.21  | -     | 0.20  |
|                  |          | 1989    |          | 0.40     | 0.38  | -     | 0.33  |
|                  | Sp       | 1989    | 0.12     | 0.31     | 0.39  | -     | 0.28  |
| EQIa             |          |         |          |          |       |       |       |
|                  | Au       | 1992    | 0.59     | 0.75     | 0.45  | 0.56  | 0.61  |
|                  | Sp       | 1992    | 0.62     | 0.58     | 0.70  | 0.60  | 0.56  |
|                  | Ăŭ.      | 1991    | 0.62     | 0.62     | 0.58  | 0.75  | 0.74  |
|                  |          | 1990    | 0.42     | 0.64     | 0.55  | -     | 0.55  |
|                  |          | 1989    | 0.55     | 0.66     | 0.62  | -     | 0.58  |
|                  | Sp       | 1989    | 0.44     | 0.61     | 0.62  | -     | 0.58  |
| EQIt             |          |         |          |          |       |       |       |
| -                | Au       | 1992    | 0.64     | 0.72     | 0.46  | 0.39  | 0.86  |
|                  | Sp       | 1992    | 0.48     | 0.36     | 0.61  | 0.41  | 0.70  |
|                  |          | 1991    | 0.80     | 0.58     | 0.69  | 0.44  | 0.31  |
|                  |          | 1990    | 0.40     | 0.80     | 0.72  | -     | 0.49  |
|                  |          | 1989    | 0.32     | 0.43     | 0.61  | -     | 0.38  |
|                  | Sp       | 1989    | 0.48     | 0.72     | 0.96  | -     | 0.65  |
| mean             | EQ       | I (EQIS | + EQIa + | EQIt /3) |       |       |       |
|                  | <b>R</b> | 1992    | 0.49     | 0.63     | 0.35* | 0.39* | 0.62  |
|                  |          | 1992    | 0.42     | 0.36*    | 0.52  | 0.42  | 0.52  |
|                  |          | 1992    | 0.42     | 0.49     | 0.51  | 0.51  | 0.65  |
|                  |          | 1991    | 0.31*    | 0.60     | 0.49  | -     | 0.41  |
|                  |          | 1989    | 0.36*    | 0.50     | 0.54  | _     | 0.43  |
|                  |          | 1989    | 0.35*    | 0.55     | 0.66+ | -     | 0.50  |
|                  | -P       | 1 / 1 / |          |          |       |       |       |

\* - value below range for water quality class 3 ("poor"), override system downgrades to class 4 ("bad"). + - value above range for water quality class 3 ("poor"), override system upgrades to class 2 ("fair"). The remaining mean EQI values fall within the range corresponding to class 3.

# **DISTRIBUTION SHEET**

j

-

To be completed by all Project Leaders completing commissioned research project reports. Please bind a copy of this distribution sheet as the final page in all internal (IFE) copies of the report.

| 1.                                                              | Authors: BASS JAB. & LEACH D.V.<br>Title: Water Quality Monitoring on the Rivarne Brook<br>Interim Report (3) March 1993<br>Report Ref.:<br>Master copy held by: BASS<br>Report access code (please assign a suitable code from list below): S |            |          |
|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|
| 2.                                                              | DISTRIBUTION LIST (A-G standard distribution; H other)                                                                                                                                                                                         | No.copies  | Date     |
| <b>A)</b>                                                       | Contract Customer:                                                                                                                                                                                                                             | 2          |          |
| B)                                                              | J.G. Jones (title page and abstract only)                                                                                                                                                                                                      | I          |          |
| ດ                                                               | A.D. Pickering                                                                                                                                                                                                                                 | 1          |          |
| D)                                                              | A.D. Berrie (Internal Coordinator for Commissioned Research)                                                                                                                                                                                   |            |          |
| E)                                                              | Project Leader.                                                                                                                                                                                                                                | 1          |          |
| F)<br>G)                                                        | FBA Library, Windermere<br>FBA Library, River Laboratory                                                                                                                                                                                       | <br>1<br>1 |          |
| H)<br>1.<br>2.<br>3.<br>4.<br>5.<br>6.<br>7.<br>8.<br>9.<br>10. | Other (please list below and indicate no. copies in RH column)                                                                                                                                                                                 |            |          |
|                                                                 | Total number of copies made                                                                                                                                                                                                                    | 8          | <u> </u> |

## **REPORT ACCESS CODES**

In strict confidence - restricted access Access to named customer(s) - (could be named S restricted access individuals), IFE Directorate, Project Leader and all authors.

In confidence - restricted access Access to customer, IFE Directorate, Project Leader, all С authors, and IFE staff with permission of Project Leader.

'Normal' access Access to customer and all IFE staff. Access to visitors and general public N with permission of Project Leader. G

General access General access to anyone as required.