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Introduction

The deep sea is the largest and most enigmatic of the
Earth’s ecosystems (Ramirez-Llodra et al. 2010). Covering
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Abstract

Recent expeditions have revealed high levels of biodiversity in the tropical deep-
sea, yet little is known about the age or origin of this biodiversity, and large-scale
molecular studies are still few in number. In this study, we had access to the larg-
est number of solariellid gastropods ever collected for molecular studies, includ-
ing many rare and unusual taxa. We used a Bayesian chronogram of these deep-
sea gastropods (1) to test the hypothesis that deep-water communities arose
onshore, (2) to determine whether Antarctica acted as a source of diversity for
deep-water communities elsewhere and (3) to determine how factors like global
climate change have affected evolution on the continental slope. We show that
although fossil data suggest that solariellid gastropods likely arose in a shallow,
tropical environment, interpretation of the molecular data is equivocal with
respect to the origin of the group. On the other hand, the molecular data clearly
show that Antarctic species sampled represent a recent invasion, rather than a
relictual ancestral lineage. We also show that an abrupt period of global warming
during the Palaeocene Eocene Thermal Maximum (PETM) leaves no molecular
record of change in diversification rate in solariellids and that the group radiated
before the PETM. Conversely, there is a substantial, although not significant
increase in the rate of diversification of a major clade approximately 33.7 Mya,
coinciding with a period of global cooling at the Eocene—Oligocene transition.
Increased nutrients made available by contemporaneous changes to erosion, ocean
circulation, tectonic events and upwelling may explain increased diversification,
suggesting that food availability may have been a factor limiting exploitation of
deep-sea habitats. Tectonic events that shaped diversification in reef-associated
taxa and deep-water squat lobsters in central Indo-West Pacific were also probably
important in the evolution of solariellids during the Oligo-Miocene.

almost two-thirds of the planet’s surface, it was once
thought to be devoid of life. Studies over the last hundred
years, however, have shown that the deep sea is in fact
rich in species, some with bizarre and novel adaptations
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to the challenges of living at great depth. This understud-
ied but important marine environment is at risk from
overexploitation and habitat destruction as a result of
both fishing and mining ventures (e.g., Halfar and Fujita
2007; Van Dover 2011), and it is vital that we learn more
about the diversity of its biota and their evolution before
these habitats suffer further destruction.

Elucidating the factors driving diversification in the
deep sea is of profound importance if we are to under-
stand how deep-sea groups have evolved. Climate change
has been shown to result in shifts in primary producers
that also affect deep-sea community structure over peri-
ods of a few years (Ruhl and Smith 2004), over hundreds
of thousands of years spanning the past four glacial-inter-
glacial cycles (Yasuhara et al. 2009, 2012) and over mil-
lions of years (Smith and Stockley 2005). It is likely
therefore that climate change over geological time has also
played an important role in the evolution of deep-sea
diversity (e.g., Lipps and Mitchell 1976; Gingerich 2006;
Berger 2007).

The Palaecocene/Eocene boundary (~55.8 Mya) was
marked by a brief but intense global warming event,
known as the Palaecocene-Eocene Thermal Maximum
(PETM), which saw global temperatures rise by 5°C over
10,000 years. Sea surface temperatures rose between 5°C
in the tropics and 9°C in the high latitudes, and bottom-
water temperatures by 4-5°C over a period of about
10,000 years (Zachos et al. 2001, 2008). The event was
also associated with a massive injection of '’C-depleted
carbon into the ocean-atmosphere system (Dickens et al.
1995), resulting in shallowing of the calcite compensation
depth (CCD) and acidification in the deep sea (Zachos
et al. 2005). This in turn is thought to have contributed
to the contemporaneous mass extinction of benthic Fora-
minifera, although most plankton survived (Tjalsma and
Lohmann 1983; Zachos et al. 2005) and a transient diver-
sification was observed in topical, planktonic foraminifera
(Kelly et al. 1998). On land, this dramatic climate change
resulted in a rapid increase in plant speciation and diver-
sity in tropical habitats (Jaramillo et al. 2010), a turnover
in large mammals in northern continents and possibly
Africa (Gingerich 2006; Blois and Hadley 2009) and a
rapid and transient northward migration of plants in
North America (Wing et al. 2005). The PETM was fol-
lowed by the Eocene Optimum, an extended period of
very warm temperatures (Zachos et al. 2001, 2008).

Another dramatic change in global climate occurred at
the Eocene—Oligocene transition (EOT), when there was a
period of abrupt cooling lasting about 500 kyr between
33.5 and 34 Mya (Zachos et al. 2001, 2008; Pearson et al.
2008). Atmospheric and high latitude sea-surface temper-
atures cooled by ~5°C (Kennett and Shackleton 1976; Liu
et al. 2009) and both the thermocline and deep water of
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the Southern Ocean and Indian Ocean cooled by 2-3°C
across the EOT (Dunkley Jones et al. 2008; Bohaty et al.
2012). The Earth shifted from “greenhouse” to “icehouse”
conditions with large, permanent ice-sheets forming in
Antarctica (Zachos et al. 1996; Lear et al. 2000). The
growth of a continental-scale ice sheet in Antarctic is
thought to have been a primary driver of changes to Ant-
arctic circulation, which in turn caused increased latitudi-
nal thermal gradients, increased thermohaline circulation,
increased deep-basin ventilation, decreased deep-ocean
acidity, a deepening of the CCD and intensified upwelling
that coincided with periods of sea-level fluctuations (van
Andel 1975; Coxall et al. 2005; Rea and Lyle 2005; Berger
2007; Miller et al. 2009). The onset of the Antarctic Cir-
cumpolar Current (ACC) also occurred concurrently with
the EOT and tectonic events leading to the opening of
both the Drake and Tasman Passages (Katz et al. 2011).

Intense chemical weathering of siliceous rocks at high
latitudes is thought to have occurred prior to the EOT
during the warm climate of the Eocene Optimum, releas-
ing high concentrations of silica into the oceans (Lear
et al. 2000). The ACC triggered mixing of deep-water lay-
ers around Antarctica, leading to an increase in silica and
other nutrients in the deep sea (Lear et al. 2000; Berger
2007; Marx and Uhen 2010). The increase in nutrients is
thought to have resulted in diversification of siliceous dia-
toms (Miller et al. 2009), which in turn is thought to
have resulted in increased abundance of krill, leading to
the diversification of whales in southern oceans (Berger
2007; Marx and Uhen 2010).

Little is known about the origin of deep-sea clades, but
fossil evidence suggests that post-Palacozoic order-level
benthic marine taxa first appeared near or onshore, even if
they are now found only in the deep sea (Jablonski et al.
1983; Jablonski and Bottjer 1991; Jablonski 2005). Iconic
examples for this include primitive taxa such as monopla-
cophorans and stalked crinoids that dominated shallow
marine environments during the Palaeozoic, but currently
occur only in deep-sea refugia (Lemche 1957; Ameziane
and Roux 1997; Aronson and Blake 2001; Kano et al
2012). Conversely, the origins of lower level taxa such as
families and genera do not always conform to this pattern
(Jablonski 2005). Indeed, molecular evidence suggests radi-
ations move from offshore to onshore (e.g., deep-sea cor-
als, Lindner et al. 2008) as well as in the reverse direction
(e.g., isopods, Raupach et al. 2012). Previous authors have
suggested the shift in origin may have been due to deep-sea
anoxic events that were frequent prior to the Cenozoic
(Jacobs and Lindberg 1998); however, this is now debated
(Jablonski 2005). An additional hypothesis is that early
deep-sea radiations originated in shallow-water, but were
displaced into deep-water as a result of pressure from pre-
dators or competitors (Vermeij 1987).

© 2013 The Authors. Published by Blackwell Publishing Ltd.
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Another theory is that since the onset of glacial cli-
mates, Antarctica may have acted as a center of origin for
deep-sea taxa, with Antarctic shelf taxa moving into deep-
water as a result of climatic deterioration during glaciation
periods and the subsequent loss of shallow-water habitat
(Zinsmeister and Feldmann 1984; Crame 1993; Rogers
2000; Briggs 2003; Brandt et al. 2007; Strugnell et al.
2008). Range expansion of Antarctic marine organisms
into the Southern Ocean followed the development of the
Antarctic Circumpolar Current (ACC; ~33.8 Mya) and the
northward movement of Antarctic bottom water (20—
5 Mya; Lawver and Gahagan 2003). The ACC connected
shallow-water Antarctic fauna with deep-water in the
Atlantic, Indian and Pacific Oceans contributing to the
Cenozoic diversification in the Southern Ocean (Brey
et al. 1996; Rogers 2000; Briggs 2003; Brandt et al. 2007;
Strugnell et al. 2008; Clarke and Crame 2010).

We used a deep-sea radiation of vetigastropods as a trac-
table model to test these key hypotheses about origins and
to determine the factors driving diversification on the con-
tinental slope. The marine gastropod family Solariellidae is
a group of small (5 mm-2 cm) marine snails that occur
globally, predominantly in deep-water, although some spe-
cies occur as shallow as 5 m (Warén 1993). Specifically,
our objectives were to use Bayesian inference to estimate
species trees and divergence times, with palacontological
data informing calibration of key nodes in the tree. The
resulting chronogram was used: (1) to test the hypothesis
that deep-water communities arose from shallow-water
ancestors; (2) to determine whether Antarctic shallow-
water species represent new invasions or relictual ancestors
of lineages that acted as a source of diversity for deep-water
communities elsewhere; and (3) to examine the timing of
diversification in order to determine the factors driving
evolution in the deep sea. Two factors were of special inter-
est: the two shifts in global temperature discussed above
and tectonic activity in Southeast Asia. The latter has been
shown to drive diversification in both shallow and deep-
water groups in the Indo-West Pacific (Kohn 1990; Wilson
and Rosen 1998; Williams 2007; Renema et al. 2008; Wil-
liams and Duda 2008; Bellwood et al. 2012; Cabezas et al.
2012) and we would expect to see a similar pattern in sola-
riellids. We would predict that the PETM would have had
little effect on deep-sea organisms over the depth distribu-
tion of solariellids, as they may have been less affected by
dramatic temperature increases than intertidal and terres-
trial organisms and most solariellid species occur above the
CCD. Conversely, we would predict that events contempo-
raneous with the EOT might have led to increased diversi-
fication in Southern Ocean and Indo-West Pacific (IWP)
solariellids, reflecting diversification patterns of other mar-
ine taxa in the Southern Ocean (e.g., Berger 2007; Miller
et al. 2009; Marx and Uhen 2010).

© 2013 The Authors. Published by Blackwell Publishing Ltd.
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Materials and Methods

Samples

Recently, MNHN deep-sea expeditions have obtained
unprecedented collections of solariellids from New Cale-
donia, Vanuatu, Solomon Islands, Philippines, Norfolk
Ridge, Chesterfield Bank, Papua New Guinea, Madagascar
and Mozambique Channel, all of which were included in
this study. Additional specimens from Japan, Antarctica,
Norway, New Zealand, South Africa, and Australia were
collected by the authors or loaned from other museums.
Sequences were obtained from a total of 208 solariellid
specimens and 25 outgroup taxa (Table 1 for solariellids,
Table S1 for outgroup taxa). Based on recent revisions,
our study has included all but two genera: the IWP gen-
era Minolops (which may be synonymous with Spectamen;
Marshall 1999) and one Atlantic genus, Microgaza. The
choice of outgroup taxa was based on Williams (2012).

Laboratory methods, sequence editing, and
alignment

DNA was extracted from ethanol-preserved foot or man-
tle tissue (or in a few cases dried specimens) following
the protocol described by Williams and Ozawa (2006).
The amplification protocols described by Williams et al.
(2010) were used to amplify portions of the nuclear 28S
rRNA gene (28S: 1496 bp) and three mitochondrial genes:
cytochrome oxidase subunit I (COI: 709 bp), 16S rRNA
(16S: ~610 bp) and 12S rRNA (12S: ~685 bp). Sequence
reactions were performed directly on purified PCR prod-
ucts using a BigDye Terminator v1.1 Cycle Sequencing
Kit (Applied Biosystems, Foster City, CA) and run on an
Applied Biosystems 3730 DNA Analyser automated capil-
lary sequencer. Sequencing and PCR primers are listed in
Table S2. Sequences were edited using Sequencher (v. 4.8,
Gene Codes Corporation, Ann Arbor, Michigan). A total
of 670 sequences were analyzed in this study, of which
631 were new (EMBL accession numbers in Table 1).
Alignment of solariellid COI sequences was performed
in MacClade (v 4.08 OSX; Maddison and Maddison
2003). Alignment of COI including outgroups required
two insertions, each of a single amino acid for Liotiidae
sequences (as previously noted by Kano 2008 and Wil-
liams 2012). Ribosomal genes were aligned using MAFFT
(v 6.864; Katoh et al. 2002; online: http://maftt.cbrc.jp/
alignment/server/). The G-INS-i option was used, which
is recommended for sequences with global homology
(Katoh et al. 2005), the gap opening penalty was set to 1
and the offset value was set at 0.1, as long gaps were not
expected. Scoring matrix for nucleotide sequences were set
to “IPAM/x = 2” for 28S as sequences were very similar,
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but “20PAM/x = 2” for mitochondrial ribosomal genes.
Poorly aligned sites in rRNA alignments were identified
using Gblocks Server (0.91b, Castresana 2000; http://
molevol.cmima.csic.es/castresana/Gblocks_server.html) and
removed from analyses. Parameters used in Gblocks
allowed for smaller final blocks, gap positions within the
final blocks and less strict flanking positions.

Species delimitation

We used the single-threshold, general mixed Yule-coales-
cent (GMYC) model as implemented by SPLITS (code
written by T. Ezard, T. Fujisawa and T. Barraclough in R,
v.2.10, http://cran-project) to identify species from
sequence variation in mitochondrial genes. We used COI
on its own, as COI is commonly used as a “barcoding”
gene, but we also used concatenated sequences from all
three mitochondrial genes as a previous study on low dis-
persal species has suggested that combined genes may be
more informative than a single gene for species delimita-
tion (Williams et al. 2011). We did not use 28S as the
GMYC procedure provides a potential means of detecting
species from single-locus sequence data (Monaghan et al.
2009). Instead, we examined the 28S sequences to deter-
mine whether any species shared identical genotypes.

Taxon sets differed between the two GMYC analyses.
In the combined mitochondrial gene analysis, we used
concatenated sequence from all mitochondrial genes
including those specimens with two or three mitochon-
drial sequences. Where preliminary analyses showed
sequences formed a tight cluster in independent gene
trees, samples from each clade were limited to three speci-
mens in the combined dataset. This dataset included
some species that were missing COI data. All individuals
with COI sequences were included in the single gene anal-
ysis. Eleven specimens were not included in either analysis
because of missing data.

Ultrametric trees were produced for GMYC analyses
using Bayesian inference as implemented in the program
BEAST (v.1.7.1; Drummond and Rambaut 2007) with a
relaxed lognormal clock, but without any fossil calibra-
tions and a fixed mean rate of substitutions set to one.
We used a constant coalescent prior, which is thought to
be more conservative than a Yule prior for delimiting
species (Monaghan et al. 2009). Where multiple genes
were used, sequence variation was partitioned among
genes and gene-specific nucleotide substitution model
parameters were used, with each gene allowed to evolve
at a different rate. Nucleotide substitution models used in
preliminary analyses in BEAST were determined by
MrModelTest using the hierarchical likelihood ratio test
(v 2.1, J. Nylander, www.ebc.uu.se/systzoo/staff/nylander.
html). Where multiple models were suggested, the sim-

© 2013 The Authors. Published by Blackwell Publishing Ltd.
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plest was chosen. The best models for each data set were
determined to be HKY + 1+ G for 16S and 12S and
GTR + I + G for COIL Analyses ran for 200,000,000 gen-
erations, sampling every 10,000 generations. The final spe-
cies tree was a maximum clade credibility tree with
median node heights based on 18,000 trees. Length of
burnin was determined by examination of traces in Tracer
(v. 1.5, Drummond and Rambaut 2007; available from
http://beast.bio.ed.ac.uk/Tracer).

Phylogenetic reconstruction

Species trees using individual genes and concatenated
sequences from all four genes were produced using Bayes-
ian inference as implemented in MrBayes (v. 3.2.1, Huel-
senbeck and Ronquist 2001). Nucleotide substitution
models were those used in species delimitation analyses
(plus 28S: GTR + G + I). The temperature was lowered
to 0.15 to encourage swapping among chains and the
propset command was used to increase the proposal
probability of the topology parameter (individual gene
datasets: ExtTBR(Tau,V); combined dataset: ExtTBR(Tau
{all},V{all})) from 5% to 10%. These parameters were
chosen based on previous studies of Trochoidea, which
showed a large improvement in convergence time and
effective sample size (ESS) values using these settings
(Williams 2012). Analyses were run for 20,000,000 gener-
ations with a sample frequency of 1000. The first ten per-
cent were discarded, so that 18,000 trees were accepted
for each run. The datasets were analyzed in two indepen-
dent runs, and the final tree was computed from the
combination of accepted trees from each run (a total of
36,000 trees). Stationarity and convergence between the
two runs were determined by examining the potential
scale reduction factors (PSRF), standard deviation of split
frequencies and by visual examination of.p files in Tracer
(v. 1.5; available from http://beast.bio.ed.ac.uk/Tracer).

A chronogram, where branch length corresponds to
time, was produced using Species Tree Ancestral Recon-
struction (*BEAST). The *BEAST method co-estimates
gene trees and a species tree and allows for the incorpora-
tion of multiple exemplars of each species and the inde-
pendent evolution of each gene without fixing a single
topology across loci (Heled and Drummond 2010). Two
separate *BEAST analyses were undertaken to test how
calibrations affect node ages. In one analysis we used an
uncorrelated relaxed, lognormal clock with three calibra-
tions based on fossil evidence. In the second, only one
was used to date the root (see below for details). Eight
independent *BEAST analyses ran between 322,000,000
and 500,000,000 generations with sample frequency of
10,000 for the three calibration analysis. Five independent
runs were used in the single calibration analysis. In both
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cases, the Birth—Death tree prior was used for species-level
analyses. Sequence variation was partitioned among genes
and gene-specific nucleotide substitution model parame-
ters were used, with each gene allowed to evolve at a differ-
ent rate. Based on preliminary analyses, we simplified the
nucleotide substitution models, using HKY + G + I for all
genes, which resulted in improved ESS values. In the
*BEAST analysis, we used only solariellid sequences, where
each individual had sequence data for 28S and at least two
mitochondrial gene sequences. Sequences were assigned to
68 species (not all species were included due to missing
data) based on results from species delimitation tests and
the number of individuals per species was limited to three
to improve computation times. Tree topology was linked
for the three mitochondrial genes, as the mitochondrial
genome 1is inherited as a single locus. Default priors were
used except for fossil calibrations and ucld.mean priors,
which were changed to exponential.

As ages can vary between BEAST and *BEAST analyses
(e.g., McCormack et al. 2011), we also ran two analyses
with BEAST. As with the *BEAST, one had all three cali-
brations and one had only the root calibrated. The
BEAST analyses ran for 100,000,000 generations with
sampling every 10,000 generations. A Birth-Death prior
with incomplete sampling was used, with each of the 68
included species represented by a single specimen.
Sequences were concatenated and a single tree was pro-
duced for the four genes. Substitution models were the
same as in *BEAST, but lognormal priors were used for
ucld.mean priors.

The final *BEAST species trees and BEAST trees were
maximum clade credibility trees with mean node heights
based on the remaining trees after burnin of <13% trees
in each run. Length of burnin was determined by exami-
nation of traces in Tracer.

Diversification

Plots of the log of the number of lineages against node
height (“lineages through time”; LTT) were used to illus-
trate the rate of diversification using Laser (Rabosky
2006) in R (v. 2.15.0). We used the Constant Rate (CR)
test with the gamma-statistic of Pybus and Harvey (2000)
to determine whether the LTT plots were consistent with
a constant net rate of diversification through time. Allow-
ance was made for incomplete taxon sampling by drawing
significance values from simulations using a Monte Carlo
constant-rate Test (MCCR; Pybus and Harvey 2000) as
implemented in Laser (in R). Sampling was incomplete in
this study and it is not known exactly how many species
are missing. For instance, species ranges are often quite
small, so we assume that sampling in new areas would
likely result in the discovery of new species. Moreover,
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only the IWP was intensively sampled and we are missing
species from the Atlantic. To address this issue, we used a
range of numbers for the total number of solariellids
(100, 200, 300, 600, and 6000) that was likely to encom-
pass the true number of species (we estimate the real
number of species in Solariellidae is likely to be closer to
300 species than 100 or 6000).

Three alternative models of lineage accumulation were
also used to test the distribution of speciation events over
time using models described by Paradis (1997) imple-
mented by the Analyses of Phylogenetics and Evolution
package (APE; v. 3.0-5, in R). Model A assumes a con-
stant rate of diversification over time and Model B
assumes a gradual change in diversification over time and
permits calculation of the parameter . Values of f <1
indicate that diversification is increasing, either as a result
of increased rates of speciation or decreased rates of
extinction, whereas values of > 1 suggest that diversifi-
cation is slowing down. Model C assumes that there are
two distinct rates of diversification, each with its own rate
of speciation before (01) and after (62) a defined point in
time (Tc). We also used the relative cladogenesis test
(Purvis et al. 1995) as implemented in R (Geiger package;
Harmon et al. 2008) to identify nodes with a significantly
increased rate of diversification.

Speciation rates for two genera (Ilanga and Bathymo-
phila) were calculated using equations from Magallon and
Sanderson (2000) as implemented in R (Geiger package).
Bathymophila was chosen as a clade of interest because its
species are distributed in intermediate to deep water. Spe-
cies in this genus fall into two clades, and all species
examined to date in one of these clades are sightless (see
Discussion for details). Ilanga was chosen as a compari-
son to Bathymophila, because it is a shallow to intermedi-
ate depth clade and all species examined to date have
pigmented eyes (Herbert 1987; this study). From litera-
ture reports, we know that at least 12 species of Ilanga
(Herbert 1987) and six species of Bathymophila were not
included in this study (Marshall 1999; Vilvens 2009; S. T.
Williams and C. Vilvens, unpubl. data). Even so, the total
number of species in either clade is not known, although
Ilanga overall is likely better sampled than Bathymophila.

Fossil calibrations

We used three fossil records to calibrate the chronograms.
In each case, the oldest recognizable member of a clade
was used to date the node at the base of the crown group.
The lower bound of the age range of a fossil gave the
minimum age of the node, while the maximum was esti-
mated as the lower bound of two stages older, which
allows both for the uncertainty of the fossil age, and for
the incompleteness of the fossil record.

© 2013 The Authors. Published by Blackwell Publishing Ltd.
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The oldest recorded fossil we could unambiguously
compare with Recent Solariellidae was “Solariella” montse-
cana from the Campanian of Torallola, Spain (Kiel and
Bandel 2001). This species has axial ribs on the first teleo-
conch whorl and is quite similar to some specimens in
Clade A, but it has axial ribs in the umbilicus and species
sampled to date in Clade A do not, so it likely represents
a separate genus. We used this fossil record to calibrate
the age of the entire ingroup. The clade was constrained
to be at least 71 Ma (95% interval: 71.4-89 Ma; mean in
real space: 4.18, log stdev: 1, offset: 71).

The second calibration was based on Solariella sp. from
the latest Oligocene part of the Lincoln Creek Formation
in western Washington State, United States of America
(Fig. 3, Kiel 2010). This species is similar to S. affinis so
was used to date the crown of the clade including S. affi-
nis, here referred to as Solariella. The Solariella clade was
constrained to be at least 23 Ma (95% interval: 23.2—
34 Ma; mean in real space: 2.555, log stdev: 1, offset: 23).

The third calibration was based on Zetela awamoana
Laws 1939, from the Mount Harris Formation, South
Island, New Zealand (Beu and Raine 2009); this fossil is
from the Altonian stage of the New Zealand time scale,
corresponding to the later half of the Burdigalian (early
Miocene) of the international time scale (Hollis et al.
2010). Only one nominal species of Zetela, Z. kopua, was
included in this study. Unfortunately sequence was
obtained only from 28S for this specimen, so it was not
included in the dated analyses. In the 28S tree, it was sis-
ter to an undescribed species from Madagascar (Mainbaza
expedition) that based on shell characters we would
assign to Lamellitrochus, which is a probable synonym of
Zetela Marshall (1999). We therefore used the calibration
to constrain the divergence age between this species
(Zetela 1) and its sister taxa of two Antarctic species. The
two Antarctic species were also tentatively assigned to
Zetela on the basis of morphological similarity to Z. kopua
and genetic similarity to Zetela 1. The node was con-
strained to be at least 16.7 Ma (Hollis et al. 2010) (95%
interval: 16.7-27.9 Ma; mean in real space: 2.65, log
stdev: 1, offset: 16.5).

Depth data

Depth data were only obtained for species and genera
used in this study, as the assignment of species to genera
is often uncertain. Data for each species were taken from
collecting localities for each specimen used in this study
(Table 1), and literature records where more detailed
information was available for recognized species (Ilanga
biradiatula, 1. discus, Herbert 1987; “Solariella” varicosa,
Warén 1993; “Archiminolia” alabida, “A.” diadema, Mar-
shall 1999; Hazuregyra watanabei, Minolia nyssonus,

© 2013 The Authors. Published by Blackwell Publishing Ltd.
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“Machaeroplax” delicatus, Hasegawa 2009; Clade C spp.
Vilvens and Williams 2013). Literature records were not
used for Z. kopua or Solariella affinis as there are different
“forms” that might represent different species (Warén
1993; Marshall 1999). Neither were they wused for
I laevissima as the specimens identified in Herbert (1987)
represent at least two species (genetic results from this
study). Instead, museum collections at the NMSA were
re-examined to find new depth data for I laevissima s.s
and Ilanga 18.

Most information from this study was based on dredge
and trawl data and as such there is likely to be some
degree of error, as depth data were not based on a point
source. This effect was minimized by classifying depth
range into one of three groups. Depth ranges were classi-
fied as “shallow” if species could be found in water
<200 m (on the continental shelf); “deep” if species could
be found in water >1050 m (bathyal zone); and “interme-
diate” if species were collected only in 200-1050 m (on
the continental slope). Field observations have shown that
“typical” deep-sea fauna (e.g., elasipod holothurians,
stalked crinoids, hexactinellid sponges) can occur in the
tropics as shallow as 150-180 m (Bouchet et al. 2008)
justifying our choice of 200 m as a cut-off for shallow
water taxa.

Depth ranges were plotted using Statistica (v.8; StatSoft
Inc. 2008). The chronogram was used for ancestral char-
acter state reconstructions of depth using likelihood
reconstruction methods and the Mkl model in Mesquite
(v. 2.75; Maddison and Maddison 2006, 2011). Only two
states (shallow and intermediate + deep) were used in
this analysis as only two specimens in the chronogram
were collected from the bathyal zone.

Results

Species delimitation

A total of 71 evolutionary significant units (ESUs) were
recognized as a result of GMYC analyses, with 65 entities
being recognized in the GMYC_COI tree and 70 in the
GMYC_mt-gene tree (Figures S1 and S2). Taxon sets dif-
fered between the two analyses, but where they over-
lapped, the results were completely congruent, except that
two species in the GMYC_COI tree (Zetela 3 and Solariel-
la chodon) were each recognized as two ESUs in the mt-
gene tree. Using the equivalent of a 95% confidence inter-
val, the total number of entities identified ranged from 62
to 70 in the GMYC_COI tree and 69 to 71 in the
GMYC_mt-gene tree based on model substitutions at two
log-likelihood units from the maximum (C.I.; Monaghan
et al. 2009). If the lower C.I. is used to define species in
the GMYC_COI tree three pairs of ESUs are combined
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(Ilanga 5 with Ilanga 16; Ilanga 4 with Ilanga 17; and
Clade A sp. 5 with Clade A sp. 6). In the mt-gene tree
using the lower C.I. limit, Zetela 3 and Solariella chodon
are each recognized as single species, as in the GMYC_-
COI tree. As previous studies have shown that the num-
ber of species is probably overestimated in GMYC
analyses of low-dispersal groups (Williams et al. 2011),
we conservatively treat Zetela 3 and Solariella chodon each
as a single species.

Eleven specimens were not included in either GMYC
analysis because of missing data. These were each recog-
nized as distinct species based on morphological differences
and large genetic differences for the genes for which
sequence was available (Archiminolia 3; Bathymophila alab-
ida, Bathymophila 12, 14 and 17; Clade B iridescens; Ilanga
18 and 20; Solariella 7; “Solariella” varicosa; Zetela kopua).

Although slowly evolving, the nuclear 28S rRNA gene
is sometimes useful for separating species and we found
distinct genotypes for most species. The following pairs
or groups shared an identical genotype: Ilanga 4, 17 and
19; Ilanga 5 and 16; Ilanga 11 and I laevissima; Ilanga 1,
I biradiatula and I. ¢f. norfolkensis; llanga 3 and 15; Clade
C sp. 5 and Clade C sp. 8; Spectamen 4 and S. mutabilis;
and Minolia nyssonus, M. punctata and M. sp.

Overall, we recognized 82 species after GMYC analyses
(Table 1) and used these species definitions in the
*BEAST analysis. Examination of specimens used in
genetic analyses confirmed that most putative species can
be distinguished from their sister species morphologically
by shell characters. Examination of the chronogram sug-
gests that divergence times between two species pairs are
very small (Ilanga 4 and 17, 1.22 Myr, HPD: 0.28-2.17;
and llanga 5 and 16; 1.13 Myr, HPD: 0.2-2.03). These
same pairs were combined into two single species in the
COI tree, when using the lower confidence interval. Fur-
ther work is needed to test their specific status. A third
pair (Clade A sp. 5 and Clade A sp. 6) was not tested in
this way as one of the putative species was not included
in the dated analyses due to missing data. The status of
these two species also needs further testing.

Phylogenetic analyses

We obtained well-resolved individual and combined gene
trees using MrBayes (Figs. 1-3). In all analyses, average
standard deviation of split frequencies approached zero,
all parameter average PSRF values were <1.001 and min-
imum ESS values in combined runs exceeded 200 for all
parameters. Visual examination of traces showed that all
parameters converged between independent runs for each
dataset.

Ten clades corresponding to genera were recognized in
this study. Only three species were not assigned to clades
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(Suavotrochus sp., “Machaeroplax” delicatus and “Solariel-
la” varicosa). Three genera (Illanga, Minolia, Spectamen)
and one generic-level clade (Clade B) were recovered as
monophyletic in all trees (Figs. 1-4). Clades A and C
were monophyletic in at least two gene trees and the
combined tree (Figs. 1-4). Archiminolia, Bathymophila
and Solariella were not monophyletic as traditionally
defined in any tree, but as re-defined in this study Solari-
ella was monophyletic in all trees, Bathymophila in two
gene trees and the combined gene tree and Archiminolia
in all trees except 28S. Three species that we tentatively
assigned to Zetela were monophyletic in the combined
gene tree, but only Z. kopua and Zetela 1 formed a clade
in the 28S tree (only sequence for 28S was available for
Zetela kopua). The monotypic Hazuregyra was sister to
Minolia in all analyses.

Outgroup taxa formed well-supported clusters in indi-
vidual and combined gene trees consistent with families
and clades identified in previous studies (Williams 2012)
(Figure S3).

Chronogram

Acceptable ESS values for the *BEAST analysis with three
calibrations were obtained by combining 353,662 trees
sampled from eight independent runs (ESS >150 for all
parameters) and with one calibration by combining
215,331 trees sampled from five independent runs (ESS
>200). All ESS values were greater than 200 for both
BEAST runs.

The *BEAST tree with three fossil calibrations is
shown in Figure 4. Other chronograms are not shown,
as the four trees were almost identical in topology, with
no well-supported branches (PP > 90%) in conflict. Ages
were similar, but consistently younger in analyses with
three calibrations rather than with one, both for BEAST
and *BEAST (see Table 2 for summary of ages). More-
over, divergence time estimates in *BEAST analyses were
generally older than BEAST estimates except for younger
clades (particularly nodes <5 Myr). Support values were
similar, but slightly lower in *BEAST analyses. Ages used
in the Discussion are based on the *BEAST analysis
using three calibrations. Relationships among some
clades differed slightly between the MrBayes and
*BEAST trees, but most of these differences were not
well supported.

Diversification

The LTT plot for the solariellid phylogeny was a straight-
line (not shown), which is the expectation under a con-
stant birth-death model, where the slope equals
speciation rate minus extinction rate (Harvey et al., 1994;

© 2013 The Authors. Published by Blackwell Publishing Ltd.



S. T. Williams et al. Evolution of Tropical Deep-Water Gastropods

100 L " delicatus
sp.

Clade C sp. 3
Clade C sp. 6
Clade C s;?. 2
Clade C sp. 2
Clade C sp. 2
0 Clade .8
Clade . 8
0 Clade C sp. 8
8 58 Cla(}le Csp. 4
1 ade C sp.
0 sp. 5
] sg-g Clade C
Sp.
99 llanga B ng. 55
llanga 1 g L2 Clade sp. 1
llanga 1 53+ Clade C sp. 5
llanga cf, norfolkensis 52 llanga 11
llanga cf. norfolkensis 18
llanga cf. norfolkensis llanga laevissima
Ilanlg]a cf. norfolkensis 5 #g;vkgee' laevissima
& :,,275 3 ”anga c; nuguﬂllgensl,s
llanga biradiatula angaiclinornoikensis
l/agga biradiatula 1”0’{‘7”‘5"5‘5
llanga biradiatula
Ilanga biradiatula ”anga llanga15
nga 1 langa
engalg iradjatula
langa llanga biradiatula
Ilanga 16 llanga biradiatula
nga 5 ———————— llanga gotoi
llanga 5
Ilanga 5
llanga 5
Ilanga discus 100
llanga discus
llanga discus
Ilanga discus
llanga discus
llanga 19
flanga 4 llanga
llanga 4
e
janga —
e ‘”
ianga
—ff 100 fanga 17
llanga 17
Ilanga 17
llanga 17
Spectamen 1
Spectamen 2
ectamen laevior
Izzewor
i Spectamen
99 mutabilis
92 mutabilis
mutabilis
[ Solariella affinis
—————— Solariellad
ﬂ—l& Solariella segersi
Solariella segersi .
100 100 T Solariella chodon
= Solariella chodon llanga 17
100 = Solariella 100 Hazwe,? ra watanabei
Solariella 6 Minolia nyssonus
Solariella 3 Minolia sp. inoli
&3 L] Soiarielia 3 i 7L Minolia sp: Minolia & Hazuregyra
Solari Solariella Minola punctata
100 olariella 3 100 ctamen philopensis
’ Solariella 3 100 J_( ctamen philppensis
[~ Bathymophila 5 tamen 1
Bathymophila 6 74 clamend
90 Bathymophila ; 100 fmen luior Spectamen
Bathymophila 15 Spectamen 2
Bathymophila 1 ctamen mutabilis
Bathymophila 11 64 tamen mutabilis
75 Batl ymnﬁhlla cf. callomphala 88 Bathymophila 15
94 Bathymophila 9 Ba(}l/ymophfla 16
1 ainymophie | — Bathymophils ¢
i Baihymonnie 1 -
athymophiia
4 Eathfmogm/a 1 Bathy mophll a
ila4 Bathymophila 6
tila 4 afl fwnophlla 7
4 Bathymophila 17
athymophila 4 s %‘p /Iﬂéﬂ hila 10
e 4 Bathymophila 3 4 &0 Sofariela chodon
Bathymophila 2 Solariella chodon .
Bathymophila 2 100 Solariella affinis )
Bathymophila diadema Solariella 3 Solariella
Bathymophila g jadema RHAAAY
66 Solariella 3
54 :%"y o — 100 Solariella segersa[n
ot 2 e e :
d Solarel 4 Solariella
' 3 Solariella 4
1 ila di p.
s 02 Clade B
sp.2
Clade B
Zetela
Zetela Archiminolia 1
Archiminolia 22
100 Archiminolia 2 . .
Archiminolia 2
Clade C sp. 3 Clade C . el Aol g Archiminolia
p. imir
Clade C sp. 4 P Clade Asp. 3 Archiminolia 2
p Clade Csp. Zp 8 cl c S h s CldeAsp. T
5 Siage € 5,5 ade chdeHsoP
ade C sp. Clade A sp. 1
98 * Clade C sp. 5
Hazpyre yra watanabei @‘ggg § 2’8 ‘}‘ Clade A
bl s ol oL At
i Ml;gola punctata Minolia & Hazuregyra 100 aage ﬁ ;enorim
inolia sp. lade A tenorio
Xr%h‘ M no1ﬂa s.‘;’. Bayt@/m%pm/a 5/7 a2
It a) ‘mophila
100 I Banmohies
Archiminolia 2 Bayih d’f;ﬂ;’” 2
Archiminolia 2 Archiminolia diadema
98 Archiminolia 2 ‘Zj’a‘zje’"a
— Archiminolia 2 df’aad :,Waa
iminola 2 Baythymophila diadema
B Baythﬁvmuph'; ? cgaddema .
a) /mophila diagema
Bay%y};na%r;a diadema Bathy mop h II a
Baythymophila dlagema
liadema
col 15, 168 o
/ o Clade A A ) )
n=15% et n=160 oo}
tenorioi 2;4%32 24
0.2 tenoriol 0.2 4

Figure 1. Single gene trees based on Bayesian inference using MrBayes for Solariellidae using mitochondrial genes (16S, cytochrome oxidase
subunit | [COI]), with outgroups removed for clarity. Support values are posterior probabilities (PP); branches with PP < 50% were collapsed, PP
not shown for intraspecific relationships. See Table 1 for sample details. Monophyletic clades discussed in the text are indicated with a gray
shaded box, non-monophyletic groups with a gray outline box.
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Figure 2. Single gene trees based on Bayesian inference using MrBayes for Solariellidae using the 12S rRNA mitochondrial gene and the 28S
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Pybus and Harvey 2000). The MCCR test confirmed that
the LTT plot did not differ significantly from a constant
net rate of diversification over time (species sam-
pled = 68; experimental y = 0.206; number of repli-
cates = 500) in a number of tests with an estimated total
number of species ranging between 100 and 6000, thus
showing that our result is robust even with the likelihood
of missing taxa (range 7y905 = —2.42 to —9.02; P
range = 0.87 to 1).The survivorship analysis also sug-
gested there was no significant difference between Model
A (constant diversification) and Model B (gradual
decrease in diversification over time; f = 1.09) (P = 0.35)
or Model A and C (P = 0.58).

However, although the overall rate was constant, the
relative cladogenesis test shows that one major clade,
designated Clade X in the chronogram (Fig. 4) demon-
strated a substantial, although not statistically significant
increase in cladogenesis (P = 0.08). The most speciose
subclade within this clade corresponds to the genus
Bathymophila. Speciation rates were higher in Bathymo-
phila than in the shallower-water genus Ilanga over a
range of different estimates of total taxa assuming high
levels of extinction and almost double when extinction
was zero (Table 3).

Depth data

Species were most common on the continental slope (200
—1000 m), although the scarcity of both deeper-water spe-
cies (>1050 m) and shallow species between 50 and
200 m may reflect sampling effort to some extent
(Table 1). Combined sampling effort for all stations for
the MNHN expeditions listed in this study was greatest in
the 200-1050 m range with approximately 78% of sta-
tions occurring entirely within these limits (including sta-
tions where solariellids were not found). Approximately
17% of stations in these expeditions were all or partly in
the range 50-200 m and 5% of stations were partly or
entirely in depths >1050 m. Sampling in MNHN expedi-
tions was intense in intertidal and subtidal waters, but in
this study, only one solariellid species was found at less
than 100 m at a tropical locality (Spectamen philippensis),
suggesting that solariellids are rare in <50 m in warm,
tropical waters, moving into very shallow water only in
cooler water (e.g., Japan, Norway, South Africa). Even so,
several genera were commonly collected from water
defined as shallow for the purposes of this study
(<200 m; Ilanga, Spectamen, Solariella and Minolia)
(Table 1, Fig. 5). Only three species included in this study
were collected at sites >1050 m (Bathymophila 5,
“Machaeroplax” delicatus and Zetela kopua) (Table 1,
Fig. 5), and few solariellids have been collected alive dee-
per than 2500 m.

© 2013 The Authors. Published by Blackwell Publishing Ltd.
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Discussion

Systematics

The family Solariellidae is in need of taxonomic revision,
with species identification, assignment of species to genera
and relationships among genera often uncertain despite
several regional monographs that have advanced our
understanding of the group (Quinn 1979, 1991; Herbert
1987; Marshall 1999; Vilvens 2009). For instance, of the
total 82 species recognized in this study, probably more
than two-thirds are either undescribed or have only been
described in the last few years. The large number of new
species in combination with their patchy distributions
suggests that solariellids are extremely diverse and new
species are likely to be found as sampling continues. It is
important that the systematics of the group is resolved,
and this will be addressed separately.

In this study, we note only that ten clades of generic rank
were recognized. Contrary to expectation, shell characters
could be used to distinguish between most of these clades.
This is particularly useful, as many species have been
described entirely on the basis of shell characters. Five
clades correspond to known genera Ilanga, Spectamen, Mi-
nolia, Zetela and Clade C (currently being described by Vil-
vens and Williams 2013). Type species were included for all
these genera except Zetela. A further two clades of possibly
generic rank were identified (Clades A and B).

Clades were also identified that include species assigned
to Solariella, Bathymophila and Archiminolia, although no
type species were included. If the clades found in this
study represent these genera, several species need generic
reassignment. Regrettably, the type species of the nomino-
typical genus Solariella, S. maculata, cannot be included
as it is a fossil species from the Pliocene. Several North
Sea species, especially S. amabilis and S. affinis, are so
similar to S. maculata, that they may confidently be
considered to represent the genus and further members
may yvet be found off the coast of West Africa (Herbert
1987; Warén 1993; Marshall 1999). Our study did not
include any West African taxa, but did include S. affinis.
We tentatively assume that the clade including this species
corresponds to Solariella sensu stricto.

The monotypic Hazuregyra was found to be sister and
genetically similar to Minolia, and should perhaps be con-
sidered a synonym thereof. Three species Suavotrochus
sp., “Machaeroplax” delicatus and “Solariella” varicosa do
not cluster with known genera, but form a poorly sup-
ported clade together, sister to Clade C (Fig. 4). Their
generic status needs further assessment, preferably includ-
ing species from the Atlantic. In particular, Microgaza
(not represented in our dataset) based on a species from
the Gulf of Mexico, is conchologically similar to Ilanga
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Table 2. Estimated crown ages (and 95% highest posterior density interval) in millions of years for solariellid clades calculated in separate *BEAST

or BEAST analyses.

Genus/Clade

*BEAST — 3 calibrations

*BEAST — 1 calibration

BEAST — 3 calibrations

BEAST — 1 calibration

Solariellidae
Archiminolia
Bathymophila
Clade C

llanga

Minolia

Clade A

Clade B
Solariella
Spectamen
Zetela

Antarctic Clade
Clade X

Clade Y

# unique clades
Highest log clade credibility

*73.08 Myr (71.09-76.6)
4.82 Myr (2.28-7.49)
20.46 Myr (14.19-26.86)
23.16 Myr (15.43-30.55)
40.14 Myr (30.9-49.89)
6.89 Myr (3.97-9.83)

6.79 Myr (4-9.68)
13.28 Myr (7.67-18.63)
*30.28 Myr (23.22-37.32)
23.67 Myr (15.73-31.37)
#18.31 Myr (16.55-21.17)
5.7 Myr (2.94-8.64)
34.33 Myr (26.15-42.84)
53.27 Myr (43.03 -63.99)

25,892
~5.98

*73.77 Myr (71.07-78.91)
5.38 Myr (2.7-8.37)
22.94 Myr (16.11-29.54)
25.53 Myr (17.92-34.06)
45.53 Myr (35.25-51.84)
7.49 Myr (4.25-10.79)
7.72 Myr (4.6-11.01)
14.58 Myr (8.38-20.84)
36.3 Myr (27.06-45.48)
26.9 Myr (17.87-35.85)
20.3 Myr (13.71-26.91)
6.34 Myr (3.24-9.72)
37.55 Myr (28.46-47.42)
58.26 Myr (47.33-68.78)
22,574
—-5.60

*72.61 Myr (71.05-75.01)
4.29 Myr (2.44-6.47)
18.91 Myr (14.16-24.28)
20.02 Myr (14.01-26.5)

34.3 Myr (26.54-41.82)
6.12 Myr (3.93-8.51)

6.39 Myr (4.18-8.8)
11.67 Myr (7.27-16.21)
*26.8 Myr (23.12-41.7)
20.19 Myr (14.26-26.27)
*17.89 Myr (16.58-20.2)
6.69 Myr (4.06-9.66)
31.26 Myr (24.5-38.85)
47.87 Myr (39.02 -57)
142
-5.37

%72.83 Myr (71.75-75.73)
4.66 Myr (2.62-7.12)
20.5 Myr (14.37-27.13)
21.5 Myr (14.36-29.27)

36.59 Myr (27.71-46.52)
6.57 Myr (4.16-9.38)
6.95 Myr (4.22-9.74)

12.57 Myr (7.39-17.94)

31.06 Myr (22.99-38.88)

22.15 Myr (14.71-29.48)

18.93 Myr (12.76-25.49)
7.09 Myr (3.98-10.47)

33.68 Myr (24.4-44.17)

52.72 Myr (41.65-63.21)

141
—5.00

Nodes used in calibrations marked with an asterisk.

and the name has been used for Indo-Pacific species, but
it differs in radular morphology (Herbert 1987) and its
affinities with Ilanga remain to be established.

Origin of deep-sea solariellids

It is not possible to give an accurate estimate of the pro-
portion of total species sampled in this study (we show
that there are likely many undescribed species), but spe-
cies within a genus often share similar biogeographic and
depth ranges and we include representatives of all but
two currently accepted solariellid genera: the IWP genus
Minolops (which may be synonymous with Spectamen;
Marshall 1999) and one predominantly shallow-water
Atlantic genus, Microgaza. Therefore, although any inter-
pretation of the solariellid phylogeny we present here
must be speculative, we can be fairly confident of most
patterns observed in this study.

The oldest confirmed fossil solariellids are from shallow
tropical settings of Late Cretaceous age (Hickman and
McLean 1990; Kiel and Bandel 2001; Kiel et al. 2002).
The first records from continental slope palaecodepths are
of late Eocene and Oligocene age and were found in cool-

Table 3. Net diversification rate for two solariellid clades based on
equations in Magallon and Sanderson (2000), with no extinction
(¢ = 0) or high extinction (¢ = 0.9). N = estimated total number of
species in clade, missing = number and percentage not included in
this study.

Age (Myr) e=0 £=10.9 N (missing)
Bathymophila 20.46 0.121 0.056 24 (7, 29%)
0.138 0.069 34 (17, 50%)
0.158 0.085 51 (34, 67%)
llanga 40.14 0.076 0.039 42 (12, 30%)
0.075 0.038 50 (20, 50%)
0.085 0.047 60 (40, 67%)

temperate regions of both hemispheres (Maxwell 1992;
Kiel 2010). The molecular data are not inconsistent with
the fossil data, although there is no strong support for
either shallow or deep-sea origin. In our tree, the genus
Ilanga is sister to all other taxa sampled. Although this
genus is sister to all other solariellids, ancestral state
reconstruction suggests that a deep sea habitat is slightly
more plausible for the common ancestor of solariellids
(Fig. 5); however, our sampling of shallow water taxa is

Figure 3. Combined gene tree based on Bayesian inference using MrBayes for Solariellidae using four genes (28S, 16S, 12S and cytochrome
oxidase subunit | [COI]), with outgroups removed for clarity (see Figure S3 for outgroup relationships). Support values are posterior probabilities
(PP); branches with PP < 50% were collapsed, PP not shown for intraspecific relationships. See Table 1 for sample details. Monophyletic clades
discussed in the text are indicated with a gray shaded box. Type species are in bold font. Note that species in Clade C are described by Vilvens
and Williams (2013) and assigned to a new genus. Photos are of exemplar species from each clade: (a) langa biradiatula; (b) “Solariella” varicosa;
(c) Suavotrochus sp.; (d) “Machaeroplax” delicatus; (e) Clade C sp. 8; (f) Minolia sp.; (g) Clade B sp. 2; (h) Zetela 1; (i) Archiminolia 2; (j) Clade A
sp. 5; (k) Solariella affinis; (1) Spectamen philippensis; (m) Bathymophila 7.

© 2013 The Authors. Published by Blackwell Publishing Ltd. 907
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Figure 5. (a) Ancestral state reconstruction of depth distribution in Solariellidae. Ancestral states calculated using the Mk1 model in Mesquite. Pie
charts show proportion of likelihood supporting either deep or shallow water habitat. Tree topology is based on the three-calibration *BEAST
tree. The presence or absence of eyes is represented graphically next to taxon name. Note that only deep-water taxa are sightless. Light
penetration in the ocean varies with latitude and distance from shore. The euphotic zone, where there is sufficient light for photosynthesis to
occur, varies in depth, but may extend to around 200 m in the open ocean. (b) Depth ranges for genera and clades discussed in this study,
including only species used in this study.

Figure 4. (a) Evolution of global climate over the last 65 Myr. The graph shows a stacked deep-sea benthic foraminiferal oxygen-isotope curve.
The §'80 temperature scale, on the right axis, applies only to the time preceding the onset of large-scale glaciation on Antarctica (about 35
million years ago). Modified from Figure 2 in Zachos et al. 2008. (b) Chronogram for Solariellidae, with branch lengths proportional to time (scale
below in millions of years) based on the three-calibration *BEAST tree. Support values are posterior probabilities (PP, above branches); only values
>50% are shown. Horizontal, light purple bars on nodes correspond to 95% highest posterior density (HPD) interval for node heights (ages).
The 95% HPD is the shortest interval that contains 95% of the sampled values. Clades marked X and Y are discussed in the text. Wide vertical
purple bars highlight time periods of interest. Clades with substantially increased rates of diversification are indicated with thickened, vertical
black lines. Geographic and depth distributions of species are indicated by a colored box next to the species name (see Key for details). Nodes
used to calibrate chronogram are marked with a black square: 1) ingroup calibration; 2) Solariella calibration; and 3) Zetela calibration.
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limited. We have included only 20 of the 32 Ilanga spe-
cies recognized to date (other species listed by Herbert
1987). Of the total number of species, more than half
(18) can be found in water <200 m and ten (not included
in this study) have only been collected live in <100 m,
suggesting that Ilanga is a tropical and temperate clade
found predominantly in shallow or upper slope waters
(50-300 m). The addition of these shallow-water species
may change the result, as might the addition of the miss-
ing shallow-water genus Microgaza or any extinct genera.
For instance, the oldest fossil identified is the shallow-
water species “Solariella” montsecana from the Campanian
of Torallola, Spain (Kiel and Bandel 2001). This species,
although similar to species in Clade A, probably repre-
sents an extinct genus. Shallow, tropical origins of the
group as suggested by the fossil data are consistent with
patterns showing the tropics and areas with carbonate
substrates have acted as cradles of diversity (Jablonski
et al. 2006; Alfaro et al. 2007; Kiessling et al. 2010).

Conversely, it has also been suggested that solariellids
from Antarctica might be more primitive than previously
thought and an Antarctic origin was postulated for the
family suggesting the few extant species from Antarctica
represent relictual ancestors of lineages that acted as a
source of diversity for deep-water communities elsewhere
(Linse 2002). This study includes two out of eight recog-
nized Antarctic and sub-Antarctic species, and these form
a derived clade within the solariellid tree. The two Antarc-
tic species diverged from their Indian Ocean sister species
about 18 Mya (16.55-21.17) during a period of warmer
climate (Zachos et al. 2001). This is consistent with the
hypothesis that Antarctica acts as a sink for lineages immi-
grating during warmer periods (Clarke and Crame, 1992;
Barnes et al. 2006; Gébbeler and Klussmann-Kolb 2009).
The other six Antarctic species not included in this study
have been assigned to Solariella (Linse 2002). If this
assignment is correct, then an Antarctic origin is still unli-
kely for the family (although possible for the genus).

It has been suggested that deep-sea molluscs have
arisen from multiple origins, but at the family and genus
levels, the first members of the abyssal fauna to invade
the deep sea probably did so in the relatively recent geo-
logic past (Clarke 1962). This suggestion fits with our
chronogram, which shows that invasions to the bathyal
zone occurred only rarely and since the beginning of the
Oligocene (given limited sampling). Invasions into inter-
mediate depth water on the continental slope appear to
have occurred more frequently.

The sister clade to Ilanga diverged around 53 Mya
(HPD: 43.03-63.99; Clade Y, Fig. 4), with lineages in both
shallow and deep-water (Figs. 4, 5). Since then, there
have been unambiguous invasions from shallow into dee-
per water (in Solariella and Spectamen) (Figs. 4, 5). Other
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invasions are more difficult to interpret. For instance,
most likely there was a single transition from deep to
shallow water in Minolia about 8 or 9 Mya, but there
may instead have been two transitions including one from
deep to shallow water in the ancestral lineage (perhaps as
much as 26-29 Mya) followed by a recent reversal to
deep water again in Hazuregyra.

Pressure from predators or competitors is unlikely to
have played an important role in the invasion of some
lineages into deeper water, as specimens with repairs to
their shells are frequent, suggesting that mechanical dam-
age, possibly as a result of predation is also common in
the deep sea. Equally, bathyal anoxic events probably
played a limited role in preventing lineages from diversi-
fying in deep-water in this group, as the radiation of
extant taxa is Cenozoic and postdates the most wide-
spread and frequent of these events (Jacobs and Lindberg
1998). Nearly all solariellid specimens from Antarctica
collected in this study had highly corroded shells,
although this was not evident for species collected at
other sites. Arctic species can also show signs of corrosion
(A. Waren, pers. obs.). The relevance of these observa-
tions, particularly in light of concerns about modern-day
ocean acidification, cannot be determined without further
work; however, one explanation may be related to the fact
that carbon dioxide concentration increases at the poles
as a result of decay of organic matter (e.g., Anderson
et al. 2010) and over winter as there is virtually no pho-
tosynthesis.

The effect of Cenozoic global climate
change on diversification

Climate change is known to be an important factor driving
evolution (e.g., Lipps and Mitchell 1976; Berger 2007; Jara-
millo et al. 2010). For instance, Vrijenhoek (2013) showed
that the crown ages of dominant vent and seep taxa are
younger than the PETM, and suggests that they may have
radiated after the extinction of earlier lineages. Conversely,
the crown age of Solariellidae predates the PETM and
although the major solariellid clade sister to Ilanga diversi-
fied approximately 53 Mya (HPD: 43.03-63.99 Myr; Clade
Y, Fig. 4), soon after the PETM (~55.5 Mya), there is no
other molecular evidence in this group for dramatic evolu-
tionary response to this abrupt climate change. This may
be because solariellids are most common on the continen-
tal slope in depths shallower than 2000 m, and as such
were not probably affected by changes to the CCD or
deep-sea anoxic events. It is, however, impossible to rule
out that some bathyal lineages may have migrated perma-
nently into shallower (continental slope) water or have
gone extinct; testing these hypotheses would require
detailed fossil evidence.

© 2013 The Authors. Published by Blackwell Publishing Ltd.
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Another extremely abrupt transition in climate
occurred 33.5 to 34 Mya spanning the Eocene—Oligocene
boundary, when the Earth abruptly cooled and permanent
continental-scale ice sheets first formed in Antarctica
(Miller et al. 2009). According to our estimates, solariellid
Clade X diversified within this period, approximately
34 Mya (HPD: 26.15-42.84), showing a substantial,
although not statistically significant, increase in the rate
of cladogenesis. Genera in Clade X are found predomi-
nantly in intermediate, slope water or bathyal depths,
whereas its sister clade (Solariella + Spectamen) includes
species that can be found in shallow shelf water. A greater
diversification of slope rather than shelf species may have
been due to a number of factors including an increase in
nutrients on the continental slope, especially if food was a
limiting factor for slope but not shelf habitats. Nannofos-
sil evidence suggests that ocean productivity increased at
intermediate depths (300-500 m) at the EOT in Tanzania,
and in the equatorial Pacific and the Southern Ocean
(Dunkley Jones et al. 2008; Lyle et al. 2008).

Increased productivity may have arisen as a result of
erosion and release of nutrients from organic-rich, shal-
low, shelf deposits exposed during sea-level falls coinci-
dent with large-scale glaciation in Antarctica (Dunkley
Jones et al. 2008). Increased ocean circulation at the
EOT may also have enhanced production of Subantarctic
Mode Water, which transports nutrients from Antarctica
to the tropical Indian Ocean (Kiefer et al. 2006) and
other tropical/subtropical regions (Dunkley Jones et al.
2008).

In further support of the idea that food may have been
a limiting factor, a study on echinoids also showed that
while generalist omnivores migrated into deep-water in
low numbers over the last 200 Myr, specialist detritivores
invaded the deep sea in large numbers between 55 and
75 Mya, probably as a result of increased organic carbon
(Smith and Stockley 2005). Solariellids are also specialist
deposit feeders; they use highly modified lips to sweep
surface detritus into the mouth, and they have greatly
shortened radula consistent with little mechanical wear
and modified, bifid propodium and mesopodium to facil-
itate burrowing in soft sediment. Our estimates that the
Recent Solariellidae radiated over the last 73 Myr are con-
sistent with the pattern observed in echinoids.

Thus, food availability may have been a factor limiting
exploitation of deep-sea habitats for some groups. Other
factors, such as increased deep-basin ventilation, a
decrease in deep-ocean acidity and a deepening of the
CCD by more than 1000 m, which doubled the area of
sea-floor subject to calcium carbonate deposition (Rea
and Lyle 2005), may have opened up new ecological
niches for some groups, allowing invasion of continental
shelf and slope lineages into bathyal regions.

© 2013 The Authors. Published by Blackwell Publishing Ltd.
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Other factors driving diversification in the
deep sea

The increase in diversification in Clade X is due largely to
its most speciose subclade, the genus Bathymophila. Sev-
eral factors may have affected diversification in this genus.
The Bathymophila clade diversified 20.46 Myr (HPD:
14.19-26.86), soon after the collision of the Australia and
New Guinea plate with the southeast extremity of the
Eurasian plate and the Philippines-Halmahera-New Gui-
nea arc system ~25 Mya (Hall 1998). This tectonic activ-
ity has been invoked as an important driver of speciation
20-25 Mya in shallow-water invertebrates (Kohn 1990;
Wilson and Rosen 1998; Williams 2007; Renema et al.
2008; Williams and Duda 2008; Bellwood et al. 2012) and
more recently in deep-water organisms (Cabezas et al.
2012) predominantly through the increased availability of
new habitats and greater habitat complexity. Another pos-
sibility is that terrestrial run-off from the uplift of land-
masses and concurrent volcanism provided additional
food sources for deep-sea benthic fauna.

A different explanation might be suggested by a study
that showed that speciation occurred more rapidly in
deep-sea, eyeless clades of ostracods than shallow-water
sighted clades (Syme and Oakley 2012). Eyes are unpig-
mented in several deep-slope and bathyal solariellids (e.g.,
“Machaeroplax” delicatus, Suavotrochus sp., Clade C sp. 2,
Bathymophila 6, 7, 10, 15 and 16). In fact, all species cor-
responding to Marshall’s (1999) concept of Bathymophila
that have been examined have unpigmented eyes (this
study; Marshall 1999), suggesting that it is a common
condition for this clade. Like ostracods, diversification
also appears to be higher in Bathymophila than other
shallower, sighted clades. For example, speciation rates
are up to double those in Ilanga, the most speciose clade
sampled in this study with pigmented eyes and found in
shallower water (Herbert 1987; Table 3). Key innovations
are known to affect rates of diversification (Heard and
Hauser 1995) and the loss of a character that no longer
offers a selective advantage may also be viewed as an
innovation (e.g., Jeffery 2005, 2009). Alternatively, the
factor driving diversification in these groups may actually
be the deep-water habitat, rather than the loss of eyes per
se, as the two are often coupled.

Species ranges and biogeographic patterns

Solariellids have been shown to have exceptionally patchy
distributions, suggesting highly specific ecological require-
ments (Marshall 1999). No species is known to be ende-
mic to hot vents (Kiel 2006, 2010; Sellanes et al. 2008),
although one species has been collected from cold seeps
off Chile (Warén et al. 2011). Species used in this study
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were predominantly collected from soft sediment, were
often rare, and more than half the species were found at
only one station. In some cases, this probably reflects
sampling effort; for example, many deeper-water species
(>1050 m) were collected only once and sampling at
these depths was more limited. Several species, however,
were found at multiple stations within the IWP where
sampling effort was concentrated. In every case, these
stations with shared taxa were located within a single
biogeographic zone (southwest Pacific, northwest Pacific,
southwest Indian Ocean or southeast Indian Ocean),
although one southeast Indian Ocean species (Clade A sp.
6) was genetically very similar to a species from northwest
Pacific (Clade A. sp. 5). No species in this study are
shared between southwest and northwest Pacific sites.

The division between southwest Pacific sites (including
Eastern Australia, Papua New Guinea, Solomon Islands,
Fiji, Vanuatu, Tuamotus, New Zealand) and northwest
Pacific sites (including Japan, Taiwan and Philippines)
has been observed at both the level of population struc-
ture in many highly dispersive, shallow-water species and
in the distributions of some deep-sea species (e.g., Macar-
anas et al. 1992; McMillan and Palumbi 1995; Palumbi
1997; Williams and Benzie 1997; Planes and Fauvelot
2002; Barber et al. 2006; Imron et al. 2007; Magsino and
Juinio-Menez 2008; Lorion et al. 2010). The congruence
of pattern is likely the result of the flow of equatorial cur-
rents in the Pacific. For high-dispersal, shallow-water spe-
cies, surface currents act as a porous barrier by
redirecting larvae and limiting direct gene flow between
southern and northern Pacific sites. However, for deep-
water groups with more modest dispersal potential, the
eastward-flowing Equatorial Undercurrent, which flows
most strongly at the thermocline (100-200 m) (Jewell
1995), is probably more important. The current is likely
to have a strong influence on gene flow in solariellids as
they have relatively short-lived lecithotrophic larvae (and
sometimes brood larvae) (Herbert 1987; Marshall 1999).
More highly dispersing species may find the Equatorial
Undercurrent a porous barrier. For example, some mod-
erately deep-water species of Bursa (a gastropod genus
with teleplanic planktotrophic larvae) span the equator,
occurring in both the Philippines and New Caledonia or
the Philippines and the Solomon Islands (Castelin et al.
2012). A more profound barrier is likely the oxygen mini-
mum zone below the Equatorial Undercurrent (300—
400 m; Levitus 1982), which is most pronounced in the
Eastern Pacific (Jewell 1995; Levin 2003). These factors
combined probably serve as an effective barrier to dis-
persal of some deep-water taxa across the equator pro-
moting allopatric speciation within biogeographic zones
(Wilson 1999; Rogers 2000; McClain and Hardy 2010).
The existence of several NW/SW Pacific species pairs sup-
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ports this idea (Ilanga 1/1. cf. norfolkensis and Ilanga 3/15,
Clade A sp. 1/3, Clade C sp. 4/7, Bathymophila 15/16).
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Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Figure S1. Results of GMYC test on an ultrametric tree
produced using BEAST for the cytochrome oxidase I
sequences. (A) Tree with ESUs and species names marked
on the right-hand side. Support for nodes are posterior
probabilities, shown only for species-level relationships
and PP > 50%. Branches in red indicate population
structure. (B) Maximum likelihood plot showing peak
congruent with threshold limit in B. (C) Lineage through
time plot with red line showing the threshold level sug-
gested by GMYC.

Figure S2. Results of GMYC test on an ultrametric tree
produced using BEAST for concatenated sequences from
all three mitochondrial genes. (A) Tree with ESUs and

© 2013 The Authors. Published by Blackwell Publishing Ltd.
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species names marked on the right-hand side. Support for
nodes are posterior probabilities, shown only for species-
level relationships and PP>50%. Branches in red indicate
population structure. (B) Maximum likelihood plot show-
ing peak congruent with threshold limit in B. (C) Lineage
through time plot with red line showing the threshold
level suggested by GMYC.

Figure S3. Combined gene tree based on Bayesian infer-
ence using MrBayes for Solariellidae using four genes
(28S, 16S, 12S and COI), showing only relationship
among outgroups and Solariellidae (solariellid clade is
collapsed). Support values are posterior probabilities
(PP); branches with PP < 50% were collapsed, PP not
shown for intraspecific relationships. See Table S1 for
outgroup sampling details. Families and relationships are
consistent with those discussed in Williams (2012).

Table S1. Outgroup specimens used in study, ordered by
family, along with details of sampling localities, registra-
tion numbers of voucher specimens, and EMBL accession
numbers for sequences. MNHN, Muséum National d’His-
toire Naturelle, Paris; NHMUK, Natural History Museum,
London; and NSMT, National Museum of Nature and
Science, Tokyo, Japan (NSMT). Photos of specimens are
in Williams (2012) or available on MorphoBank online at
http://www.morphobank.org/index.php/Projects/Project-
Overview/project_id/223.

Table S2. Forward (F) and reverse (R) PCR primers (also
used in sequencing), and forward (FS) and reverse (RS)
internal sequencing primers. Annealing temperatures and
concentration of magnesium chloride (MgCl2) used in
50 uL polymerase chain reactions.
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