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Abstract 

We examined the consequences of the spatial heterogeneity of atmospheric ammonia 

(NH3) by measuring and modelling NH3 concentrations and deposition at 25 m grid 

resolution for a rural landscape containing intensive poultry farming, agricultural grassland, 

woodland and moorland. The emission pattern gave rise to a high spatial variability of 

modelled mean annual NH3 concentrations and dry deposition. Largest impacts were 

predicted for woodland patches located within the agricultural area, while larger moorland 

areas were at low risk, due to atmospheric dispersion, prevailing wind direction and low 

NH3 background. These high resolution spatial details are lost in national scale estimates 

at 1 km resolution due to less detailed emission input maps. The results demonstrate how 

the spatial arrangement of sources and sinks is critical to defining the NH3 risk to semi-

natural ecosystems. These spatial relationships provide the foundation for local spatial 

planning approaches to reduce environmental impacts of atmospheric NH3. 

 

Capsule: 

Fine scale resolution modelling to reproduce the spatial heterogeneity of atmospheric NH3 

concentrations and deposition is critical for NH3 risk assessment on sensitive ecosystems. 

 

Highlights: 

• Local farm inventory provided field-level emissions for high resolution modelling 

• Model-derived concentrations were compared against intensive spatial 

measurements 

• Spatial arrangement of NH3 sources and sinks is critical to environmental impact 

• Average national emission factors were not appropriate for an NH3 risk 

assessment 

• Modelling at 1 km resolution did not capture the full spatial variability of NH3 

 

Keywords: ammonia, critical level, landscape scale, dispersion modelling, spatial planning 
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1 Introduction 

Most atmospheric ammonia (NH3) originates from agricultural activities (Misselbrook et 

al., 2000; Van der Hoek, 1998). Intensive livestock farming, i.e. large pig and poultry units, 

represent substantial NH3 point sources, due to their high stocking density. Other NH3 

sources include biomass burning, fuel combustion and industrial processes such as the 

production of nitrogen (N) fertilisers (Bouwman et al., 1997). High atmospheric NH3 

concentrations are directly toxic to plants through stomatal uptake as soon as the uptake 

exceeds the detoxification capacity (Fangmeier et al., 1994). Ammonia deposition (and 

deposition of other forms of reactive N) can lead to eutrophication and acidification of 

sensitive ecosystems, causing changes in biodiversity (Cape et al., 2009b; Cellier et al., 

2009; Krupa, 2003; Pitcairn et al., 2009). Studies have been conducted to quantify the 

effect of NH3 emission sources on surrounding ecosystems, e.g. Fowler et al. (1998) 

quantified concentrations and deposition fluxes within 300 m of a poultry farm in Scotland 

using measurements and deposition modelling, showing rapidly decreasing concentrations 

with distance from the source. Pitcairn et al. (1998; 2002) analysed the impact of such 

deposition fluxes on woodland flora and Frati et al. (2007) studied the effect of pig farm 

emissions on sensitive vegetation (lichens). Sutton et al. (1998) compared deposition 

estimates based on different scales, ranging from field to landscape to national scale and 

concluded that, due to the spatial variability of NH3, the quality of an environmental impact 

assessment is dependent on the spatial resolution of the deposition data used. Dragosits 

et al. (2002) provide a more detailed analysis of the landscape study in Sutton et al. 

(1998): Emission, transport and deposition were modelled within a 5 km x 5 km landscape 

in England at a 50 m grid resolution; however, no NH3 measurements were made to verify 

the estimates. Theobald et al. (2001) and Dragosits et al. (2006) focused on strategies to 

reduce the effect of emission hotspots on ecosystems by locating tree belts around the 

sources, indicating the importance of relative spatial location of sources and sinks, and 

assessed possible landscape planning measures to decrease potential effects on sensitive 

habitats. 

As an approach to assess the risk of environmental impacts by air pollutants, the 

United Nations Economic Commission for Europe (UNECE) has developed critical 

thresholds of pollutant concentrations and deposition fluxes: Critical Levels (CLEs) and 

Critical Loads (CLs). A CLE is a pollutant concentration in the atmosphere above which 

plants or ecosystems may be directly negatively affected (Posthumus, 1988). Recently, 

long term CLEs of NH3 were reviewed and new, lower values proposed and adopted by 

the UNECE (Cape et al., 2009a; Sutton et al., 2009a; UNECE, 2007): 1 μg NH3 m-3 for the 

most sensitive ecosystems, i.e. where lichens and bryophytes are part of the ecosystem 
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integrity, and 3 ± 1 μg NH3 m-3 for higher plants in other semi-natural ecosystems. A CL is 

a pollutant deposition below which no significant harmful effects on the environment are 

expected to occur according to current knowledge (Posthumus, 1988). Nitrogen (N) CLs 

have been defined for specific ecosystem types (see UNECE, 2010 for most up-to-date 

CLs). In contrast to the CLE approach, which is specifically defined for gases such as 

NH3, the CL integrates all forms of reactive N and therefore requires estimates of total N 

deposition. According to Sutton et al. (2009b) these N deposition estimates are inherently 

more uncertain, and for assessing the environmental risk imposed by NH3, it is much 

easier to measure NH3 concentrations and examine exceedance of the CLE than to verify 

CL exceedances by measurement. However, until the recent revision of CLEs, 

exceedance of CLs has been more commonly used for impact assessments of 

atmospheric N. For atmospheric NH3, this may reflect that previous long-term NH3 CLEs 

were set at much less precautious level than associated values of N CLs (e.g. Burkhardt et 

al., 1998), which was one reason for the revision of new long term NH3 CLEs (Sutton et 

al., 2009b).  

For assessing the environmental impact of NH3 concentrations and deposition by 

modelling, it is essential to estimate NH3 emissions accurately (Dragosits et al., 2002; 

Hellsten et al., 2008). Hallsworth et al. (2010) highlighted the problem of modelling NH3 

dispersion at relatively coarse scales, such as 5 km resolution, due to the high spatial 

variability of NH3 emissions and showed that 5 km modelling underestimated the impact of 

NH3 concentrations on semi-natural areas close to intensive agricultural areas. However, 

at UK national scale, standard assessments of the impact of N deposition are based on 5 

km resolution modelling (Dore et al., 2007; Matejko et al., 2009). Dore et al. (2012) 

compared CL exceedances in the UK using data at 1 km and 5 km resolution. In contrast 

to results of Hallsworth et al. (2010) for CLEs, CL exceedances were not highly sensitive 

to grid resolution. This was attributed to the contribution of N wet deposition (which shows 

less local variability than dry deposition) and that all ecosystem types were included (not 

only nature reserves protected under the Habitat Directive, as in Hallsworth et al., 2010). 

However, for an individual nature reserve located a few kilometres from a major road, the 

standard 5 km grid data were inadequate to accurately assess local N deposition (Dore et 

al., 2012).  

This study provides a contribution to the landscape scale analysis conducted across 

Europe within the NitroEurope Integrated Project (NEU) (Sutton et al., 2007), in which a 

landscape is defined as a spatially heterogeneous area covering several square 

kilometres and contains interacting ecosystems (Forman and Godron, 1981). In rural 

landscapes, anthropogenic processes in the form of farm management determine to a 

large extent N dynamics and much of its environmental impact within the landscape 
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(Cellier et al., 2011). The NEU landscape analysis aimed to quantify N flows at the 

landscape scale using measurement and modelling approaches. In this study, we 

analysed NH3 dispersion and its environmental impact in a 6 km x 6 km rural landscape in 

southern Scotland. The landscape has a diverse emission pattern with a large number of 

NH3 emission hotspots, and large areas of sensitive ecosystems as potential sinks. A 

detailed landscape inventory of all farms and fields at field-level resolution was conducted 

to coincide with an intensive spatial monitoring programme of NH3 concentrations. 

Ammonia dispersion and deposition was modelled at a 25 m resolution, and the 

environmental impact of the local NH3 sources assessed and compared with national 1 km 

resolution estimates (Hallsworth et al., 2010). The results have general implications for the 

sustainable management of landscapes that combine both intensive livestock agriculture 

and ecosystems of relevance for environmental protection. 

2 Site and methods 

2.1 Study area 

The study landscape is situated in southern Scotland, which has a temperate climate, 

with an annual mean temperature of ~8°C, a typical rainfall of ~1000 mm and predominant 

southwesterly winds. The 6 km x 6 km area (Figure 1) is dominated by agricultural 

grassland (48%), followed by moorland (21%), rough grass (13%) and woodland (10%). 

The moorland area with low NH3 emissions is in the northwestern part of the landscape 

and is partially grazed by sheep at very low stocking densities, partly legally protected as a 

Site of Special Scientific Interest (SSSI), with another part undergoing peat cutting. The 

southeastern part is dominated by agricultural land, such as sheep and beef cattle 

pastures interspersed with poultry farming houses containing nearly 1.5 million laying 

hens. Most of the layers are kept in cage systems with manure removal by belt systems 

two to three times per week (farm locations circled in black in Figure 1, with other livestock 

houses shaded in black). However, a number of the houses have deep-pit systems, and in 

most of them layers are managed as free range birds. 
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Figure 1: Land cover types in the 6 km x 6 km study landscape in southern Scotland. The 
circles highlight poultry houses where manure is cleared at least twice per week. At other 
animal houses manure is removed less frequently (see section 3.3). 

 

2.2 Landscape inventory and emissions 

Detailed land cover/land use and farm activity data were obtained by a local survey 

carried out by Scotland’s Rural College (SRUC) and the Centre for Ecology & Hydrology 

(CEH). Management activities were recorded for each farm building and agricultural field 

throughout 2008, including type and numbers of livestock housed and grazed, manure 

management, ventilation type and emission height, crop type and the application of 

mineral and organic fertiliser. Land cover/land use and farm activity data were processed 

with a Geographical Information System (ESRI, ArcGIS) and emissions calculated for 

each individual field and livestock house. Field emissions were calculated by applying UK 

average emission factors (EFs) of the UK NH3 emission inventory to applications of 

mineral and organic fertiliser and to excreta of grazing livestock (Misselbrook et al., 2009), 

using fertiliser application rates provided by the farmers. Typical N contents were applied 

to the different types of organic fertiliser (Defra, 2010). Grazing excreta were calculated 

using grazing records and daily N excretion rates of the specific type of animal 

(Misselbrook et al., 2009). Similarly, average NH3 EFs of the UK emission inventory were 

applied to calculate housing and manure storage emissions, with housing records on 

systems and durations provided by the farmers. However, after initial analyses, housing 

EFs were partly adjusted to account for specific local management practices (see Section 
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3.3). All spatial datasets were converted to a 25 m grid resolution for atmospheric 

dispersion modelling (see Section 2.4). 

2.3 Spatial NH3 concentration measurements 

Monthly average concentrations were measured from April 2007 to December 2008 at 

31 locations using ALPHA passive diffusion samplers (Tang et al., 2001) at a sampling 

height of 1.5 m above ground. Measurement locations were distributed across the study 

area in collaboration with farmers and landowners in the landscape. Sites were selected to 

cover NH3 concentrations over different land cover types and farms. More sites were 

placed in NH3 emitting areas to capture concentration gradients around emission hotspots 

and diffuse sources, taking the main wind direction into account. The nearest site to an 

emission hotspot was located 70 m downwind of a poultry house to avoid saturation of the 

samplers. To assess measurement precision and uncertainty, samplers were exposed in 

triplicate at each location. The sampling rate of the ALPHA samplers was calibrated 

against the DELTA denuder reference system (Sutton et al., 2001b), using the UK 

National Ammonia Monitoring Network methodology (NAMN, Sutton et al., 2001a). ALPHA 

samplers were stored in a cold room (4°C) until analysis in the laboratory with an AMFIA 

NH3 flow injection analyser,based on analysis by selective ion membrane transfer and 

subsequent conductivity measurement (Wyers et al., 1993). 

2.4 Atmospheric dispersion and deposition modelling 

Atmospheric dispersion and dry deposition of NH3 within the study landscape was 

simulated using the LADD (Local Area Dispersion and Deposition) model (Hill, 1998). 

Loubet et al. (2009) recently reviewed LADD and other models available for simulating 

NH3 dispersion. The advantages of LADD are that it operates in 3D (with the atmosphere 

represented by 44 vertical layers), is computationally fast, and accounts for land cover-

specific dispersion and deposition characteristics (Loubet et al., 2009). Input data include 

land cover and emission data for each grid square (see Section 2.2), wind statistics and 

NH3 concentrations at the domain boundaries. Suitable roughness length (z0) and canopy 

resistance (Rc) for each given land cover type were selected and assigned in LADD. The 

roughness length is used to calculate vertical dispersion and dry deposition rates, while Rc 

is used in the calculation of dry deposition velocities within each grid square. Wind 

statistics were calculated from data collected for 30-minute-intervals during 2008 at a 

continuous measurement site near the centre of the study area (M. Coyle, CEH, pers. 

comm. 2010; n.b. exact coordinates not presented for farm data confidentiality purposes). 

The influence of emission sources outside of the modelling domain was incorporated by 

setting the atmospheric concentrations for the 44 model layers at the four domain 

boundaries to values taken from the national FRAME (Fine Resolution Atmospheric Multi-
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pollutant Exchange) model run for 2008 at a 5 km x 5 km resolution (Dore et al., 2007). 

These boundary concentrations were highest at ground level, ranging from 1.34 μg NH3 m-

3 at the eastern boundary to 1.85 μg NH3 m-3 in the south. The FRAME simulations used 

annual precipitation data for 2008 from the UK Met Office precipitation monitoring network 

and wind direction frequency data generated from radiosonde data for 2008. 

LADD was applied for the year 2008 at 25 m x 25 m grid resolution over an area of 7 

km x 7 km with the model domain extended by 500 m on all sides to limit possible edge 

effects. Annual average NH3 concentrations at 1.5 m height above ground level and dry 

deposition were simulated and subsequently analysed with ArcGIS (ESRI). 

2.5 Assessment of model performance 

Model performance was assessed by comparing modelled with measured annual 

concentrations at the 31 sampling sites. Statistical metrics used for model evaluation were 

the fraction of modelled concentrations within a factor of two of observed concentrations 

(FAC2), the correlation coefficient (R), the geometric mean bias (MG) and the geometric 

variance (VG) (Chang and Hanna, 2004; Theobald et al., 2009).  

FAC2 = fraction of data that satisfy 0.5 ≤ Cm/Co ≤ 2.0    (1) 

       (2) 

       (3) 

      (4) 

where Co are the observed (measured) concentrations, Cm are modelled 

concentrations, σ is the standard deviation and overlined variables represent mean values. 

Model performance is considered “acceptable” if FAC2 is 50% or greater, i.e. if FAC2 ≥ 

0.5. MG measures the mean relative bias and only indicates systematic errors. It 

represents the ratio of the geometric mean of Co to the geometric mean of Cm, thus the 

optimum value is MG = 1. An “acceptable” model performance is expected to result in a 

mean relative bias within ± 30%, i.e. 0.7 < MG < 1.3. VG is a measure of mean relative 

scatter of a log-normal distribution and reflects both systematic and random error. The 

optimum value is VG = 1. An “acceptable” model would be expected to have a relative 

scatter of less than a factor of two (i.e. VG < 1.6) or three (i.e. VG < 3.3). Overall model 

performance is evaluated as acceptable when more than 50% of the criteria are met 

(Hanna and Chang, 2010). 
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2.6 Assessment of potential environmental impacts 

Landscape areas with exceeded CLEs and CLs were identified to assess the risk of 

environmental impact on ecosystems. Analyses of CLE exceedance used modelled NH3 

concentrations at a height of 1.5 m above ground. CL exceedance calculations were 

based on total N deposition: the LADD estimate of dry NH3 deposition (see Section 2.4) 

plus the wet deposition of reduced N and the dry and wet deposition of oxidised N 

calculated using the UK FRAME model run for 2008 at a 1 km x 1 km resolution. The 

contribution of particulate ammonium (NH4
+) to the dry deposition of reduced N is 

considered minor compared with NH3 (e.g. Asman et al., 1998; Duyzer, 1994). Hallsworth 

et al. (2010) validated the FRAME model at a 1 km resolution for NH3 concentrations and 

Dore et al. (2012) for NO2 concentrations. Dore et al. (2007) validated the FRAME model 

for aerosol concentrations and wet deposition at 5 km resolution. FRAME gives three 

different deposition rates for each grid square: a) the average deposition, accounting for 

land cover mix in the grid square; b) the deposition to woodland in the square; c) the 

deposition to low semi-natural vegetation in the square. Deposition rates were applied 

depending on the land cover in each 25 m grid square. The CL exceedance was 

calculated for woodland, hedgerows, shrubs, moorland and rough grass by subtracting the 

CL of 10 kg N ha-1 yr-1 from the total N deposition. The applied CL is the lower limit of the 

range shown in Table 1 to protect the most sensitive species of the respective 

ecosystems. Although these CL values were used in this study, current science indicates 

that they may need to be revised further to adequately protect sensitive species (Payne et 

al., 2013). 

 

Table 1: Land cover categories of the study landscape, the associated ecosystem types with 
the corresponding critical loads for N deposition (UNECE, 2010). 

Land cover category Ecosystem type Critical Load 
[kg N ha-1 yr-1] 

Woodland, hedgerows Broadleaved deciduous woodland 10-20 
Shrubs Calluna dominated wet heath (upland 

moorland) 
10-20 

Moorland, rough grass Heath (Juncus) meadows and humid 
(Nardus stricta) swards 

10-20 

 

 



 10 

3 Results and discussion 

3.1 Spatial variability of measured NH3 concentrations 

The spatial variability of NH3 concentrations in the landscape was large, with monthly 

NH3 concentrations during 2008 varying from 0.2 to 42.5 μg m-3 between the 

measurement sites. Monthly coefficients of variation of replicate samplers was <24%, with 

values >15% only occurring at sites with monthly mean concentrations <1 μg m-3. The 

spatial variability of the measured NH3 concentrations is attributed to land use, as shown 

by classifying the sites into three categories: a) “Background sites” are located away from 

agricultural NH3 sources and have mean annual concentrations of <1 μg m-3, b) “Field 

sites” are influenced by agricultural NH3 sources such as grazing or fertiliser applications, 

but are >300 m away from large point sources, and c) “Poultry sites” within 300 m of large 

point sources, i.e. the poultry houses. Annual mean NH3 concentrations in 2008 ranged 

between 0.40 and 22.9 μg NH3 m-3 (Figure 2) and generally increased from Background to 

Field to Poultry sites (Figure 3). Two Field sites were exceptions with higher 

concentrations: Site 24 was close to an open cattle shed and an intensively used field, and 

site 25, which was only 320 m from a poultry house, i.e. just outside the distance for 

Poultry site classification. 

 

 
Figure 2: Map of numbered measurement site locations showing annual mean NH3 
concentrations by proportionally sized circles. The sites are numbered in rank order of their 
mean NH3 concentration within their site category. 
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Figure 3: Annual measured mean NH3 concentrations and monthly minima and maxima in 
2008 for Background sites (open circles), Field sites (grey circles) and Poultry sites (black 
circles). The site numbers ranked by site category and mean concentration are those shown 
in Figure 2. 

 

The highest annual mean NH3 concentrations were measured 70 m downwind 

(northeast) of a poultry house with an estimated NH3 emission strength of 5,900 kg N yr-1 

(site 31). A measurement transect of three sites downwind of this house illustrates the 

concentration gradient with distance from large sources. Measured annual concentrations 

were 22.9 μg m-3, 14.7 μg m-3 and 4.8 μg m-3 at distances of 70 m, 160 m and 900 m from 

the house (sites 31, 30, 23, respectively). Figure 4 compares these results to 

concentration decreases with distance found by Fowler et al. (1998) and Pitcairn et al. 

(1998) for poultry houses emitting an estimated 4,800 kg N yr-1 and 14,000 kg N yr-1, 

respectively. All three studies were conducted in agricultural areas; however, the 

concentration decrease with distance in this study is more gradual, possibly due to high 

concentrations in the surrounding area resulting from the large number of emission 

hotspots. 
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Figure 4: Ammonia concentration decrease with distance from the source of this study 
(sites 31, 30, 23) compared with results of Pitcairn et al. (1998) and Fowler et al. (1998). 

 

3.2 Temporal variability in measured NH3 concentrations  

A strong correlation was found between annual mean NH3 concentrations of all sites in 

2007 and 2008 (R² = 0.98, n = 31), using data from April to December for both years. This 

strong correlation indicates that the surrounding land use is the main driver of variation in 

the annual concentration. The ratio of monthly concentration maxima to annual mean 

concentrations can be used as an indicator of temporal variability on an intra-annual basis 

(Figure 5). Most sites show a ratio below 3:1, which seems to represent a typical temporal 

variation about a mean of a relatively constant NH3 concentration (e.g. Figure 6a). This 

was also shown by Tang et al. (2009) for the UK at the national scale. Monthly maximum 

concentrations of those sites with larger ratios (up to 5:1) occurred in spring or summer 

2008. For example, site 27 (Figure 6b) was located around 200 m south of four poultry 

houses, but it was also located close to a field where manure was applied in May 2008. 

Manure heaps and manure applications also accounted for monthly maxima at sites 8 

(Figure 6c), 13, 15, 19 and 20 (Figure 6d). 
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Figure 5: Relationship between monthly maximum and annual mean NH3 concentrations in 
2008 for Background sites (open circles), Field sites (grey circles) and Poultry sites (black 
circles). Site numbers are shown for sites with ratios of the monthly maximum to the annual 
mean higher than 3:1. 
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Figure 6: Temporal variation of monthly NH3 concentrations (± 2 standard deviations) during 
2008 at four sites: a) Site 18 with a ratio of max/mean below 3:1 and b), c) and d) showing 
sites with ratios higher than 3:1. 

 

3.3 Modelled atmospheric concentration and deposition 

The LADD model was initially run using emission factors (EFs) from the UK inventory 

of NH3 emissions and resulted in the general pattern of NH3 concentrations being 

reproduced (Figure 7, left). However there was a significant overestimation of 

concentration in the landscape, especially in the southeastern quarter. This overestimation 

was attributed to the emissions from six of the poultry houses (circled houses in Figure 1) 

which contained ~ ¾ million layers in cage systems. These houses had frequently cleaned 

belt-systems (≥ 2 times week-1). The EF for a UK average caged layer is calculated 

assuming that 40% of these birds are housed in deep-pit houses and 60% in belt-system 

houses with a cleaning frequency of ≤1 times week-1 (Misselbrook et al., 2009). Belt-
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systems with less frequent cleaning (EF = 0.092 kg NH3-N bird-1 yr-1) are considered to 

reduce emissions by 56% compared to deep-pit systems (EF = 0.164 kg NH3-N bird-1 yr-1), 

resulting in an average UK caged layer EF of 0.121 kg NH3-N bird-1 yr-1 (Misselbrook et 

al., 2009). The European Commission (2003) reported an EF of 0.029 kg NH3-N bird-1 yr-1 

for frequently cleaned belt-systems, more than four times lower than that used in the UK 

NH3 inventory for the average caged layer. LADD runs were repeated using this EF for the 

six poultry houses concerned and modelled concentrations decreased considerably 

(Figure 7, right), and matched measured concentrations more closely. 
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Figure 7: Measured (circles) and modelled (background colours) NH3 concentrations within the landscape. Left map: UK inventory emission factors 
were applied to all NH3 sources; Right map: the European Commission (2003) EF for frequently cleaned belt-systems was applied to the six poultry 
houses that had that system. 
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Figure 8 shows a scatter plot between modelled and measured concentrations and 

Table 2 summarises the statistical metrics for the model run with system specific EFs 

applied for the poultry houses instead of UK average EFs. Overall, model performance is 

evaluated as acceptable, as the FAC2 and VG metrics indicate acceptable model 

performance when compared with measurements at all sites. However, the MG is lower 

than recommended for acceptable model performance, reflecting a systematic 

overestimation by the model, which is apparent at all distances from sources (Figure 8). 

Recent work by Theobald et al. (2012) suggests that LADD overestimates 

concentrations around elevated sources (> 5 m) with high exit velocities, as LADD does 

not include treatment of plume rise after leaving the source. However, poultry houses in 

this study area predominantly have emission heights of 4 to 5 m, and most vents are 

located on the building walls, i.e. most plumes are not expected to exit vertically. Thus this 

is unlikely to explain the differences shown in Figure 8. For other situations with ground 

and building emission sources, Theobald et al. (2012) reported acceptable agreement 

between LADD and measured concentrations. 

 

 
 

Figure 8: Relationship between modelled and measured NH3 concentrations of Background 
sites (open circles), Field sites (grey circles) and Poultry sites (black circles) on logarithmic 
axes. 
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Table 2: Statistical metrics of model performance comparing measured and modelled NH3 
concentrations for all sites and by separate site categories (see Section 3.1 for category 
definition). 

 Target 
performance 

All sites Background 
sites 

Field sites Poultry sites 

FAC2 (%) ≥ 50.0 51.6 28.6 55.6 66.7 
R - 0.95 0.64 0.84 0.89 
MG 0.7 – 1.3 0.50 0.45 0.52 0.50 
VG < 3.3 1.77 2.03 1.68 1.76 
 

3.4 Model calibration 

In order to use modelled concentrations and deposition fluxes for risk assessment of 

environmental impacts, the systematic overestimation was addressed by calibrating the 

modelled against the measured concentrations. Modelled concentrations were corrected 

by the slope of the regression between measured and modelled results ([NH3]meas = 0.49 

[NH3]model + 0.15, R² = 0.90). The intercept was not statistically significant, providing the 

simplified relationship [NH3]meas = 0.49 [NH3]model (R2 = 0.90) to calibrate modelled 

concentrations (effectively represented by the 2:1 function in Figure 8). 

The calibrated model NH3 concentrations range from 0.3 to 77.9 μg m-3 within the 

study landscape (Figure 9). These results provide the basis to use the model for assessing 

the risk of environmental impacts in the study landscape at high spatial resolution. 
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Figure 9: Measured (circles) and calibrated modelled (background colours) NH3 
concentrations within the landscape. For all NH3 sources, except for six frequently cleaned 
poultry houses, average emission factors from the UK inventory were used as model input. 

 

3.5 Risk assessment of environmental impacts 

The risk assessment presented is based on comparison of the NH3 concentrations 

with the CLE and N deposition with the CL focussing on the extent of CLE and CL 

exceedance. For this purpose, the high resolution 25 m calibrated model output data of 

NH3 concentration and dry NH3 deposition were supplemented with the 1 km national 

deposition estimates for oxidised N and wet-deposited reduced N for the study domain. In 

addition, landscape scale and national scale assessments were compared to investigate 

fitness-for purpose at the different spatial resolutions. 

3.5.1 Concentrations and critical level (CLE) exceedance 

For sensitive vegetation (regardless of habitat type), i.e. lichens and bryophytes, the 

long term CLE for NH3 of 1 μg m-3 is exceeded in 60% of the landscape (Figure 10). 

Moorland habitats are naturally low N ecosystems and sensitive to NH3. Within the study 

area, the CLE is exceeded for 8% of the moorland areas. Such ecosystems could thus be 

expected to show long term effects of local NH3 sources. Although this affects a 

considerable area (39 ha moorland), it is still a relatively modest fraction considering the 

extremely high emission fluxes in the vicinity. This is due to most of the moorland in the 
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study area being located northwest of the poultry houses, in a region with frequent 

southwesterly winds and low NH3 background concentration (0.40 µg m-3 at site 1). 

The CLE of 3 μg m-3 for higher plants is exceeded in 25% of the landscape. Most of 

this area is agricultural land: 81% is grass or arable land, and the risk of species 

composition change is not an issue in arable crops or improved grassland with already 

substantial fertiliser N input. However, semi-natural vegetation and woodland areas in the 

landscape with NH3 concentrations >3 μg m-3 are at risk, with 7% of such habitats showing 

an exceedance of the CLE. However, these habitats exceeding the CLE of 3 μg m-3 are 

restricted to relatively small patches within the agricultural area. 

 

 

 

Figure 10: Modelled NH3 concentrations (calibrated) within the study landscape. In white 
areas, vegetation is not expected to be at risk through NH3 concentrations. In light and dark 
grey areas, NH3 concentrations pose a risk to sensitive vegetation, such as lichens and 
bryophytes. In dark grey areas, all plants of semi-natural ecosystems are at risk. 

 

These datasets were aggregated from a 25 m resolution to 1 km x 1 km for 

comparison with concentrations modelled by the UK scale FRAME model at a 1 km 

resolution using national emission factors (Table 3). FRAME predicts exceedances of the 

1 μg m-3 CLE for the whole landscape, and conversely no exceedances for the 3 μg m-3 

CLE. In other words, at the coarser resolution, the impact to the sensitive moorland area 

northwest of the emission hotspots is overestimated, while the impact downwind of the 

hotspots is substantially underestimated. Thus, FRAME smoothes out the full spatial 
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variability of NH3 concentrations at 1 km resolution to a large degree. By contrast, LADD 

NH3 concentrations aggregated to a 1 km resolution capture a much higher level of spatial 

heterogeneity in CLE exceedances (Table 3, Figure 11 and Figure 12). This suggests that 

the smoothing out of NH3 concentrations across a landscape in a national scale model 

such as FRAME is largely due to coarser scale input data, i.e. during the emission 

inventory processing. FRAME uses spatial patterns of UK NH3 emissions calculated in the 

AENEID model (Dragosits et al., 1998; Hellsten et al., 2008). The model combines parish-

level farm statistics with weighted component NH3 sources according to land cover at 1 

km level. Hallsworth et al. (2010) have shown that this approach provides encouraging 

agreement with NH3 concentrations modelled at the national scale (model-measurement 

comparison: R² = 0.83), due to 1 km model simulations more effectively separating source 

(agricultural) areas from sink (semi-natural/nature reserve) areas than the 5 km model. 

The present study illustrates the limitation of applying a national scale approach at high 

resolution to a specific landscape, as UK emission mapping is based on general suitability 

of different land classes for agriculture, but does not include detailed mapping of 

agricultural point source emissions. 

 

Table 3: Comparison of the range of modelled NH3 concentrations within the study 
landscape and the percentage of CLE exceedance at different resolutions: LADD (25 m, 1 
km) and FRAME (1 km). 

 LADD – 25 m LADD – 1 km FRAME – 1 km 
Min (μg m-3) 0.3 0.4 1.1 
Max (μg m-3) 77.9 10.7 2.9 
Mean (μg m-3) 2.6 2.6 1.9 
% CLE exceedance 1 μg m-3  60 64 100 
% CLE exceedance 3 μg m-3 25 31 0 
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Figure 11: Histograms of modelled NH3 concentrations in 25 m x 25 m grids in the landscape 
comparing results at different resolutions: LADD (25 m, 1 km) and FRAME (1 km). 
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Figure 12: NH3 concentrations at a 1 km resolution within the study landscape, using FRAME (left map) and LADD (right map). 
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A scenario with all poultry emissions removed was tested for CLE exceedance. In this 

no-poultry scenario only 12% of the study area exceeded the 1 μg m-3 CLE, and 0.2% 

exceeded the 3 μg m-3 CLE, compared with 60% and 25%, respectively, when poultry 

house emissions were included. This highlights the large contribution of emission hotspots 

to atmospheric NH3 concentrations in mixed landscapes such as this. 

3.5.2 Deposition and critical load (CL) exceedance 

Modelled dry deposition of NH3 within the landscape has a high spatial variability 

ranging from 0.1 to 1200 kg NH3-N ha-1 yr-1, with a value >1000 kg NH3-N ha-1 yr-1 

occurring in only a single 25 m x 25 m grid square between closely located poultry houses. 

Such high dry deposition values can be considered theoretical estimates, as the 

deposition rate may be expected to be reduced close to large sources due to saturation of 

the absorbing surfaces (Jones et al., 2007). In most cases, the deposition decreases to 

<100 kg NH3-N ha-1 yr-1 within 100 m distance from a source, depending on the absorbing 

surfaces. To illustrate the importance of capturing the spatial variability, the deposition flux 

to coniferous woodland downwind of a poultry house was compared with estimates by 

FRAME (circled area in Figure 13). The woodland of 6.5 ha is situated between 150 m and 

500 m from the house. The NH3 dry deposition flux to the woodland modelled by LADD 

varies spatially between 31 and 172 kg N ha-1 yr-1 and amounts to a total of 394 kg N yr-1. 

This is equivalent to 6.7% of the NH3 emitted from the poultry house near site 31, though 

other poultry houses would have also contributed to this total. FRAME at 1 km estimates a 

woodland specific dry deposition flux to this area of 10.8 - 11.9 kg N ha-1 yr-1 (total NHx dry 

deposition of 74 kg N yr-1). This illustrates how FRAME underestimates the impact of NHx 

dry deposition in the immediate vicinity of sources, compared with LADD. 

Total N deposition (LADD NH3 dry deposition + FRAME NHx wet & NOy deposition) 

ranges from 5.6 to 1206 kg N ha-1 yr-1 (Figure 13). The CL only applies to the land cover 

categories woodland, hedgerows, shrubs, moorland and rough grass in the landscape, i.e. 

CL exceedances were calculated only for these categories, which cover 38% of the study 

area. In 34% of this area (or 13% of the total landscape area) the CL is exceeded, on 

average by 17.6 kg N ha-1 yr-1, with a median CL exceedance of 6.5 kg N ha-1 yr-1 (Figure 

14 and Table 4). 

 



 25 

 

 

Figure 13: Total N deposition calculated by combining dry deposition of NH3 simulated by 
LADD (calibrated) with the remaining components of N deposition from FRAME. The circled 
area shows a patch of woodland analysed in more detail. 

 

Table 4: Land cover specific statistics* for critical load (CL) exceedance (kg N ha-1 yr-1). 

 Woodland Shrubs Rough grass Moorland 
Mean 20.1 21.6 11.6 1.9 
Median 7.4 17.6 2.7 0.7 
Maximum 1195.6 401.9 406.5 10.5 
% exceeding CL 74.2 97.0 28.0 1.7 
 
*Land cover category hedgerows covered only a very small area and was therefore not 
considered for these statistics 
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Figure 14: Critical load (CL) exceedance calculated using land cover data and CL estimates at 25 m resolution and land cover specific atmospheric 
deposition estimates at differing spatial resolutions. Left: 1 km N deposition modelled by FRAME; Right: combining 25 m NH3 dry deposition 
simulated by LADD (calibrated) with remaining components of N deposition from FRAME. 
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When combining the land cover specific 1 km FRAME results with the 25 m grid 

resolution land cover data (see Section 2.6), FRAME predicts a CL exceedance in 51% of 

the area to which a CL applies, compared with 34% simulated by LADD (Table 5). Due to 

FRAME not fully capturing the spatial variability of NH3 dry deposition, areas exceeding 

CL in the whole study landscape are overestimated whereas the extent of CL exceedance 

in areas close to sources is underestimated (Figure 14). 

 

Table 5: Comparison of CL exceedances (kg N ha-1 yr-1) within the study landscape between 
LADD (25 m resolution) and FRAME (1 km resolution). 

 LADD FRAME 
Mean 17.6 3.2 
Median 6.5 2.4 
Maximum 1195.6 10.8 
% exceeding CL 34 51 
 

4 Conclusions 

A detailed landscape inventory of all farm activities in the study year 2008 provided 

data to estimate NH3 emissions at 25 m resolution. This is essential for studying the actual 

spatial variability of NH3 at the landscape scale. The combination of a large number of 

long term NH3 concentration measurements across the landscape and the high resolution 

model output allowed a spatially precise assessment of NH3 concentrations, which was 

applied to estimate NH3 dry deposition. Measured and modelled NH3 were highly 

correlated (R2 = 0.90), but model estimates needed to be calibrated by approximately a 

factor of two to the measurements for environmental risk assessment. This highlights the 

importance of always including verification measurements in such an assessment. This is 

also highlighted by Theobald et al. (2012), who showed that the performance of models 

such as LADD, ADMS and AERMOD, can vary between study sites, for example 

depending on specific meteorological and emission source characteristics. For robust risk 

assessment of environmental impacts, models therefore should be appropriately verified 

with measurements at multiple locations across the study area.  

In the present study area, it was also found that standard national emission factors 

(EFs) were not appropriate for all main NH3 sources. Ammonia EFs for several poultry 

houses had to be adjusted to account for the specific manure management practices of 

frequent litter removal, which resulted in a 75% decrease in emissions compared to the 

UK average EFs. Thus, for the environmental impact assessment of large livestock 

houses, it is important to use EFs appropriate to local husbandry systems and manure 

management. 
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In this study area, frequent southwesterly winds cause most of the poultry house 

emissions to disperse to the northeast. As the most sensitive ecosystems in the study area 

are located northwest of the poultry houses, only a relatively small area is affected by the 

nearby poultry emissions, despite total poultry NH3 emissions exceeding 100 t N yr-1, in 

addition to ~10 t N yr-1 of NH3 emissions from other agricultural sources in the landscape. 

The ecosystems most at risk from high NH3 concentrations are patches of woodland, 

shrubs and rough grass situated within the agricultural area downwind of the sources. 

Impact assessment using the critical level (CLE) approach suggested that 8% of the semi-

natural moorland may be adversely affected by NH3 concentrations above 1 μg m-3 (= long 

term CLE for lichens and bryophytes). By comparison, only 2% of the moorland area is 

under threat from critical load (CL) exceedance. This relatively small difference between 

two complementary environmental indicator approaches shows that the present value of 

the NH3 CLE is in reasonably close agreement with the CL values in this upland 

landscape.  

The comparison of the UK national model FRAME at a 1 km resolution with the 25 m 

resolution LADD estimates showed that FRAME did not capture the full spatial variability 

of NH3 within the study landscape. Furthermore, a comparison of LADD NH3 

concentrations averaged to 1 km with FRAME 1 km concentrations showed the much 

higher potential to represent the spatial heterogeneity of NH3 in the landscape framework. 

While the 1 km resolution version from FRAME performs well at the national scale 

(Hallsworth et al., 2010), this comparison emphasises the need for high resolution 

emission data obtained at a farm and field level for assessments of environmental impacts 

from NH3. 

This study highlights the importance of the spatial arrangement of NH3 sources and 

sinks within a landscape that is the cause of fine scale heterogeneity in NH3 

concentrations and N deposition and in the resulting environmental risks. In the study 

landscape, most sensitive ecosystems are located upwind of the large NH3 sources 

nearby and thus are considered to be at relatively modest environmental risk according to 

current values of CLEs and CLs. This shows how landscape planning could be used to 

reduce the impact of intensive agriculture on sensitive ecosystems: Careful planning of the 

location of the farm point and area sources, considering both distance and the direction in 

relation to prevailing winds, provides a practical way of avoiding adverse impacts on 

nearby semi-natural areas.  

 

Acknowledgements 
This work was funded by the NitroEurope Integrated Project, supported by the 

European Commission, 6th Framework Programme, the Centre for Ecology & Hydrology, 



 29 

Scotland’s Rural College, together with complementary inputs from the UK Department of 

Food and Rural Affairs (Defra), COST 729 and the NinE network of the European Science 

Foundation. The authors are grateful for the cooperation of all farmers in the study 

landscape, in particular the poultry farm, for detailed management data.  

 
References 
Asman W.A.H., Sutton M.A., Schjørring J.K., 1998. Ammonia: emission, atmospheric 

transport and deposition. New Phytologist 139, 27-48. 
Bouwman A.F., Lee D.S., Asman W.A.H., Dentener F.J., Van Der Hoek K.W., Olivier 

J.G.J., 1997. A global high-resolution emission inventory for ammonia. Global 
Biogeochemical Cycles 11, 561-587. 

Burkhardt J., Sutton M.A., Milford C., Storeton-West R.L., Fowler D., 1998. Ammonia 
concentrations at a site in southern Scotland from 2 yr of continuous 
measurements. Atmospheric Environment 32, 325-331. 

Cape J.N., van der Eerden L.J., Sheppard L.J., Leith I.D., Sutton M.A., 2009a. Evidence 
for changing the critical level for ammonia. Environmental Pollution 157, 1033-
1037. 

Cape J.N., van der Eerden L.J., Sheppard L.J., Leith I.D., Sutton M.A., 2009b. 
Reassessment of critical levels for atmospheric ammonia. In: M.A. Sutton, S. Reis 
and S.M.H. Baker (Editors), Atmospheric ammonia - Detecting emission changes 
and environmental impacts. Springer, Dordrecht, pp. 15-40. 

Cellier P., Durand P., Hutchings N., Dragosits U., Theobald M.R., Drouet J.-L., Oenema 
O., Bleeker A., Breuer L., Dalgaard T., Duretz S., Kros J., Loubet B., Olesen J.E., 
Merot P., Viaud V., de Vries W., Sutton M.A., 2011. Nitrogen flows and fate in rural 
landscapes. In: M.A. Sutton et al. (Editors), The European nitrogen assessment - 
Sources, effects and policy perspectives. Cambridge University Press, Cambridge, 
pp. 229-248. 

Cellier P., Theobald M.R., Asman W., Bealey W., Bittman S., Dragosits U., Fudala J., 
Jones M., Lofstrom P., Loubet B., Misselbrook T., Rihm B., Smith K., Strizik M., 
van der Hoek K., van Jaarsveld H., Walker J., Zelinger Z., 2009. Assessment 
methods for ammonia hot-spots. In: M.A. Sutton, S. Reis and S.M.H. Baker 
(Editors), Atmospheric ammonia - Detecting emission changes and environmental 
impacts. Springer, Dordrecht, pp. 391-407. 

Chang J.C., Hanna S.R., 2004. Air quality model performance evaluation. Meteorology 
and Atmospheric Physics 87, 167-196. 

Defra, 2010. Department for Environmental Food and Rural Affairs: Fertiliser Manual 
(RB209), 8th Edition, TSO (The Stationary Office), Norwich, UK. 

Dore A.J., Kryza M., Hall J.R., Hallsworth S., Keller V.J.D., Vieno M., Sutton M.A., 2012. 
The influence of model grid resolution on estimation of national scale nitrogen 
deposition and exceedance of critical loads. Biogeosciences 9, 1597-1609. 

Dore A.J., Vieno M., Tang Y.S., Dragosits U., Dosio A., Weston K.J., Sutton M.A., 2007. 
Modelling the atmospheric transport and deposition of sulphur and nitrogen over 
the United Kingdom and assessment of the influence of SO2 emissions from 
international shipping. Atmospheric Environment 41, 2355-2367. 

Dragosits U., Sutton M.A., Place C.J., Bayley A.A., 1998. Modelling the spatial distribution 
of agricultural ammonia emissions in the UK. Environmental Pollution 102, 195-
203. 

Dragosits U., Theobald M.R., Place C.J., ApSimon H.M., Sutton M.A., 2006. The potential 
for spatial planning at the landscape level to mitigate the effects of atmospheric 
ammonia deposition. Environmental Science & Policy 9, 626-638. 

Dragosits U., Theobald M.R., Place C.J., Lord E., Webb J., Hill J., ApSimon H.M., Sutton 
M.A., 2002. Ammonia emission, deposition and impact assessment at the field 



 30 

scale: a case study of sub-grid spatial variability. Environmental Pollution 117, 147-
158. 

Duyzer J., 1994. Dry deposition of ammonia and ammonium aerosols over heathland. 
Journal of Geophysical Research 99, 18757-18763. 

European Commission, 2003. Integrated Pollution Prevention and Control (IPPC). 
Reference document on best available techniques for intensive rearing of poultry 
and pigs (BREF-ILF), Seville, Spain. 

Fangmeier A., Hadwiger-Fangmeier A., Van der Eerden L., Jäger H.-J., 1994. Effects of 
atmospheric ammonia on vegetation - A review. Environmental Pollution 86, 43-82. 

Forman R.T.T., Godron M., 1981. Patches and structural components for a landscape 
ecology. Bioscience 31, 733-740. 

Fowler D., Pitcairn C.E.R., Sutton M.A., Flechard C., Loubet B., Coyle M., Munro R.C., 
1998. The mass budget of atmospheric ammonia in woodland within 1 km of 
livestock buildings. Environmental Pollution 102, 343-348. 

Frati L., Santoni S., Nicolardi V., Gaggi C., Brunialti G., Guttova A., Gaudino S., Pati A., 
Pirintsos S.A., Loppi S., 2007. Lichen biomonitoring of ammonia emission and 
nitrogen deposition around a pig stockfarm. Environmental Pollution 146, 311-316. 

Hallsworth S., Dore A.J., Bealey W.I., Dragosits U., Vieno M., Hellsten S., Tang Y.S., 
Sutton M.A., 2010. The role of indicator choice in quantifying the threat of 
atmospheric ammonia to the 'Natura 2000' network. Environmental Science & 
Policy 13, 671-687. 

Hanna S.R., Chang J.C., 2010. Setting acceptance criteria for air quality models. In: 
Proceedings of the international technical meeting on air pollution modelling and its 
application, Turin, Italy. 

Hellsten S., Dragosits U., Place C.J., Vieno M., Dore A.J., Misselbrook T.H., Tang Y.S., 
Sutton M.A., 2008. Modelling the spatial distribution of ammonia emissions in the 
UK. Environmental Pollution 154, 370-379. 

Hill J., 1998. Applications of computational modelling to ammonia dispersion from 
agricultural sources. Ph.D. thesis. Imperial College, Centre for Environmental 
Technology, University of London, London, UK. 

Jones M.R., Leith I.D., Fowler D., Raven J.A., Sutton M.A., Nemitz E., Cape J.N., 
Sheppard L.J., Smith R.I., Theobald M.R., 2007. Concentration-dependent NH3 
deposition processes for mixed moorland semi-natural vegetation. Atmospheric 
Environment 41, 2049-2060. 

Krupa S.V., 2003. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a 
review. Environmental Pollution 124, 179-221. 

Loubet B., Asman W.A.H., Theobald M.R., Hertel O., Tang Y.S., Robin P., Hassouna M., 
Dammgen U., Genermont S., Cellier P., Sutton M.A., 2009. Ammonia deposition 
near hot spots: Processes, models and monitoring methods. In: M.A. Sutton, S. 
Reis and S.M.H. Baker (Editors), Atmospheric ammonia - Detecting emission 
changes and environmental impacts. Springer, Dordrecht, pp. 205-267. 

Matejko M., Dore A.J., Hall J., Dore C.J., Blas M., Kryza M., Smith R., Fowler D., 2009. 
The influence of long term trends in pollutant emissions on deposition of sulphur 
and nitrogen and exceedance of critical loads in the United Kingdom. 
Environmental Science & Policy 12, 882-896. 

Misselbrook T.H., Chadwick D.R., Gilhespy S.L., Chambers B.J., Smith K.A., Williams J., 
Dragosits U., 2009. Inventory of ammonia emissions from UK agriculture 2008 
(Defra Contract AC0112), North Wyke Research, Devon, UK. 

Misselbrook T.H., Van Der Weerden T.J., Pain B.F., Jarvis S.C., Chambers B.J., Smith 
K.A., Phillips V.R., Demmers T.G.M., 2000. Ammonia emission factors for UK 
agriculture. Atmospheric Environment 34, 871-880. 

Payne R.J., Dise N.B., Stevens C.J., Gowing D.J., Partners B., 2013. Impact of nitrogen 
deposition at the species level. Proceedings of the National Academy of Sciences 
110, 984-987. 



 31 

Pitcairn C.E.R., Leith I.D., Sheppard L.J., Sutton M.A., Fowler D., Munro R.C., Tang S., 
Wilson D., 1998. The relationship between nitrogen deposition, species 
composition and foliar nitrogen concentrations in woodland flora in the vicinity of 
livestock farms. Environmental Pollution 102, 41-48. 

Pitcairn C.E.R., Leith I.D., van Dijk N., Sheppard L.J., Sutton M.A., Fowler D., 2009. The 
application of transects to assess the effects of ammonia on woodland groundflora. 
In: M.A. Sutton, S. Reis and S.M.H. Baker (Editors), Atmospheric ammonia - 
Detecting emission changes and environmental impacts. Springer, Dordrecht, pp. 
59-69. 

Pitcairn C.E.R., Skiba U.M., Sutton M.A., Fowler D., Munro R., Kennedy V., 2002. Defining 
the spatial impacts of poultry farm ammonia emissions on species composition of 
adjacent woodland groundflora using Ellenberg Nitrogen Index, nitrous oxide and 
nitric oxide emissions and foliar nitrogen as marker variables. Environmental 
Pollution 119, 9-21. 

Posthumus A.C., 1988. Critical levels for effects of ammonia and ammonium. In: 
Proceedings of the Bad Harzburg Workshop. Umweltbundesamt, Berlin, pp. 117-
127. 

Sutton M.A., Milford C., Dragosits U., Place C.J., Singles R.J., Smith R.I., Pitcairn C.E.R., 
Fowler D., Hill J., ApSimon H.M., Ross C., Hill R., Jarvis S.C., Pain B.F., Phillips 
V.C., Harrison R., Moss D., Webb J., Espenhahn S.E., Lee D.S., Hornung M., 
Ullyett J., Bull K.R., Emmett B.A., Lowe J., Wyers G.P., 1998. Dispersion, 
deposition and impacts of atmospheric ammonia: quantifying local budgets and 
spatial variability. Environmental Pollution 102, 349-361. 

Sutton M.A., Miners B., Tang Y.S., Milford C., Wyers G.P., Duyzer J.H., Fowler D., 2001a. 
Comparison of low cost measurement techniques for long-term monitoring of 
atmospheric ammonia. Journal of Environmental Monitoring 3, 446-453. 

Sutton M.A., Nemitz E., Erisman J.W., Beier C., Bahl K.B., Cellier P., de Vries W., Cotrufo 
F., Skiba U., Di Marco C., Jones S., Laville P., Soussana J.F., Loubet B., Twigg M., 
Famulari D., Whitehead J., Gallagher M.W., Neftel A., Flechard C.R., Herrmann B., 
Calanca P.L., Schjoerring J.K., Daemmgen U., Horvath L., Tang Y.S., Emmett 
B.A., Tietema A., Penuelas J., Kesik M., Brueggemann N., Pilegaard K., Vesala T., 
Campbell C.L., Olesen J.E., Dragosits U., Theobald M.R., Levy P., Mobbs D.C., 
Milne R., Viovy N., Vuichard N., Smith J.U., Smith P., Bergamaschi P., Fowler D., 
Reis S., 2007. Challenges in quantifying biosphere-atmosphere exchange of 
nitrogen species. Environmental Pollution 150, 125-139. 

Sutton M.A., Reis S., Baker S.M.H., 2009a. Synthesis and summary for policy makers. In: 
M.A. Sutton, S. Reis and S.M.H. Baker (Editors), Atmospheric ammonia - 
Detecting emission changes and environmental impacts. Springer, Dordrecht, pp. 
445-454. 

Sutton M.A., Sheppard L.J., Fowler D., 2009b. Potential for the further development and 
application of critical levels to assess the environmental impacts of ammonia. In: 
M.A. Sutton, S. Reis and S.M.H. Baker (Editors), Atmospheric ammonia - 
Detecting emission changes and environmental impacts. Springer, Dordrecht, pp. 
41-48. 

Sutton M.A., Tang Y.S., Dragosits U., Fournier N., Dore A.J., Smith R.I., Weston K.J., 
Fowler D., 2001b. A spatial analysis of atmospheric ammonia and ammonium in 
the UK. The Scientific World Journal 1, 275-286. 

Tang Y.S., Cape J.N., Sutton M.A., 2001. Development and types of passive samplers for 
monitoring atmospheric NO2 and NH3 concentrations. The Scientific World Journal 
1, 513-529. 

Tang Y.S., Dragosits U., van Dijk N., Love L., Simmons I., Sutton M.A., 2009. Assessment 
of Ammonia and Ammonium Trends and Relationship to Critical Levels in the UK 
National Ammonia Monitoring Network (NAMN). In: M.A. Sutton, S. Reis and 
S.M.H. Baker (Editors), Atmospheric ammonia - Detecting emission changes and 
environmental impacts. Springer, Dordrecht, pp. 187-194. 



 32 

Theobald M.R., Bealey W.J., Tang Y.S., Vallejo A., Sutton M.A., 2009. A simple model for 
screening the local impacts of atmospheric ammonia. Science of the Total 
Environment 407, 6024-6033. 

Theobald M.R., Løfstrøm P., Walker J., Andersen H.V., Pedersen P., Vallejo A., Sutton 
M.A., 2012. An intercomparison of models used to simulate the short-range 
atmospheric dispersion of agricultural ammonia emissions. Environmental 
Modelling & Software 37, 90-102. 

Theobald M.R., Milford C., Hargreaves K.J., Sheppard L.J., Nemitz E., Tang Y.S., Phillips 
V.R., Sneath R., McCartney L., Harvey F.J., Leith I.D., Cape J.N., Fowler D., 
Sutton M.A., 2001. Potential for ammonia recapture by farm woodlands: Design 
and application of a new experimental facility. The Scientific World 1, 791-801. 

UNECE, 2007. Review of the 1999 Gothenburg Protocol: Report on the Workshop on 
Atmospheric Ammonia: Detecting emission changes and environmental impacts. 
Executive Body for the Convention on Long-range Transboundary Air Pollution, 
Working Group on Strategies and Review. 39th Session, 18-20 April 2007, 
Geneva, Switzerland (ECE/EB.AIR/WG.5/2007/3). 

UNECE, 2010. Empirical critical loads and dose-response relationships. Convention on 
Long-range Transboundary Air Pollution, Working Group on Effects. 29th Session, 
22-24 September 2010, Geneva, Switzerland. 
http://www.unece.org/env/documents/2010/eb/wge/ece.eb.air.wg.1.2010.14.e.pdf 
(February 2011). 

Van der Hoek K.W., 1998. Estimating ammonia emission factors in Europe: Summary of 
the work of the UNECE ammonia expert panel. Atmospheric Environment 32, 315-
316. 

Wyers G.P., Otjes R.P., Slanina J., 1993. A continuous-flow denuder for the measurement 
of ambient concentrations and surface-exchange fluxes of ammonia. Atmospheric 
Environment Part a-General Topics 27, 2085-2090. 


	N0502024FC
	Article (refereed) - postprint

	N0502024
	1 Introduction
	2 Site and methods
	3 Results and discussion
	3.5.1 Concentrations and critical level (CLE) exceedance
	3.5.2 Deposition and critical load (CL) exceedance

	4 Conclusions


