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Abstract 29 

This study examines the daily observed temperature at the Faraday/Vernadsky station on the 30 

Antarctic Peninsula for the period February 1947 through January 2011. Faraday/Vernadsky is 31 

experiencing a significant warming trend of about 0.6°C/decade over the last few decades. 32 

Concurrently the magnitude of extremely cold temperatures has reduced while there is no 33 

evidence for an increase of the annual maximum temperature. 34 

 35 

An empirical mode decomposition reveals that most of the temperature variability occurs on 36 

intraannual time scales and that changes in the magnitude of the annual cycle can be explained by 37 

a simple periodic stochastic process. Extremely cold temperatures below a threshold follow a 38 

Generalised Pareto Distribution (GPD) with a negative shape parameter and thus are bounded. 39 

We find evidence that the extreme cold behaviour in the first half of the record is significantly 40 

different from the second half. At the same time there is no evident increase of warm temperatures 41 

or in the location of the maximum of the temperature probability distribution. These findings provide 42 

evidence that at Faraday/Vernadsky it is the change in the shape of the temperature distribution 43 

that has substantially contributed to the observed warming over the last few decades. 44 

 45 

Furthermore, we find evidence for clustering of extreme cold events and show that they are 46 

predictable a few days in advance using a precursor based prediction scheme. 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 



1. Introduction 58 

Although Antarctica is one of the most remote places on Earth, its climate and possible changes in 59 

it have potentially strong global impacts. For example, the sea level could rise worldwide by about 60 

three meters if the climate were to warm sufficiently to induce a collapse of the West Antarctic ice 61 

sheet (Bamber et al. 2009, Joughin et al. 2011). Thus, it is important to understand Antarctic 62 

climate variability and change (Thompson and Solomon 2002, King and Comiso 2003, Turner et al. 63 

2005, Chapman and Walsh 2007, Steig et al. 2009, Thomas et al. 2009) and the remoteness of 64 

Antarctica allows this to be measured without the effects of other factors such as urban warming 65 

(Kalnay and Cai, 2003). 66 

 67 

Especially the maritime west coast of the Antarctic Peninsula has experienced some of the most 68 

rapid warming worldwide. At Faraday/Vernadsky station a significant warming trend over the last 69 

50 years has been detected (Turner et al. 2005, Steig et al. 2009, Franzke, 2010, 2012) and the 70 

Gomez ice core provides further evidence for a significant warming of the Antarctic Peninsula over 71 

the last 120 years (Thomas et al. 2009). There is also evidence for warming at the Bellingshausen 72 

and Rothera stations, while at most Antarctic stations away from the Peninsula there is no 73 

evidence for a significant warming. Halley, Neumayer and the South Pole actually recorded cooling 74 

trends; though not at a statistically significant level (Turner et al. 2005, Franzke 2010). 75 

 76 

In general, climate change does not only affect the mean temperature but also temperature 77 

extremes. The simplest explanation for this is that global warming increases the mean of the 78 

temperature but the overall shape of the distribution stays the same. Hence, the maximum of the 79 

distribution shifts towards warmer temperatures and the hot extremes increase because the whole 80 

distribution is shifted towards warmer temperatures thus increasing the likelihood of hot 81 

temperatures. On the other hand, a change in the shape of the distribution can also lead to a 82 

change in the mean without a shift in the location of the maximum. If the shape of the distribution 83 

would be changed in such a way that the likelihood of cold days is reduced but the likelihood of 84 

warm days stays the same, then this would also result in an increase of the mean temperature 85 

without a necessary shift in the location of the probability maximum. Both scenarios lead to the 86 



same outcome, a warming. But its consequences, especially for ecosystems, can be quite different 87 

(Barnes and Peck 2008, Smale et al. 2011). 88 

 89 

As discussed in more detail in section 2, there is evidence that the warming trend at 90 

Faraday/Vernadsky is accompanied by a reduction in extremely cold temperatures while there is 91 

no evidence of a change in maximum temperatures. Thus, the main objective of this study is to 92 

disentangle the different components contributing to the observed warming at Faraday/Vernadsky. 93 

 94 

In section 2 we introduce the Faraday/Vernadsky temperature time series, in section 3 the time 95 

series is decomposed and the statistical significance of its intrinsic modes examined, section 4 96 

presents the results of an extreme value analysis and predictability experiments. A summary is 97 

given in section 5. 98 

 99 

2. Temperature Data at Faraday/Vernadsky Station 100 

We use daily mean temperature data from the Faraday/Vernadsky station on the Antarctic 101 

Peninsula for the period February 1947 through January 2011 from the Reference Antarctic Data 102 

for Environmental Research (READER) data set which is quality controlled (Turner et al. 2004, 103 

2005). Faraday/Vernadsky is a station at Marina Point on Galindez Island. The time series has a 104 

length of 23376 days. There are a few missing observations of up to 3 consecutive days; most 105 

missing observations are just for one day. We used a cubic spline interpolation in order to fill these 106 

gaps (Franzke, 2010). The daily mean temperature is displayed in Fig. 1a. A striking feature is the 107 

asymmetry of the time series. The warmest temperatures seem to be capped at about 5°-6°C. At 108 

the same time a visual inspection of the time series gives the impression that the minimum values 109 

are increasing; i.e. that the extreme cold events are less cold over the last few decades. This 110 

impression is further strengthened by inspecting annual maxima and minima (Fig. 1b). This shows 111 

no evidence for an increase in the magnitude of the temperature maxima over the observation 112 

period while the magnitude of the minima seems to have an upward trend and a general reduction 113 

in variability. Similar findings for the month of July have been reported by Turner et al. (2011). 114 

 115 



In previous studies it has been shown that Faraday/Vernadsky daily mean temperature exhibits a 116 

statistically significant trend over at least the last 50 years (Turner et al. 2005, Franzke 2010). But 117 

the comparison of the maxima and minima suggest that at Faraday/Vernadsky this warming does 118 

not comprise a simple increase of the mean with the shape of the temperature distribution staying 119 

the same. If this would be the case one would expect that also the maximum values increase, and 120 

we find no evidence for this. This is confirmed by examining the PDFs of the first and second 121 

halves of the Faraday/Vernadsky temperature time series separately (Fig. 2). Looking at just the 122 

first and second half of the time series separately is the easiest option in order to see if any 123 

changes over time have occurred without performing a break point analysis. The maxima of both 124 

PDFs are at the same location and the warm temperature distribution is hardly changed. At the 125 

same time there is a pronounced reduction of the probability density of extreme cold events from 126 

the first to the second half of the time series. The significance of this reduction will be examined 127 

below in section 4. 128 

 129 

This feature of the Faraday/Vernadsky temperature time series, a reduction of the magnitude of 130 

extreme cold events without a concurrent increase in warm events, is somewhat unexpected. 131 

Typically one would expect that a significant warming also leads to absolute warmer temperatures 132 

and not just to a reduction in cold temperatures. 133 

 134 

3. Decomposition of Faraday/Vernadsky Temperature 135 

In order to examine the observed changes in the Faraday/Vernadsky time series in more detail we 136 

first use a nonlinear time series method to decompose it into intrinsic modes and then examine 137 

their dynamical significance.  138 

 139 

3.1 Ensemble Empirical Mode Decomposition 140 

In order to nonlinearly filter the Faraday/Vernadsky temperature time series we use the Ensemble 141 

Empirical Mode Decomposition method (EEMD) (Wu et al. 2009, Huang et al. 1998, Huang and 142 

Wu 2008, Wu et al. 2007, Qian et al. 2009, Franzke 2010, 2012). EEMD is a noise assisted time 143 

series analysis method which decomposes a time series into a finite number of Intrinsic Mode 144 



Functions (IMF) and an instantaneous mean 145 

               (1) 146 

The j-th IMF  can be written in polar coordinates  where  is the j-th time 147 

dependent amplitude,  the j-th time dependent frequency and R(t) the instantaneous mean. IMFs 148 

are different from Fourier modes where both   and  are time independent. An IMF is defined by 149 

the following two properties (1) each IMF  has exactly one zero-crossing between two 150 

consecutive local extrema, and (2) the local mean of each IMF  is zero. Details about the 151 

EMD algorithm are given by Huang et al. (1998) and Huang and Wu (2008). 152 

 153 

In order to avoid mode mixing EEMD adds white noise to the observed time series before the 154 

sifting process of the standard Empirical Mode Decomposition (EMD) (Huang et al. 1998, Huang 155 

and Wu 2008, Wu et al. 2007, Franzke 2010) and treats the mean of the ensemble as the final 156 

IMF. We use 1000 ensemble realisations with noise amplitude of 0.5 standard deviations of the 157 

original time series. See Wu and Huang (2009) for more details. 158 

 159 

3.2 Climate Mode Test 160 

To use EEMD as a nonlinear filtering tool we aggregate the IMFs into an intraannual mode (IMFs 161 

with mean periods less than 1 year), a modulated annual cycle (MAC; Wu et al. 2008), interannual 162 

mode (IMFs with mean periods between 1 year and 10 years) and decadal mode (IMFs with mean 163 

periods larger than 10 years). The residual of the EEMD analysis is the EEMD trend. In order to 164 

extract the MAC we follow the procedure of (Qian et al. 2010) by combining IMF8, which contains 165 

the annual cycle with a mean period of about 365 days, and IMF9, which contains some annual 166 

cycle component as well as interannual variability components. Then we subject them to a single 167 

EMD decomposition and the resulting IMF1 is then the MAC (see Figs. 1c and 3a). The remaining 168 

IMFs of this decomposition will be added to the interannual mode. As can be seen in Figs. 1c and 169 

3a the MAC has a relative constant mean period of about 365 days and pronounced variations in 170 

its amplitude. Starting in the late 1980s the MAC amplitude decreases and its year to year 171 

variability is considerably smaller than in the earlier period. As Fig. 3a reveals the MAC tracks very 172 



well the annual cycle of the full temperature time series. The MAC also displays variability in its 173 

amplitude on longer time scales. The significance of this variability will be tested below. 174 

 175 

The intraannual mode explains about 58% and the MAC about 34% of the total variance. Thus, 176 

these two modes explain almost all of the variance in the time series, while interannual and 177 

decadal scale variability contribute only a minor part. The intraannual mode also reveals the annual 178 

cycle of variance (Fig. 3b). The variance increases in the winter and decreases during the summer. 179 

This is consistent with the striking differences in the summer and winter season PDFs of 180 

Faraday/Vernadsky temperature (Franzke et al. 2012). Fig. 1f reveals that the EEMD trend is 181 

nonlinear; i.e. it is not well described by a linear line. This has already been discussed in Franzke 182 

(2010, 2012). The temperature time series undergoes also pronounced interannual and decadal 183 

scale variations (Fig. 1e and f). 184 

 185 

In order to assess the dynamical significance of these modes we compare them with the 186 

corresponding modes of an annual periodic autoregressive process of first order (APAR(1)): 187 

                              (2) 188 

where is the periodic mean annual cycle,  denotes the periodic autoregressive parameter, 189 

 the periodic standard deviation, is a normally distributed white noise variable and T 190 

indicates the day of year. The parameters of the APAR(1) model can be easily estimated from data 191 

which is not the case for models with a more complex dependence structure like long-range 192 

dependence. The parameters in Eq. (2) are estimated from the Faraday/Vernadsky time series by 193 

solving the periodic Yule-Walker equations for each T (von Storch and Zwiers 1999). A typical 194 

APAR(1) realisation is displayed in Fig. 4. This figure suggests that the APAR(1) model captures 195 

the most important aspects of the Faraday/Vernadsky temperature time series: the asymmetry 196 

between warm and cold temperature amplitudes and the strong annual cycle. This suggests that a 197 

APAR(1) model is a good null model for significance tests for the purpose of this study. We use the 198 

same approach as in Franzke (2009) and Franzke and Woollings (2011) to assign statistical 199 

significance to the modes. 200 

 201 



For this purpose we use a Monte Carlo approach and generate 1000 realisations of the APAR(1) 202 

process starting from different initial conditions and with different white noise realisations and 203 

subject them to EEMD and then aggregate the IMFs to intraannual, MAC, interannual and decadal 204 

modes and then compare whether the energy of the Faraday/Vernadsky modes lies outside the 95 205 

percentile of the APAR(1) ensemble. If this is the case then the Faraday/Vernadsky mode cannot 206 

be explained as arising from a simple APAR(1) process and we will then claim that this mode is of 207 

dynamical significance. 208 

 209 

The climate mode significance test reveals that the intraannual and annual cycle cannot be 210 

distinguished from modes produced by a APAR(1) process. The variance of the high-frequency 211 

Faraday/Vernadsky mode is 16.7°C2 while the 95th percentile of the corresponding APAR(1) mode 212 

ensemble is 20.8°C2. The variance of the MAC is 9.8°C2 while the 95th percentile of the 213 

corresponding APAR(1) ensemble MAC is 10.7°C2. Thus, for these two modes the variance is well 214 

inside the APAR(1) variance spread. On the other hand, the interannual and decadal scale 215 

variability cannot be explained as arising from APAR(1) climate noise. The interannual 216 

Faraday/Vernadsky variance is 1.9°C2 and outside the 95th percentile of the APAR(1) model value 217 

of 1.0°C2. The same is the case for the decadal mode with a variance value of 0.22°C2 for the  218 

observation and 0.2°C2 for the APAR(1) model. As already shown in Franzke (2010) 219 

Faraday/Vernadsky exhibits a significant trend which cannot be explained as arising from climate 220 

noise produced by a APAR(1) process. This suggests that the interannual and decadal variability 221 

and the EEMD trend cannot be explained as arising from a APAR(1) model. While there is 222 

evidence that the Faraday/Vernadsky time series exhibits a more complex dependence structure 223 

as can be captured by the APAR(1) (Franzke 2010) it is likely that the interannual and decadal 224 

variability and the trend are caused by intrinsic processes, like oceanic, stratospheric and 225 

cryospheric processes, and/or anthropogenic greenhouse gas emissions. In Franzke (2010, 2012) 226 

is has been shown that the observed warming trend at Faraday-Vernadsky cannot be explained as 227 

arising from long-range dependent climate noise. 228 

 229 

4. Extreme Values 230 



In order to examine the statistical behaviour of temperatures exceeding a threshold we fit a 231 

Generalised Pareto Distribution (GPD) to the Faraday/Vernadsky temperature time series. The 232 

probability density distribution of a GPD is given by: 233 

     (3) 234 

where  denotes the shape parameter,  the location or threshold parameter and  the scale 235 

parameter. Since extreme value statistics is a theory of maxima we multiply the 236 

Faraday/Vernadsky time series by -1 so that the extreme cold temperatures become formally 237 

maxima. We use a standard maximum likelihood approach to estimate the scale and shape 238 

parameter and uncertainty bounds (Coles 2001). The GPD is generalised in the sense that it 239 

contains three special cases: (i) when  > 0 the GPD is equivalent to an ordinary Pareto 240 

distribution, (ii) when  = 0 the GPD becomes an exponential distribution and (iii) for  < 0 the GPD 241 

is a short-tailed Pareto type II distribution (Coles 2001). 242 

 243 

The GPD assumes that the extreme value data are independent. By using daily temperatures this 244 

is not the case. However, dependence of the data only influences the scale parameter (Leadbetter 245 

et al. 1988) and ultimately the return periods. As shown in Franzke (2010) the Faraday/Vernadsky 246 

temperature is long-range dependent. In order to minimise the effect this has on the parameter 247 

estimates we decided to decorrelate the data by only using extreme values which are at least 30 248 

days apart. As shown below this decorrelation window is larger than the average cluster size of 249 

extreme events. Sensitivity experiments reveal that our results are insensitive to this particular 250 

choice of identifying extreme values as long the window is at least larger than the average cluster 251 

size of 21 days (see below).  252 

 253 

In order to identify the threshold value above which the GPD is a good fit we calculate the mean 254 

excess (Embrechts et al. 2001) 255 

     (4) 256 

If the data X fit a GPD well above a threshold  then the mean excess function  is linear 257 

(Embrechts et al. 2001). As Fig. 5a reveals the mean excess function is very well approximated by 258 



a linear function below -16°C. (Note that for the purpose of the extreme value analysis the 259 

observed time series has been multiplied by -1. Hence, positive amplitude values in Fig. 5 260 

correspond to negative temperatures.) That a GPD is indeed a good fit for values below this 261 

threshold is verified by probability plots in the form of quantile-quantile plots (Fig. 5b). The 262 

empirical quantiles follow the theoretical GPD quantiles very closely. Thus, the extreme value 263 

behaviour of Faraday/Vernadsky is very well captured by an extreme value GPD. Tab. 1 shows 264 

that the shape parameter is significantly negative. This indicates that if the extreme cold 265 

temperatures indeed follow a GPD they are bounded and cannot reach arbitrarily cold 266 

temperatures. 267 

 268 

In order to examine if the extreme value behaviour has changed over time we split the time series 269 

into two halves and compute the GPD parameters for the first and second halves separately (Tab. 270 

1 and Figs. 5c-f). We have chosen to investigate the first and second half of the time series 271 

separately because it is the easiest option and (to the author’s knowledge) a break point analysis 272 

for GPD hasn’t been developed yet. This reveals that the scale parameters are significantly 273 

different while the shape parameters are not significantly different. The impact of this change can 274 

be highlighted by the corresponding change in the mean value of the corresponding GPD. The 275 

mean value of a GPD is given by 276 

       (5) 277 

This reveals that the mean of the extreme values went up from -22.56°C to -19.06°C; that is by 278 

about 3.5°C. 279 

 280 

In order to investigate if interannual or decadal scale variability is likely to contribute to this change 281 

in extreme value characteristics we repeated the GPD analysis with the EEMD intraannual filtered 282 

data (containing only IMFs with mean periods less than 1 year). This analysis again shows that the 283 

scale parameters of the two periods are significantly different (Tab. 2). And again the shape 284 

parameters are not significantly different. Furthermore, the sign of the shape parameter for the 285 

second half is not certain. There is a likelihood that the parameter has changed to zero or a 286 

positive value. Computing the mean values of the corresponding GPDs reveal that the mean 287 



extreme value is -15.38°C in the first half and -13.49°C in the second half. This is about 2°C. 288 

 289 

Taken together, the change in the shape of the PDFs and the GPD parameters between the first 290 

and second halves suggests that a substantial part of the observed warming at Faraday/Vernadsky 291 

can be explained by a reduction in extreme cold events. It is tempting to compare the warming 292 

trend of 3.8°C with the increase in the extreme value mean of about 3.5°C. But then one would 293 

compare a change over the whole time span with a change in two data windows.  294 

 295 

A fairer comparison is between the climatological means of both halves. The mean in the first half 296 

of the time series of -4.6°C increases to -3.0°C in the second half. This suggests that the 297 

contribution to warming from the reduction in extreme cold temperatures is partially offset by the 298 

increase in the frequency of days with temperatures between -4°C and -7°C (see Fig. 2). 299 

 300 

4.1 Clustering of Extremes 301 

Another interesting aspect of the extreme value behaviour is a possible clustering of extreme 302 

values. The statistical theory of extreme values assumes that extreme values are independent. But 303 

this is rarely the case for environmental variables. Even worse is that extremes can cluster 304 

especially if the time series is long-range dependent (Bunde et al. 2005). In Franzke (2010) it has 305 

been shown that the Faraday/Vernadsky time series is long-range dependent. Thus it is interesting 306 

to see if extremely cold temperatures at Faraday/Vernadsky station tend to cluster. 307 

 308 

A clustering of extreme values can be quantified by the extremal index. The extremal index is 309 

proportional to the inverse of the average cluster size; i.e. the time length over which one expects 310 

extreme values to bunch together. We use the method put forward by Hamidieh et al. (2010) to 311 

estimate the extremal index. This approach uses the property that the maxima of blocks of size m 312 

are proportional to the extremal index θ(j) for dyadic block sizes m=2j. If the block size dependent 313 

estimates extend over a few blocks the estimate is robust and provides evidence for the clustering 314 

of extremes.  315 

 316 



Fig. 6 shows that the mean estimates of the extremal index θ(j) in terms of a box plot. The central 317 

mark in the box denotes the median estimate. For the scales j=8,..., 11 the central marks have 318 

almost the same values and are inside each other’s error bounds as given by the edges of the 319 

boxes which denote the 25th and 75th percentiles of the estimates. Hence for these scales the 320 

extremal index estimate is therefore robust. This is also the largest range of scales over which the 321 

extremal index is robust. This suggests that the value of the extremal index is about 0.047 (Fig. 6); 322 

thus the average cluster size is approximately 21 days. This suggests that extremely cold periods 323 

can last for about 3 weeks. This also justifies the 30 day choice of decorrelating the data in section 324 

3 and suggests that the long-range dependence has a negligible influence on the extreme value 325 

behaviour if the data has been sufficiently decorrelated. 326 

 327 

4.2 Predictability of Extreme Temperatures 328 

Are extremely cold temperatures predictable or do they just occur by chance? To address this 329 

question we use the prediction by precursor approach by Hallerberg et al. (2008) for predicting 330 

extremely cold temperatures. Precursors are patterns which typically precede the extreme events. 331 

For the purpose of the predictability experiments we define that an extreme event occurs when a 332 

threshold is crossed. 333 

 334 

In order to determine the precursor we first estimate the probability distribution of values which 335 

precede an extreme event. The maximum of this distribution is the precursor. As extreme events 336 

we consider all events whose temperature are lower than -16°C; this is the threshold below which 337 

the GPD is a good fit to the data and thus values below this threshold can be considered to be 338 

extreme events. We estimate the precursors for different lags of 1 to 7 days. We use Receiver-339 

Operator Characteristic (ROC) curves to visualise the predictive skill of the used simple prediction 340 

scheme. 341 

 342 

A ROC curve is a plot of the true positive (hit rate) against the false positive (false alarm rate) 343 

prediction rate as a threshold is varied. The best possible prediction would be located in the upper 344 

left corner at point (0,1). This would represent a 100% rate of true positive and 0% rate of false 345 



positive predictions. A random guess prediction would be located along the diagonal from the left 346 

bottom to the right upper corner. This diagonal line divides the ROC space. Predictions which lie 347 

above the diagonal line represent good predictions while points below this line are bad predictions. 348 

 349 

In order to compute the ROC curves we vary the distance between the precursor pattern and the 350 

temperature at time t from zero in increments of 0.25°C for 50 increments. By doing so we allow for 351 

measurement and estimation uncertainty. Furthermore, the probability that the observed 352 

temperature has exactly the precursor value goes to zero as distances increases. Hence, we have 353 

also to examine how sensitive the predictions are to the distance of the observed temperature to 354 

the precursor value. This is efficiently encoded in a ROC curve. 355 

 356 

For the predictability study we use a leave-one-out approach. We use one year as the validation 357 

data and the remaining years as the training data. We repeat this procedure in such a way that 358 

each year is once used as validation data. 359 

 360 

As Fig. 7 shows our simple prediction approach produces skilful predictions of extremely cold 361 

temperatures. For all lags the ROC curves are well above the diagonal line. The best predictions 362 

are achieved for lag 1-day. The prediction skill is gradually decreasing for increasing lags before 363 

saturating at about lag 5-days. These results suggest that successful short-term predictions of 364 

extremely cold temperatures are possible. 365 

 366 

5. Summary and Discussion 367 

A decomposition of the Faraday/Vernadsky temperature time series reveals that it exhibits 368 

significant interannual and decadal variations and a nonlinear trend. Furthermore, our analysis 369 

reveals that a large part of the observed warming of about 3.8°C is likely due to a decrease in the 370 

magnitude of cold temperatures without a comparable increase in warm temperatures. Warm 371 

temperatures seem to be bounded. Thus, the most striking effect of the observed temperature at 372 

Faraday/Vernadsky is the simultaneous warming trend and the significant reduction in variability 373 

which affects almost entirely cold temperatures. 374 



 375 

The decrease in extremely cold temperatures is likely related to the observed changes and the 376 

trend in the Southern Annular Mode (SAM; Marshall (2003), Franzke (2009)) and/or the observed 377 

change in the non-annular atmospheric circulation (Turner et al. 2009). Both changes have been 378 

attributed to result from stratospheric ozone depletion (Roscoe and Haigh 2007). Furthermore, 379 

global climate projections suggest that the frequency of hot extremes will increase due to global 380 

warming (Meehl et al. 2007). Also observations show an increase in hot extremes (e.g. Qian et al. 381 

2011b). Hence, our results are somewhat at odds with the general opinion that global warming 382 

leads to more frequent and larger extremes. At least at Faraday/Vernadsky the opposite is the 383 

case. This is likely due to its geographical location. The maritime location and the heat capacity of 384 

the ocean are likely exerting a damping effect on high temperatures. Thus, the annual maximum 385 

temperatures are almost constant over the last six decades. Another factor is likely the orography 386 

of the Antarctic Peninsula with a mountain range in the north-south direction. The extreme cold 387 

events are typically accompanied by northward winds originating in the interior of the Antarctic 388 

continent. On the other hand southward winds will advect warm air. The observed non-annular 389 

circulation changes will lead to a preference of southward winds. This suggests that the changes in 390 

the non-annular circulation component are causing the reduction in extreme cold events. This 391 

might suggest that stratospheric ozone depletion plays a role in the reduction of extremely cold 392 

temperatures at Faraday/Vernadsky; similar evidence has been found by Hughes et al. (2007). 393 

 394 

A possible explanation was put forward by Qian et al. (2011a) how changes in the annual cycle 395 

and a trend can lead to non-symmetric changes in temperatures. Applying their reasoning to our 396 

results suggests that the combined effect of the weakening MAC (Fig. 1c) and the long-term 397 

warming trend (Fig. 1f), which compete each other in summer but reinforce each other in winter, 398 

may play a role in the pronounced reduction of cold temperatures without leading to a increase of 399 

warm temperatures. Hence, the amplitude reduction in the annual cycle is reducing cold extremes 400 

during winter without increasing warm temperatures during summer.  401 

 402 
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 553 

 554 

Table 1 Parameters of GPD fit to Faraday/Vernadsky temperature time series with 95% uncertainty 555 

bounds. 556 

GPD 1947-2011 First Half Second Half 

Shape Parameter -0.41 (-0.53, -0.29) -0.49 (-0.62, -0.36) -0.24 (-0.01, -0.47) 

Scale Parameter 10.99 (13.38, 9.03) 14.25 (17.50, 11.60) 7.52 (10.36, 5.46) 

Threshold 16.00 13.00 13.00 

 557 

 558 

Table 2 Parameters of GPD fit to EEMD high-frequency filtered Faraday/Vernadsky temperature 559 

time series with 95% uncertainty bounds. 560 

GPD 1947-2011 First Half Second Half 

Shape Parameter -0.35 (-0.49, -0.21) -0.46 (-0.61, -0.31) -0.23 (-0.48, 0.02) 

Scale Parameter 6.39 (5.24, 7.82) 7.86 (6.26, 9.86) 4.29 (3.00, 6.16) 

Threshold 10.00 10.00 10.00 
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 570 
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 574 

 575 

 576 

Figure 1 a) Daily Faraday/Vernadsky temperature time series, b) annual temperature maxima (red 577 

crosses) and minima (black crosses); c) modulated annual cycle of daily Faraday/Vernadsky 578 

temperature; d) intraannual Faraday/Vernadsky station temperature time series (red line) 579 

superposed on daily Faraday/Vernadsky temperature time series (black line); e) interannual 580 

Faraday/Vernadsky station temperature time series (red line) superposed on daily 581 

Faraday/Vernadsky temperature time series (black line) and f) decadal Faraday/Vernadsky station 582 

temperature time series (blue line), EEMD trend (red line) and sum of decadal time series and 583 

trend (black line). 584 



 585 

Figure 2 Probability Density Function of Faraday-Vernadsky temperature time series: First half 586 

(Black line) and second half (Red line) of time series. 587 

 588 

 589 

 590 
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 592 

 593 

Figure 3: a) Modulated annual cycle of daily Faraday/Vernadsky temperature (red line) superposed 594 

on daily Faraday/Vernadsky temperature time series (black line); b) intraannual 595 

Faraday/Vernadsky station temperature time series (red line) superposed on daily 596 

Faraday/Vernadsky temperature time series (black line) for the period of 1971 through 1975. 597 
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 604 

Figure 4 A typical realisation of the APAR(1) model fitted to Faraday/Vernadsky temperature time 605 

series. 606 

 607 
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 609 

 610 

 611 

 612 

 613 

Figure 5 Mean excess function (upper row) and quantile-quantile plots (lower row) of 614 

Faraday/Vernadsky temperature. Note that for the purpose of the extreme value analysis the 615 

observed time series has been multiplied by -1. Hence, positive amplitude values correspond to 616 

negative temperatures. 617 

 618 



 619 

Figure 6 Box plots of the θ(j) obtained from bootstrapped estimates. The central mark in the box is 620 

the median estimate, the edges of the boxes are the 25th and 75th percentiles, the whiskers 621 

extend to the most extreme estimates not considered to be outliers and the crosses indicate 622 

individual outliers. 623 

 624 
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 628 

 629 

Figure 7 Receiver-Operator Characteristics (ROC) curve. 1-day lag (black), 2-day lag (red), 3-day 630 

lag (blue), 4-day lag (green), 5-day lag (cyan), 6-day lag (magenta) and 7-day lag (yellow). 631 


