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 12 

Abstract 13 

Polar amplification of global warming has led to an average 2oC rise in air temperatures in parts of the 14 

polar regions in the last 50 years. Poikilothermic ectotherms that are found in these regions, such as 15 

Collembola and mites, may therefore be put under pressure by changing environmental conditions. 16 

However, it has also been suggested that the thermal sensitivity of invertebrates declines with higher 17 

latitudes and, therefore, that polar ectotherms may not be at risk. In the current study, the heat 18 

tolerance and physiological plasticity to heat stress of two well-studied Antarctic invertebrates, the 19 

collembolan, Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus, were investigated. Both 20 

species showed considerable heat tolerance, with each having an Upper Lethal Temperature (ULT) 21 

above 35oC (1 hour exposure). These species were also able to survive for over 43 d at 10oC and for 22 

periods of 5-20 min at 40oC. Across all experimental procedures, A. antarcticus possessed a 23 

somewhat greater level of heat tolerance than C. antarcticus. Water loss during short duration 24 

exposures did not differ between the two species at 30, 35 and 40oC, suggesting that the greater 25 

tolerance of A. antarcticus over this timescale was not due to higher desiccation resistance. 26 

Physiological plasticity was investigated by testing for Rapid Heat Hardening (RHH) and long-term 27 

acclimation. RHH was observed to a small degree in both species at a warming rate of 0.5oC min-1, 28 

and also 0.2oC min-1 in A. antarcticus alone. Longer-term acclimation (1 week at 10°C) did not 29 

enhance the heat tolerance of either species. Even with this limited physiological plasticity, the results 30 

of this study indicate that C. antarcticus and A. antarcticus have capacity in their heat tolerance to 31 

cope with current and future environmental extremes of high temperature.  32 
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 34 

1. Introduction 35 

Over the last century, the mean surface temperature of the Earth has increased by 0.6oC (IPCC 2001). 36 

However, the rate of warming has been amplified at higher latitudes, with an average 2oC rise in parts 37 

of the polar regions in the last 50 years (Arctic Council 2005; Convey et al. 2009; Turner et al. 2009). 38 

The northern and western parts of the Antarctic Peninsula have been particularly affected; over the 39 



period 1951-2006, data from Vernadsky (Faraday) station in the Argentine Islands recorded an 0.53oC 40 

rise in temperature per decade. A further consequence of this warming at a global scale has been a 41 

decrease in snow and ice cover of over 10% since the 1960s (Walther et al. 2002). These trends are 42 

set to continue, with general circulation models predicting further warming across the planet, and 43 

especially rapid warming in the polar regions. 44 

Invertebrates are poikilothermic ectotherms, meaning that their body temperature is highly influenced 45 

by, and varies markedly with, the external environment (Speight et al. 2008). In essence, they are 46 

unable to regulate their body temperature as do birds and mammals, and are therefore susceptible to 47 

injuries, and developmental and reproductive impairment, resulting from temperature changes (Bale 48 

and Hayward 2010). Invertebrates can respond to these changes through alterations in their behaviour, 49 

phenology, physiology and genetic make-up, with these responses acting within or between 50 

generations (Lachenicht et al. 2010). Behaviourally, they can track favourable temperatures by 51 

moving towards either higher latitudes or altitudes (Walther et al. 2002; Sinclair et al. 2003; Gobbi et 52 

al. 2006). Several alpine spiders, for instance, have been shown to remain in their preferred 53 

temperature range by tracking the recession of the Forni Glacier in Italy (Gobbi et al. 2006). 54 

Invertebrates can also adapt behaviourally on a smaller scale, via microhabitat selection. Habitats, 55 

such as the Antarctic fellfields, are host to a diversity of microclimates and invertebrates select those 56 

which are the least stressful (Hodkinson et al. 1999; Holmstrup and Zachariassen 1996; Hoshikawa et 57 

al. 1988; Spaull 1973). Hayward et al. (2000, 2003, 2004) have gone on to show thermal and hygric 58 

preferences that are suggestive of this type of behavioural selection in a laboratory setting. A further 59 

response identified is a shift of spring and autumn phenology with the changing of the growing season 60 

(Ibanez et al. 2010; Walther et al. 2002). 61 

Within generations, physiological adaptation is demonstrated through experimental acclimation or 62 

natural acclimatisation - permitting an organism to adapt to changing conditions via a change in form, 63 

movement or rate of physiological activity (Lachenicht et al. 2010). In the context of climate change, 64 

acclimatisation may involve the improvement of heat tolerance and upper thermal sub-lethal 65 

characteristics, such as physical activity, as temperatures rise. This form of adaptation has been shown 66 

in a number of organisms, including plants (Meyer and Santarius 1998), nematodes (Jagdale and 67 

Grewal 2003) and insects (Lachenicht et al. 2008). Over generations, invertebrates can adapt their 68 

physiology through the process of natural selection (Somero 2010). 69 

The thermal sensitivity of terrestrial invertebrates to temperature change has been reported to decline 70 

from the tropics to the poles (Addo-Bediako et al. 2000; Deutsch et al. 2008). Some tropical species 71 

live very close to their upper thermal limits and, in some cases, at temperatures that exceed their 72 

physiological optima (Somero 2010). Polar species, in contrast, may live chronically below their 73 

temperature optima, and are suggested to have sufficient scope to tolerate higher temperatures. 74 

Warming might even help to alleviate the stress associated with low temperatures in the polar regions. 75 

Climate warming simulation studies using screens, solar domes and other controlled environmental 76 

systems (Bokhorst et al. 2008; Bale and Hayward 2010) suggest a rise in temperature will indeed lead 77 

to greater invertebrate numbers in Antarctic communities (Convey et al. 2002; Convey & Wynn-78 

Williams 2002; Day et al. 2009). However, some manipulation studies also suggest the opposite 79 

outcome, with responses depending both on the detailed changes at micro-environmental level 80 

associated with the manipulation, and also on the group of invertebrates being considered (Convey et 81 

al. 2002, 2003; Bokhorst et al. 2011). Studies into upper thermal thresholds are also used in 82 

conjunction with climate manipulation studies and support the view that polar terrestrial invertebrates 83 

have low sensitivity to temperature change. Slabber et al. (2007), for example, showed that five 84 

Collembola species from a sub-Antarctic island, including Cryptopygus antarcticus, possessed Upper 85 



Lethal Temperatures (ULT50s) above 30oC, far higher than the mean summer temperature in the 86 

Antarctic. 87 

In the current study, the capacity of the collembolan, Cryptopygus antarcticus, and the mite, 88 

Alaskozetes antarcticus, to tolerate exposure to high temperatures was investigated, and their 89 

physiological plasticity to heat stress explored. In particular, this study addressed the ability of each 90 

species to respond to rapid increases in temperature, as might occur as a result of solar insolation of 91 

their microhabitats during diurnal cycles, and their tolerance to more prolonged exposures to high 92 

temperatures based on climate warming predictions. These species were selected as they represent 93 

two of the most successful arthropod groups in the maritime Antarctic and are considered ‘model’ 94 

organisms in polar research (Block and Convey 1995; Block et al. 2009), reaching numbers of up to 95 

1.5 x 106 individuals m-2 (Burn 1986; Convey and Smith 1997; Tilbrook 1967). Consequently, any 96 

effect warming may have on them will likely be reflected throughout the community.  97 

2. Materials and methods 98 

2.1. Invertebrate collection and storage conditions 99 

Naturally occurring summer-acclimatised individuals of C. antarcticus and A. antarcticus were 100 

collected from algae, moss and rocks on Léonie Island (67oS, 68oW), near to the British Antarctic 101 

Survey’s Rothera Research Station, Adelaide Island between January and March 2012. Samples were 102 

stored at 4oC (24:0 L:D) in plastic buckets containing substratum from the site of collection. For water 103 

loss experiments (sub-section 2.2.1.), samples were transported to the University of Birmingham 104 

under cool conditions (4 to 6oC), taking approximately two months, before being stored at 4oC (0:24 105 

L:D). All other experiments described were carried out at Rothera Research Station. 106 

2.2. Microhabitat temperatures 107 

The temperature range on Léonie Island on the soil surface underneath a rock was measured between 108 

24 January and 12 March 2012. To illustrate the extremes of temperature potentially experienced by 109 

an animal on an exposed surface, temperature was also recorded every 5 min on a rock between 5 and 110 

21 February 2012 at Rothera Research Station, using a Tinytag Transit 2 Datalogger (Gemini Data 111 

Loggers, Chichester, UK). Data were uploaded using Tinytag Explorer Software (Gemini Data 112 

Loggers, Chichester, UK). 113 

2.3. Upper Lethal Temperatures (ULTs) 114 

The upper temperature at which invertebrates no longer survived was determined by warming 115 

individuals of C. antarcticus and A. antarcticus at 0.2oC min-1 from 4oC to progressively higher 116 

temperatures (30 to 37oC for C. antarcticus and 30 to 40oC for A. antarcticus). Individuals were 117 

subsequently held at the target temperature for 1 h, before being cooled back to 4oC at the same rate. 118 

Three replicates of 10 individuals of each species were placed in Eppendorf tubes, which were packed 119 

inside glass test tubes plugged with sponge and placed in an alcohol bath (Haake Phoenix II C50P, 120 

Thermo Electron Corporation), prior to each experimental treatment. Control groups were handled, 121 

and exposed, in the same way at 4oC. The temperature experienced by the invertebrate was measured 122 

by placing a thermocouple within an identical Eppendorf tube into one of the glass test tubes. At the 123 

end of experimental treatments, individuals were rapidly transferred (over ice) from the Eppendorf 124 

tubes into plastic universal tubes containing moist Plaster of Paris, and returned to the rearing 125 

conditions (4oC, 0:24 L:D). Survival, defined by individuals moving either spontaneously or in 126 

response to gentle contact stimulus, was assessed 24 and 72 h after treatment. Replicate collection, 127 



controls, thermocouple use, recovery and survival assessment were the same for all following 128 

experimental procedures unless stated otherwise. 129 

2.3.1. Water loss following high temperature exposure 130 

For both species, five replicates of 10 individuals were exposed to three temperatures (30, 35 and 131 

40oC) as described in sub-section 2.2. Individuals were weighed prior to and upon removal from each 132 

treatment, then following drying to constant mass at 60oC for 24 h. From these values, initial water 133 

content and percentage water loss or gain were calculated (cf. Hayward et al. 2007). 134 

2.4. Rapid Heat Hardening (RHH) 135 

2.4.1. Determination of the discriminating temperature 136 

In rapid cold and heat hardening experiments the discriminating temperature is defined as the 137 

temperature at which there is 10-20% survival after an exposure time of e.g. 1 h (Lee et al. 1987). 138 

This temperature was determined here by exposing individuals (three replicates of 10 individuals) of 139 

C. antarcticus and A. antarcticus directly (i.e. without ramping from 4oC) to progressively higher 140 

temperatures (30 to 36oC for C. antarcticus and 36 to 40oC for A. antarcticus) for 1 h, before 141 

returning to the rearing temperature (4oC) at 0.2oC min-1. 142 

2.4.2. Induction of RHH 143 

To investigate the RHH response, individuals of C. antarcticus and A. antarcticus (3 replicates of 10 144 

individuals for each species) were warmed to the discriminating temperature at three different rates 145 

(0.5oC min-1, 0.2oC min-1 and 0.1oC min-1). As before, individuals were held for 1 h at the 146 

discriminating temperature and then cooled back to the rearing temperature (4oC) at 0.2oC min-1. 147 

2.5. Long-term heat tolerance 148 

Five replicates of 10 individuals of C. antarcticus and A. antarcticus were transferred to either 4 or 149 

10oC for up to 49 d. Individuals were held in universal tubes with a base of moist Plaster of Paris and 150 

a small amount of substratum within an incubator. Survival was assessed every 7 d for the first four 151 

weeks and then every 3 d thereafter. The temperature inside the incubator was measured using a 152 

Tinytag Transit 2 Datalogger. 153 

2.6. Acute heat exposure 154 

Three replicates of 10 individuals of C. antarcticus and A. antarcticus were exposed directly to three 155 

temperatures: 40, 45 and 50oC. At each temperature, individuals were held for 5, 10 or 20 min. 156 

Following high temperature treatment, they were transferred directly to recovery conditions (4°C, 157 

24:0 L:D). 158 

2.7. Effect of acclimation on heat tolerance 159 

Stock cultures of C. antarcticus and A. antarcticus were held for one week at 10oC prior to 160 

experimental treatments. Three replicates of 10 individuals of each species were subsequently warmed 161 

at 0.2oC min-1 to three temperatures (33, 34 and 35oC for C. antarcticus and 39, 39.5 and 40oC for A. 162 

antarcticus), and held there for 1 h, before being cooled to the rearing temperature (4oC) at 0.2oC min-163 
1. 164 

2.8. Statistical analysis 165 



The Kolmogorov-Smirnov test was used to check for normal distribution of survival and percentage 166 

water loss data. Normally distributed data were analysed using analysis of variance (ANOVA) and 167 

Tukey’s multiple range test; data that were not normally distributed were analysed using the Kruskal-168 

Wallis test.  169 

3. Results 170 

3.1. Microhabitat temperatures 171 

Soil surface temperatures beneath a rock on Léonie Island ranged from 13.5 to -6.1oC, and averaged 172 

1.9oC, between 24 January and 12 March 2012 (Fig. 1), whereas the temperature on the rock surface 173 

ranged between 31.2 and -8.7oC (Fig. 2). The diurnal temperature range on the rock surface was high, 174 

regularly exceeding 20oC (with temperature changing at rates > 2.5oC/h), and on seven occasions the 175 

temperature ranged from below 0oC to above 20oC within 12 h.  176 

3.2. Upper Lethal Temperatures (ULTs) 177 

Survival declined dramatically at temperatures close to the ULT for both species (Fig. 3). After 1h at 178 

34°C, almost 90% of C. antarcticus survived, while only 3% survived 1 h at 36°C, and none survived 179 

at 37°C. Alaskozetes antarcticus had greater heat tolerance than C. antarcticus, with 100% survival of 180 

1 h at 37°C, 81% survival at 39oC, but 0% survival at 40°C. The difference between species was not 181 

significant at 35, 36 and 37oC, according to the Kruskal-Wallis test (P > 0.05 Kruskal-Wallis test). 182 

3.2.1. Water loss following high temperature exposure 183 

Water loss was minimal following a 1 h exposure to 30, 35 and 40oC in both species (Table 1). The 184 

amount lost did not differ significantly from the control (1 h at 4oC) in all treatments, except for a 1 h 185 

exposure at 40oC in C. antarcticus (P < 0.05 Tukey’s multiple range test). There was no significant 186 

difference between the amount of water lost in C. antarcticus and A. antarcticus across each of the 187 

three treatments (P > 0.05 Tukey’s multiple range test). 188 

3.3. Rapid Heat Hardening (RHH) 189 

3.3.1. Determination of the discriminating temperature 190 

The discriminating temperature was determined to be 35°C for C. antarcticus (10% survival), and 191 

39.5°C for A. antarcticus, a temperature which although resulting in 0% survival, was chosen because 192 

it was closer to the 10-20% survival required than the 37% value obtained at 39°C (Fig. 4).   193 

3.3.2. RHH induction 194 

In both species, all three warming treatments (0.5, 0.2 and 0.1oC min-1) gave greater survival 195 

compared to direct exposure to the discriminating temperature (Fig. 5). The increase in survivorship 196 

was significant for 0.5oC min-1 in C. antarcticus (P < 0.05 Tukey’s multiple range test), and for 0.5 197 

and 0.2oC min-1 in A. antarcticus (P < 0.05 Tukey’s multiple range test). For A. antarcticus, survival 198 

declined as the rate of warming was lowered, from 73% at 0.5oC min-1 to 30% at 0.1oC min-1. The rate 199 

of 0.5oC min-1 also gave the greatest survival in C. antarcticus. 200 

3.4. Long-term heat tolerance 201 

C. antarcticus was more susceptible at both 4 and 10oC than A. antarcticus (Fig. 6). Survival of C. 202 

antarcticus decreased significantly at 4°C to 70% after 46 d (P < 0.05 Tukey’s multiple range test), 203 



and to 0% at 10oC (P < 0.05 Kruskal-Wallis test) (Fig. 6). Alaskozetes antarcticus survival also 204 

decreased significantly at 10oC (P < 0.05 one-way ANOVA), but only to 63% after 49 d, and was not 205 

significantly different at 4°C (80% survival, P > 0.05 Kruskal-Wallis test).  206 

3.5. Acute heat exposure 207 

At 40oC, A. antarcticus outperformed C. antarcticus in all treatments (5, 10 and 20 min, Fig. 7), but 208 

this was not significant (P > 0.05 Mann-Whitney U test; one-way ANOVA). At 45 and 50oC, both C. 209 

antarcticus and A. antarcticus survived poorly (Fig. 7). 210 

3.6. Effect of acclimation on heat tolerance 211 

Acclimation at 10oC did not significantly enhance the heat tolerance of C. antarcticus or A. 212 

antarcticus at any of the temperatures tested (P > 0.05 Mann-Whitney U test; one-way ANOVA, Fig. 213 

8).  214 

4. Discussion 215 

The Antarctic environment is unable to support large biological communities and, in extreme cases, 216 

may only support a food web of less than five animal species (Block et al. 2009; Hodgson et al. 217 

2010). The few terrestrial invertebrates that inhabit these communities play an important role in 218 

processes such as soil conditioning and nutrient cycling (Bokhorst et al. 2007). In contrast to the 219 

temperate and tropical regions, which have greater species diversity and subsequently greater 220 

functional redundancy, polar communities will struggle to compensate for the loss of species and their 221 

associated services. Changing environmental conditions as a result of climate warming may put 222 

pressure on polar species. However, the thermal sensitivity of polar invertebrates to temperature 223 

increase has been suggested to be low, and warming may even result in more optimal conditions and a 224 

reduction in environmental constraints on invertebrate physiology (Addo-Bediako et al. 2000; Convey 225 

et al. 2009; Deutsch et al. 2008). The acute and chronic tolerances, as well as the physiological 226 

plasticity, of the collembolan, C. antarcticus, and the mite, A. antarcticus, are discussed here in the 227 

context of their ability to respond to climate warming. 228 

4.1. Basal heat tolerance 229 

The collembolan, C. antarcticus, and the mite, A. antarcticus, demonstrated considerable heat 230 

tolerance, with each having a ULT of over 35oC (Fig. 3). In two sub-Antarctic studies on Marion 231 

Island (Deere et al. 2006; Slabber et al. 2007) and one study at Cape Hallet, North Victoria Land 232 

(Sinclair et al. 2006), several mites and Collembola, including C. antarcticus on Marion Island, were 233 

also shown to possess ULTs above 30oC. While this level of tolerance is somewhat lower than found 234 

in temperate or tropical species, such as the Asian brown planthopper, Nilaparvata lugens, which has 235 

a ULT50 of 41.8 to 42.5oC (Piyaphongkul et al. 2012), this nevertheless demonstrates a considerable 236 

capacity to cope with current conditions (Convey 1996a). Indeed ULTs above 35oC are high when 237 

considering the temperatures these Antarctic species typically experience during the summer. Tinytag 238 

measurements on Léonie Island through February and March did not show surface temperatures 239 

exceeding 15oC (Fig. 1). Likewise, temperatures recorded between 2002 and 2008 on nearby 240 

Anchorage Island did not rise higher than 20oC. However, it should be noted that diurnal fluctuations 241 

in some microhabitats and years can exceed 30°C for short periods of minutes to hours (Fig. 3; Smith 242 

1988; Convey 1996a). Both C. antarcticus and A. antarcticus were also able to survive for over 43 d 243 

at 10oC (Fig. 6) and showed survival at 40oC over periods of 5-20 min (Fig. 7). These two species are 244 



therefore well adapted to survive the summer on Léonie Island and have some capacity to tolerate 245 

higher temperatures than those that are currently experienced (Day et al. 2009; Convey et al. 2009).  246 

Survival alone is not an accurate measure of fitness. Success is also influenced by the sub-lethal 247 

characteristics of a species, such as the effects of heat stress on reproduction and development. In 248 

many species, survival is possible at extremes of temperature, but they are then unable to fully 249 

develop and reproduce once usual temperatures are restored (Shreve et al. 2004). Invertebrates are 250 

also hampered during temperature extremes (Piyaphongkul et al. 2012; Powell and Bale 2006; Shreve 251 

et al. 2004; Wang and Kang 2003). Uncoordinated movement 72 h after high temperature treatment in 252 

the current study (> 30oC, data not shown) indicates that permanent damage might have been incurred 253 

as a result of high temperature exposure, which could subsequently result in impaired development 254 

and reproduction. Thus, whilst C. antarcticus and A. antarcticus can survive above 35oC, negative 255 

effects on them and their communities might be seen at much lower temperatures. 256 

4.2. Interspecific comparisons 257 

Alaskozetes antarcticus showed significantly greater heat tolerance than C. antarcticus. This capacity 258 

was demonstrated across all experimental procedures; A. antarcticus had a higher ULT (Fig. 3), 259 

exhibited higher survival of acute heat exposure (Fig. 7) and survived for longer at 10oC (Fig. 6). 260 

Previous studies also show that mite species tend to have higher heat tolerance than Collembola 261 

(Deere et al. 2006; Sinclair et al. 2006). It was initially hypothesised that higher desiccation resistance 262 

accounted for the greater heat tolerance in A. antarcticus. This is because C. antarcticus is a hygric 263 

species, with little or no control of water loss (Convey et al. 2003; Worland and Block 1986, 2003), 264 

whereas A. antarcticus is a mesic species and has good control over its water content (Benoit et al. 265 

2007; Worland and Block 1986). However, there was little difference in water loss with temperature 266 

and no significant difference in the water lost between the two species over the experimental durations 267 

under all temperature treatments (Table 1). It seems, therefore, that A. antarcticus possesses a more 268 

adaptive heat tolerance physiology than C. antarcticus. Possible physiological adaptations capable of 269 

operating over these experimental timescales include the activation of heat shock proteins (Schill et 270 

al. 2004; Rinehart et al. 2006; Michaud et al. 2008) and membrane remodelling (Hazel 1995). 271 

The results of this study suggest that, in a rapidly warming Antarctic, A. antarcticus would have some 272 

advantage over C. antarcticus. Climate manipulation studies also suggest that mites will be favoured 273 

over Collembola under warming. In both the Arctic (Coulson et al. 1996) and the Antarctic (Bokhorst 274 

et al. 2008; Convey et al. 2002), Collembola numbers decreased significantly under artificially 275 

warmed conditions over three years, while mite numbers remained largely unchanged. However, 276 

Webb et al. (1998) proposed that oribatid mite populations are slow to show a response to short-term 277 

environmental changes and that manipulations longer than those used in the aforementioned studies 278 

are required to identify any effect. A further consideration is how the heat tolerance of these species 279 

relates to their behaviour. Collembola are more mobile than oribatid mites, and so may be better able 280 

to relocate to habitats in their preferred temperature range. Consequently, the more rapid movement of 281 

C. antarcticus could compensate for reduced heat tolerance in this species. It is therefore only in a 282 

uniform thermal environment where A. antarcticus would be favoured (see also Hayward et al. 2003). 283 

4.3. Physiological plasticity 284 

The Antarctic hosts a diversity of microclimates. In some of these, the daily temperature can fluctuate 285 

by as much as 50oC (Convey 1996a). In the current study, measurements on a rock surface showed 286 

temperature variation approaching or exceeding 30oC on a diurnal timescale (Fig. 2). Similar patterns 287 



have been reported in other microhabitats; temperatures within the moss cushion, Schistidium 288 

antarctici, were shown to cycle between -9.2oC and 42.8oC over 24 h (Smith 1988). It could, 289 

therefore, be to an invertebrate’s advantage to adapt quickly to changes in temperature. One means of 290 

tracking temperature changes is via a process termed Rapid Heat Hardening (RHH), which is the 291 

rapid induction of heat tolerance over minutes to hours (Benoit et al. 2009). Both C. antarcticus and 292 

A. antarcticus showed evidence of RHH, with enhanced survival at their discriminating temperatures 293 

following warming at the three rates of 0.1, 0.2 and 0.5oC min-1 (Fig. 5). The rate of 0.5oC min-1 gave 294 

the greatest increase in survival for both species, and was likely due to the reduced time spent at 295 

harmful temperatures. Overall, the RHH response was small, however, giving an average rise in 296 

survivorship of only 38% across all treatments. It is possible that RHH has more of an influence on 297 

the sub-lethal characteristics of C. antarcticus and A. antarcticus. Although there is as yet little 298 

support for this occurring in other species, there is ample evidence of a sub-lethal influence during 299 

Rapid Cold Hardening (RCH) (Denlinger and Lee 2010). For example, courting, reproduction, and the 300 

Critical Thermal minimum (CTmin – loss of coordination at low temperatures) were all improved in 301 

D. melanogaster following RCH (Shreve et al. 2004; Kelty and Lee 1999). 302 

Physiological plasticity can also be seen over longer timescales in the form of experimental 303 

acclimation (Lachenicht et al. 2010). The nematodes, Steinernema carpocapsae and Steinernema 304 

feltiae, for instance, showed enhanced heat tolerance, and higher virulence under heat stress, when 305 

reared at higher, and thus acclimatory, temperatures (Jagdale and Grewal 2002). Similarly, heightened 306 

heat tolerance following time at higher rearing temperatures was exhibited in both marine and 307 

terrestrial mites found on Marion Island (Deere et al. 2006). In the current study, a one week 308 

acclimation at 10oC had no significant impact on survivorship in either C. antarcticus or A. 309 

antarcticus (Fig. 8). A null response in the sub-Antarctic collembolan Tullbergia bisetosa, and a 310 

decline in heat tolerance in C. antarcticus, was also shown following acclimation at 15oC (Slabber et 311 

al. 2007).  312 

Physiological plasticity across generations may also be important; species with sufficient genetic 313 

variation that produce progeny with higher physiological thermal optima may end up as the ‘winners’ 314 

in scenarios of climate warming (Somero 2010). In a number of species, life at low temperatures has 315 

resulted in the loss of physiology suited to warming conditions (Somero 2010). The polar marine 316 

ectotherms of the Southern Ocean provide a particularly good illustration. These species are 317 

stenothermal and have experienced a narrow range of low temperatures for millions of years (at 318 

present -1.9 to +1.8oC or much less) (Somero 2010). As a result, many have lost their ability to initiate 319 

a heat shock response (Clark et al. 2009). The same might be true of polar terrestrial invertebrates 320 

with regard to their physiological plasticity, and if so these will therefore become less successful as 321 

climate change intensifies. However, it has also been suggested that the greater thermal variability 322 

typical of polar terrestrial environments will preserve heat tolerance adaptation (Peck et al. 2006). 323 

Indeed, the climatic variability hypothesis (Stevens 1989) suggests that the greater thermal variability 324 

at higher latitudes means that invertebrates must have a greater physiological range and subsequently 325 

retain physiological plasticity at higher temperatures. Also of note are the long generation times of 326 

these animals, which frequently extend to five years or more, and therefore limit their ability to adapt 327 

across generations (Convey 1994, 1996b). 328 

5. Conclusion 329 

It has been suggested that the thermal sensitivity of invertebrates to temperature change decreases 330 

from the tropics to the poles (Deutsch et al. 2008). This statement is supported by the current study, 331 

which shows that both C. antarcticus and A. antarcticus have scope with which to tolerate current and 332 



future conditions. Warming may even alleviate the stresses experienced by these invertebrates and 333 

provide an opportunity for population growth. If these species are assumed to be characteristic of 334 

other Collembola and Acari in the maritime Antarctic, a positive impact on the community and on 335 

ecosystem functions such as nutrient cycling, may also be seen.  336 
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Figure and Table legends 

Fig. 1. Surface temperature beneath a rock on Léonie Island, near Rothera Research Station, Adelaide 
Island, between 24th January and 12th March 2012. 

Fig. 2. Temperature on a rock surface outside the Bonner Laboratory at Rothera Research Station, 
Adelaide Island, between 5th and 21st February 2012. 

Fig. 3. Mean percentage survival of C. antarcticus and A. antarcticus, following exposure to 
progressively higher temperatures (30 to 37oC – C. antarcticus, 30 to 40oC – A. antarcticus) for 1h, before 
cooling at 0.2oC min-1 to 4oC. Means ± S.E.M. are presented for three replicates of 10 individuals. 
Survival was assessed 72 h after treatment. Means with the same letter (A. antarcticus) and same number 
of * symbols (C. antarcticus) are not significantly different within each species group at P < 0.05 
(Kruskal-Wallis test and Tukey’s multiple range test, respectively). A. antarcticus was not tested at 33 or 
34oC. 

Fig. 4. Mean percentage survival of C. antarcticus and A. antarcticus, following direct exposure to 
progressively higher temperatures (30 to 36oC for C. antarcticus and 36 to 40oC for A. antarcticus) for 1 
h, before cooling at 0.2oC min-1 to 4oC. Means ± S.E.M. are presented for three replicates of 10 
individuals. Survival was assessed 72 h after treatment. Means with the same letter (A. antarcticus) and 
same number of * symbols (C. antarcticus) are not significantly different within each species group at P 
< 0.05 (Kruskal-Wallis test). 

Fig. 5. Mean percentage survival of C. antarcticus and A. antarcticus, following exposure to the 
discriminating temperature (35oC – C. antarcticus, 39.5oC – A. antarcticus) for 1 h, after being warmed to 
the discriminating temperature at one of three rates (0.5, 0.2 or 0.1oC min-1). Means ± S.E.M. are presented 

for three replicates of 10 individuals. Survival was assessed 72 h after treatment. Means with the same letter (A. 
antarcticus) and same number of * symbols (C. antarcticus) are not significantly different within each 
species group at P < 0.05 (Tukey’s multiple range test). 

Fig. 6. Mean percentage survival of C. antarcticus and A. antarcticus at +4 and +10oC over a period of 46 
(C. antarcticus) and 49 d (A. antarcticus).  Means ± S.E.M. are presented for five replicates of 10 
individuals. Means with the same letter (A. antarcticus) and same number of * symbols (C. antarcticus) 
are not significantly different within each species group at P < 0.05 (Kruskal-Wallis test). 

Fig. 7. Mean percentage survival of C. antarcticus and A. antarcticus following exposure to 40oC for 5, 
10 or 20 min. Means ± S.E.M. are presented for three replicates of 10 individuals. Survival was assessed 
72 h after treatment. Means with the same letter (A. antarcticus) and same number of * symbols (C. 
antarcticus) are not significantly different within each species group at P < 0.05 (Kruskal-Wallis test). 

Fig. 8. Mean percentage survival, following exposure to 33, 34 and 35oC – C. antarcticus, and 39, 39.5 
and 40oC – A. antarcticus) for 1 h, before cooling at 0.2oC min-1 to 4oC. Both species were held at 10oC 
for one week prior to experimentation. Means ± S.E.M. are presented for three replicates of 10 
individuals. Survival was assessed 72 h after treatment. Means with the same letter (A. antarcticus) and 
same number of * symbols (C. antarcticus) are not significantly different within each species group at P 
< 0.05 (Tukey’s multiple range test). 



Table 1. Mean percentage water loss of C. antarcticus and A. antarcticus, following exposure to 30, 35 
and 40oC for 1 h, prior to cooling at 0.2oC min-1 to 4oC. Water content of control sample held at 4°C for 1 
h also given. Means ± S.E.M. are presented for five replicates of 10 individuals. 
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Figure 5 
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Figure 6 

 

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

Su
rv
iv
al
 (
%
)

Time (d)

C. antarcticus +4oC

C. antarcticus +10oC

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45

Su
rv
iv
al
 (
%
)

Time (d)

A. antarcticus +4oC

A. antarcticus +10oC



 

Figure 7 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

5 10 20

S
u

rv
iv

al
 (

%
)

Time (min)

A. antarcticus

C. antarcticus

a  a

a* 

 
*

                  

 

*



 

 

Figure 8 
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Table 

Temperature (oC) Water Content change (%) 
C. antarcticus A. antarcticus 

4 3.19 ± 2.86 -0.02 ± 1.82 
30 -1.58 ± 1.76 0.12 ± 0.38 
35 0.88 ± 3.65 -3.82 ± 1.61 
40 -6.68 ± 0.81 -2.08 ± 0.45 
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