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[1] Ocean models require subgrid-scale parametrizations of vertical mixing expressed in
terms of a quantity that is easily diagnosable from model output, such as the Richardson
number. To date parametrizing mixing for low (<1) Richardson number flows, such as the
Equatorial Undercurrent, has received the most attention. Here a new Richardson number
parametrization is proposed that provides estimates of vertical turbulent diffusivity in the
high Richardson number stratified shear flow that is associated with mesoscale ocean
features such as eddies and fronts. This parametrization is based on direct observations of
vertical turbulent diffusivity from three separate ocean regions in the North Atlantic and
Southern Ocean and is found to be robust for values of the Richardson number greater than
1 at depths below the ocean surface boundary layer. The new parametrization gives
substantially improved agreement with the observed mixing in the presence of mesoscale
ocean features compared to existing Richardson number parametrizations.

Citation: Forryan, A., A. P. Martin, M. A. Srokosz, E. E. Popova, S. C. Painter, and A. H. H. Renner (2013), A new
observationally motivated Richardson number based mixing parametrization for oceanic mesoscale flow, J. Geophys. Res.
Oceans, 118, 1405–1419, doi:10.1002/jgrc.20108.

1. Introduction

[2] Vertical turbulent mixing processes in the ocean
occur on a wide range of temporal and spatial scales. Ocean
general circulation models, which typically use longer time
and larger space scales than those of turbulent mixing
processes, are capable of explicitly resolving only a subset
of these processes and hence require suitable subgrid-
scale parametrizations of vertical mixing. Such subgrid-
scale parametrizations of vertical mixing are commonly
expressed in terms of a quantity that is easily diagnosable
from model output, such as the Richardson number
[Pacanowski and Philander, 1981; Large et al., 1994;
Yu and Schopf, 1997; Jackson et al., 2008; Zaron and
Moum, 2009].
[3] The gradient Richardson number (Ri), often used to

describe the stability of stratified shear flow [Monin and
Yaglom, 1971], is defined as the ratio of buoyancy frequency
(N) squared to vertical shear (Sh) squared

Ri ¼ N 2

Sh
2

Sh
2 ¼ du

dz

� �2

þ dv

dz

� �2

N2 ¼ � g

r
dr
dz

(1)

[4] [Gill, 1982] where g is acceleration due to gravity, r is
potential density, and u, v are components of horizontal
velocity. Hereafter Richardson number (Ri) refers to the
gradient Richardson number as defined above (equation (1)).
[5] Richardson number based mixing parametrizations

have typically been developed for application in global-scale
models with large-scale (~1�) horizontal resolution. The aim
of such parametrizations has been to improve model repre-
sentation of large-scale ocean features that are significant
to climate often with particular reference to the equatorial
ocean [Pacanowski and Philander, 1981; Large et al.,
1994; Jackson et al., 2008; Zaron and Moum, 2009].
[6] Due to the absence of Coriolis effects, mixing around

the Equatorial Undercurrent is observed to be largely depen-
dent on Richardson number and up to an order of magnitude
higher than in regions away from the Equator [Peters et al.,
1988; Zaron and Moum, 2009]. Direct observations of the
Equatorial Undercurrent report a range of Richardson
numbers between 0.1 and ~14, with a large proportion of
the observations being for Richardson numbers less than 1
[Peters et al., 1988; Zaron and Moum, 2009]. Vertical
turbulent mixing has been observed to be greatly enhanced
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in regions of low (<1) Richardson number both in the
laboratory [Turner, 1973; Thorpe, 2005] and in the ocean
[Toole and Schmitt, 1987; Peters et al., 1988].
[7] Large-scale models of the equatorial ocean have been

found to be insensitive to the exact form of Richardson
number parametrization of vertical mixing provided that
high mixing is associated with low Richardson number and
vice versa [Yu and Schopf, 1997]. However, recently the
application of existing Richardson number based mixing
parametrizations to other oceanic flows which generate
vertical mixing in response to low Richardson number, for
example gravity driven overflow currents, has proved to be
less than successful [Chang et al., 2005; Xu et al., 2006;
Jackson et al., 2008]. Problems with the wider application
of existing Richardson number based mixing parametriza-
tions have led to the development of new Richardson
number based parametrizations which either include
additional flow-related terms such as the turbulent kinetic
energy [Jackson et al., 2008] or relate Richardson number
to a nondimensional expression of vertical mixing [Zaron
and Moum, 2009].
[8] The flow associated with mesoscale ocean features

(horizontal scale of ~10 to 100 km), away from the equator,
does not typically generate the low Richardson number asso-
ciated with the enhanced mixing observed for the Equatorial
Undercurrent. Previous studies of strong mesoscale features
at higher latitudes report Richardson numbers in the range 3 to
40 for the Gulf Stream [Pelegri and Csanady, 1994] and 2 to
20 for the Florida current [Winkel et al., 2002]. Nevertheless,
the shear from mesoscale flow may interact with shear
generated by the internal wave field to produce elevated mix-
ing where the flow has Richardson number<20 [Polzin et al.,
1996]. The geostrophically balanced flow of the upwelling-
driven coastal jet off Oregon has Richardson numbers >1
[Avicola et al., 2007]. However, interactions between the
jet and internal gravity waves can result intermittently in
reduced Richardson numbers (<1) and enhanced mixing
[Avicola et al., 2007].
[9] To date, despite the increasing use of mesoscale

resolving ocean models, little attention has been paid to
parametrizing the vertical turbulent mixing that mesoscale
flow may generate.

1.1. Parametrizing Vertical Mixing

[10] The magnitude of vertical turbulent mixing is often
approximated using a turbulent diffusion coefficient (K).
The turbulent diffusion coefficient of a quantity (such as
momentum or tracer concentration) resulting from shear
flow in stable stratification (i.e., buoyancy frequency> 0)
has been traditionally [Munk and Anderson, 1948] related
to the Richardson number through an equation of the form

Ks ¼ Kos 1þ asRið Þ�ns (2)

where Ks is the turbulent diffusion coefficient for the quantity
s, Kos is the turbulent diffusion under neutral stability, and as,
ns are constants [Munk and Anderson, 1948; Monin and
Yaglom, 1971; Peters et al., 1988]. As Ri reduces towards a
critical value (Ricrit), mixing has been observed to increase in
excess of what would be predicted by equation (2) [Peters
et al., 1988; Lozovatsky et al., 2006; Soloview et al., 2001].

Hence, equation (2) is generally only considered to be appro-
priate for high Ri (Ri>Ricrit) [Peters et al., 1988; Lozovatsky
et al., 2006]. To obtain a parametrization which can represent
turbulent diffusion coefficients for the full range of Richardson
number (0<Ri<1), the estimate of diffusivity for any given
Ri is often considered to be the sum of the estimate of diffusivity
from a relationship for low Ri (Ri<Ricrit) and the estimate of
diffusivity from a relationship for high Ri, i.e., K(Ri) =K(Ri)
low+K(Ri)high [Peters et al., 1988; Large et al., 1994;
Soloview et al., 2001]. Several forms for the low Ri relation-
ship and values for Ricrit have been proposed [Peters et al.,
1988; Large et al., 1994; Soloview et al., 2001; Lozovatsky
et al., 2006].
[11] Mixing in the ocean has been identified to potentially

arise from several sources, of which stratified shear flow is
only one [Pacanowski and Philander, 1981; Peters et al.,
1988; Large et al., 1994]. Consequently, when calibrating
a Richardson number based parametrization of turbulent
diffusion coefficients against direct observations [Peters
et al., 1988] or when using such a parametrization in an ocean
model [Pacanowski and Philander, 1981; Large et al., 1994],
the observed (or modeled) diffusivity is represented as a sum
of diffusion terms. Most commonly, an expression represent-
ing a background diffusivity is added to the Richardson
number parametrization [Pacanowski and Philander, 1981;
Peters et al., 1988], although explicit expressions for non-
shear-driven mixing processes such as convective overturning
and double diffusion could be included [Large et al., 1994].
Hence, without incorporating explicit expressions for convec-
tion and double diffusion, the full expression for turbulent
diffusivity is of the form

Ks Rið Þ ¼ Ks Rið Þlow þ Ks Rið Þhigh þ Kbs

whereKbs is a background diffusivitywhich is often considered
to be a constant [Pacanowski and Philander, 1981; Peters
et al., 1988; Large et al., 1994]. The background diffusivity
is considered to arise from unresolved small-scale shear
processes [Large et al., 1994] such as the finescale-shear
instability arising from wave-wave interactions of the internal
wave field [Polzin et al., 1997].
[12] The turbulent diffusion coefficients for tracers are

usually considered to be equal but different from the diffusion
coefficient for momentum [Munk and Anderson, 1948; Peters
et al., 1988]. Typically, the turbulent diffusion coefficient for
momentum is referred to as the turbulent viscosity (Kv), while
the turbulent diffusion coefficient for tracers is referred to as
the turbulent diffusivity (Kt). As formulated in equation (2),
turbulent diffusivity and turbulent viscosity are independent.
However, empirical relationships have been proposed relating
the constants as and ns for turbulent diffusivity and turbulent
viscosity [Munk and Anderson, 1948] and theoretical argu-
ments used to determine the ratio of turbulent diffusivity to
turbulent viscosity [Monin and Yaglom, 1971]. Lacking direct
observations of Kv and Kt to estimate the parameters in
equation (2), previous studies have proposed various values
for the constants Kos, as, and ns (Table 1). Only one set of
extant parameters has been estimated from calibration of
equation (2) to direct observation [Peters et al., 1988],
although the authors do not state which of the parameters
were fixed a priori and which were fitted to observation.
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The parametrization of Pacanowski and Philander [1981] is
a variation on the form of equation (2) where turbulent
diffusivity and turbulent viscosity are related by equating
turbulent diffusivity under neutral stability to turbulent
viscosity. The parametrization of Pacanowski and Philander
[1981] has been re-cast into the form of equation (2) by Yu
and Schopf [1997] using parameters given in Table 1.
[13] Expressions such as equation (2), commonly used in all

major ocean general circulation models (see Griffies et al.
[2000] for a review), are formulated in terms of dimensional
constants such as Kos, which potentially limits their universal
application [Chang et al., 2005; Jackson et al., 2008; Zaron
and Moum, 2009]. More recently, a new approach to parame-
trizing mixing in the Equatorial Undercurrent has been
proposed where a nondimensionalized mixing coefficient is
calculated as a function of Richardson number [Zaron
and Moum, 2009]. The use of a nondimensionalizing factor
|V|2/Sh, where V is the horizontal velocity vector at the depth
Ri is calculated, is considered to provide the necessary dimen-
sional information to allow the prediction of dimensional
mixing coefficients from a nondimensional Richardson num-
ber [Chang et al., 2005; Zaron and Moum, 2009].
[14] The new Richardson number parametrization of verti-

cal turbulent mixing presented in this paper is specifically
designed to improve the representation of vertical turbulent
mixing for flows with high (Ri>Ricrit) Richardson number.
The aim of presenting this parametrization is to provide a
parametrization which can readily be used in conjunction
with existing parametrizations to improve the representation
of vertical mixing in mesoscale resolving ocean models. To
this end, the parametrization presented here is based on
observations made in the presence of mesoscale flow from
three separate non-equatorial ocean regions and is formu-
lated to be compatible with other commonly implemented
Richardson number parametrizations.

2. Method

[15] For compatibility with other commonly implemented
Richardson number parametrizations [Pacanowski and
Philander, 1981; Large et al., 1994], the parametrization
presented here is formulated following the form of equation
(2). However, as direct observations of vertical mixing in the
ocean will potentially contain mixing from other sources,
equation (2) is combined with a background mixing term
(Kbs) which represents the contribution to vertical mixing
from other unresolved processes. Following previous
studies, for simplicity Kbs is considered to be a constant
[Pacanowski and Philander, 1981; Peters et al., 1988;
Large et al., 1994]. Hence,

Ks ¼ Kos 1þ asRið Þ�ns þ Kbs (3)

where the high label is dropped for simplicity. Equation (3)
is assumed to be appropriate for all high values of Ri.
Turbulent diffusion under neutral stability is typically con-
sidered to be a constant for flows in the ocean interior below
the surface mixed layer [Peters et al., 1988; Pelegri and
Csanady, 1994; Yu and Schopf, 1997]. Therefore, as Kos is
defined as constant, this relationship is only appropriate for
use below the ocean upper mixed layer. Where the region
of neutral stability is bounded by a surface, for example in
the upper mixed layer which is bounded by the atmosphere,
Kos is often considered to be a function of distance from the
bounding surface and surface stress [Munk and Anderson,
1948; Robinson, 1966; Monin and Yaglom, 1971; Soloview
et al., 2001].

2.1. Data Set Description

[16] Three sets of turbulence measurements were used in
the calibration of equation (3), two from the North Atlantic
and one from the Southern Ocean (Figure 1). Each station
in each data set consists of between 5 and 19 profiles, to a
maximum depth of 150 to 300m, taken over the course of
approximately 1 h. Representative and mean profiles of
turbulent kinetic energy dissipation, vertical shear, and
buoyancy frequency are shown in Figure 2.
2.1.1. Porcupine Abyssal Plain (PAP) Site Data Set
[17] Measurements were taken as part of UKRSSDiscovery

cruise D306 to the Porcupine Abyssal Plain in June–July 2006
[Burkill, 2006]. During the period of the measurements, a
cyclonic eddy was present within the survey region [Painter
et al., 2010]. Turbulent mixing was measured using a
microstructure shear profiler (as described in section 2.2) at
15 stations taken as part of an 11 day time series on the site
of the long-term PAP observatory (12 stations) and associated
mesoscale survey of the area (3 stations). While each station
was in progress, horizontal current velocities down to
~300m were measured using a ship-mounted 150kHz RDI
Acoustic Doppler Current Profiler (ADCP). The instrument
was configured to sample over 120 s intervals with 96 depth
intervals of 4m thickness starting at 14m depth using pulse
length 4m and blank beyond transmit of 4m. Calibration of
the ADCP was carried out over the continental shelf on route
to the survey site [Burkill, 2006; Painter et al., 2010].
2.1.2. Iceland Basin Data Set
[18] Measurements were taken as part of UKRSSDiscovery

cruise D321 to the Iceland Basin in July toAugust 2007 [Allen,
2007]. On arrival at the survey site, it was found that within the
survey area there was an eddy dipole, consisting of a
cyclonic eddy and an anticyclonically rotating mode-water

Table 1. Constants Used in the Turbulent Mixing/Richardson Number Parametrizations of the Form of Equation (2) From the Literature
With the Respective Constants Used for the Background (Kbs) Turbulent Viscosity and Diffusivity

Turbulent Viscosity Turbulent Diffusivity

Referencea n Kos (m
2 s�1) Kbs (m

2 s�1) a n Kos (m
2 s�1) Kbs (m

2 s�1)

5 1.5 5� 10�4 2� 10�5 5 2.5 5� 10�4 1� 10�6 Peters et al. [1988]
10 1.5 2.6� 10�3 Pelegri and Csanady [1994]

1� 10�4 1� 10�5 Large et al. [1994]
5 2 50� 10�4 5 3 50� 10�4 Yu and Schopf [1997]
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eddy Forryan et al. [2012]. During the 3 week survey,
turbulent mixing was measured using a microstructure
shear profiler at 15 stations in various locations in and
around the eddy dipole structure. While each station was
in progress, horizontal current velocities down to approxi-
mately 300m were measured using a ship-mounted
150 kHz RDI ADCP as described for cruise D306 above
[Allen, 2007; Forryan et al., 2012].
2.1.3. Southern Ocean Data Set
[19] Measurements were taken as part of UK RSS James

Cook cruise JC29 to the Kerguelen Plateau, in November
to December 2008 [Naveira Garabato, 2008]. Turbulent
mixing was measured using a microstructure shear profiler
at nine stations off the northern edge of the Kerguelen
plateau. While each station was in progress, horizontal cur-
rent velocities down to approximately 300m were measured
using a ship-mounted 150 kHz RDI Ocean Surveyor ADCP.
The instrument was configured to sample every 2 s, averaged
into 120 s intervals on processing, with 60 bins of 8m
thickness and a blanking distance at the surface of 6m.
Calibration was carried out over the continental shelf on
route to the survey site [Naveira Garabato, 2008].

2.2. Calculation of Turbulent Diffusivity and Turbulent
Viscosity: Turbulent Kinetic Energy Dissipation

[20] Turbulent kinetic energy dissipation can be estimated
directly from measurements of microstructure velocity shear
made using a microstructure shear profiler. The microstructure
profiler used here for all turbulence measurements was an
MSS90L free-fall microstructure profiler (serial number 35)
produced by Sea and Sun Technology GmbH and ISS
Wassermesstechnik. The profiler is cylindrical in shape with
two velocity microstructure shear probes as well as standard
high precision conductivity-temperature-depth (CTD) sensors
mounted at the descending end protected by a guard ring. The
two shear probes are on slim shafts, ~150 mm in front of
the CTD sensors, measuring the velocity fluctuations in the
“clean,” undisturbed water in advance of the other sensors.
A vibration control sensor and a two-component tilt sensor
provide data to remove noise contamination from the signal.
The profiler has buoyant foam rings at the opposite end from
the sensor array where a light tether is attached for data and
power transmission. On deployment, the profiler is allowed
to free-fall vertically through the water, the sensor array
downwards, by maintaining sufficient slack in the tether. This
also isolates the profiler from the motions of the ship and
minimizes contamination of the signal by vibrations caused
through cable tension (pseudo-shear). Data from the sensors
are recorded continuously while the profiler is falling by a
PC, connected via the tether, using software provided by Sea
and Sun Technology GmbH [Prandke, 2008]. The calibration
of the CTD sensors was carried out by Sea and Sun Technology
GmbH using standard calibration equipment and procedures for
CTD probes. The vibration control sensor, the tilt sensors, and
the shear sensors were calibrated by ISW Wassermesstechnik.
[21] Vertical microstructure shear was calculated from the

measurements taken using the microstructure profiler
following the method of Stips [2005]. Assuming isotropic
turbulence, the rate of turbulent kinetic energy dissipation
can be calculated from the variance of the vertical micro-
structure shear

e ¼ 15

2
n

du

dz

� �2�

(4)

where n is the molecular viscosity of water, u0 are the turbulent
velocity fluctuations, and the overbar indicates a spatial mean
value [Lueck et al., 2002]. The assumption of isotropy in
equation (4) can be justified if the critical ratio

I ¼ e
nN2

is greater than 20 [Yamazaki and Osborn, 1990]. For the
data presented here, taking the molecular viscosity for
seawater to be 1.2� 10�6m2 s�1, I is greater than 20
for 91% of the measurements made below the surface
boundary layer.
[22] The variance of the vertical microstructure shear was

determined by integration of the vertical microstructure
shear power spectrum (Φ(k)), where k is the wave number,
estimated using the Welch modified periodigram method
[Welch, 1967] from the vertical microstructure shear fluctua-
tions. Hence, equation (4) can be represented as

Figure 1. The locations of the three sets of turbulence
measurements used here. Measurements were made
as part of Discovery cruise D306 to the Porcupine
Abyssal Plane June to July 2006, Discovery cruise
D321 to the Iceland Basin July to August 2007, and
James Cook cruise JC29 to the Southern Ocean November
to December 2009.
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e ¼ 15

2
n
Z kc

kl

Φ kð Þdk

[Moum et al., 1995; Rippeth et al., 2003; Stips, 2005].
[23] The measured vertical microstructure shear power

spectrum was used to scale and dimensionalize a nondimen-
sional analytical form of the empirical Nasmyth universal
turbulence spectrum (Φnas(kn))

Φnas knð Þ ¼ 8:05kn
1
3

1þ 20knð Þ3:7

where kn is the nondimensional wave number [Roget
et al., 2006].
[24] The universal spectrum was scaled by curve fitting,

using a least squares fit, to the measured shear power spectra
for each 1 s segment of recorded data (~1024 data points repre-
senting 0.5m depth with a configured probe drop speed of
0.5m s�1) between the limits 2–30 cpm (cycles per meter) for
dissipations above 1� 10�8Wkg�1 and between 2–15 cpm
for dissipations below 1� 10�8Wkg�1. The lower limit wave
number of 2 cpm, the smallest wave number resolvable within
a depth interval of 0.5m, eliminates low-frequency noise from
the probe oscillating during descent [Prandke, 2007]. The
upper integration limits were selected heuristically from
observation of shear power spectra. The maximum limit of
30 cpm was selected to be below the resonant frequency of

the shear probe guard ring which is visible in the shear
power spectrum as a peak at between wave number 50 to
100 cpm. For dissipations below 1� 10�8W kg�1, the
power spectra are only distinct from instrument noise up
to a maximum wave number of ~15 cpm. Within the
integration limits observed, shear power spectra compare
well with the universal Nasmyth spectrum (Figure 3). From
consideration of the instrument shear power spectra, the
noise threshold of the instrument is estimated to be of order
10�10W kg�1, which is below the lowest dissipation
recorded here.
[25] The rate of kinetic energy dissipation was calculated by

integration of the fitted universal spectrum between 2 cpm and
the Kolmogorov wave number (kc). The Kolmogorov
wave number, the reciprocal of the Kolmogorov microscale,
is given by

kc ¼ e
v3

� �1
4

and represents the smallest scale of turbulent motions
unaffected by the dissipative effects of molecular viscosity.
[26] A correction for the attenuation of the shear probe

response as the wavelength of the velocity fluctuations
decreases was applied to the dissipation estimate using an
empirical polynomial function derived for the shear probe
[Prandke, 2007, 2008]. The kinetic energy dissipation rates
calculated for each of the two independent shear sensors

Figure 2. Profiles of turbulent kinetic energy dissipation (« Wkg�1, top row), buoyancy frequency
(N2 s-2, middle row), and vertical shear (s-2, bottom row) for the three cruises D306 (left column), D321
(middle), and JC29 (right column). Individual profiles are shown in gray, the cruise mean profile in red.
A representative individual profile for the cruise (Station 183008 for D306, 16226 for D321, and 22 for
JC29) is highlighted as a black dashed line.
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were combined to provide a single estimate of dissipation for
each cast following the method described in Prandke [2008].
[27] Errors in calculating estimates of the dissipation rate

arise from a number of sources. Calibration of the shear
sensors is to within �5%, and the influence of non-isotropic
turbulence is estimated to add up to a maximum of 35% error
to calculations [Yamazaki and Osborn, 1990]. In addition to
these, uncertainties in the flow speed past the shear probe,
estimated to be ~�5%, adds an additional ~20% error to the
calculation [Oakey, 1982; Moum et al., 1995], as the calcu-
lated dissipation depends on the variance of flow shear
squared. Lesser errors (<10% Dewey and Crawford [1988])
arise from drift in shear probe calibration and uncertainties
in the estimates of viscosity. Combining all the estimates of
error together gives a generally accepted estimate of�50% error
in the calculation of turbulent dissipation [Oakey, 1982;Moum
et al., 1995; Rippeth et al., 2003].

2.3. Averaging Turbulent Quantities

[28] To obtain robust estimates of turbulent quantities, the
measurements from all casts for each station were combined.
This is necessary because the mixing processes involved are
intermittent in both time and space (Figure 4). Consecutive
casts often show considerably different structure with the
distribution of turbulent quantities at the same depth for

different casts usually being strongly non-Gaussian. Prior
to averaging into 8m depth intervals, the distribution of
the turbulent diffusivity and turbulent kinetic energy dissipa-
tion data for each station was compared to both normal and
lognormal distributions over 8m depth intervals using the
Kolmogorov-Smirnov test [Press et al., 1989]. Although
the distribution of the turbulence data presented here is
strongly non-normal, it was not found to be lognormal at
any high significance of the Kolmogorov-Smirnov test.
However, the log transform of the turbulence data is closer
in approximation to a normal distribution than the untrans-
formed data, which indicates that the mean of the log
transformed data is likely to be a better approximation to
the average. Consequently, when averaging turbulent
diffusivity and dissipation data into 8m depth intervals, the
method of Baker and Gibson [1987] was used. The mean
(M) of the data is given by

M ¼ exp mþ s2

2

� �
(5)

where m and s2 are the arithmetic mean and variance of the
log transformed data [Baker and Gibson, 1987].
2.3.1. Turbulent Diffusivity
[29] Turbulent diffusivity can be calculated from estimates

of the turbulent kinetic energy dissipation rate

Figure 3. Shear power spectra for a typical station (station 22 cruise JC29). The left-hand panel shows
all spectra for turbulent kinetic energy dissipation rates of ~10�7Wkg�1 (11 spectra). The right-hand
panel shows all spectra for turbulent kinetic energy dissipation rates of ~10�9Wkg�1 (66 spectra). The
individual spectra are shown in gray, the mean of all spectra is shown in red. The Nasmyth universal
spectra is shown as a dashed black line. Vertical blue dashed lines indicate the limits used in fitting
observed spectra to the universal Nasmyth spectra.
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Kt ¼ Γ
e
N2

(6)

where Γ is the mixing efficiency [Osborn, 1980; Peters
et al., 1988]. In line with previous studies [Osborn, 1980;
Moum et al., 1995; Rippeth et al., 2003], a constant value
of 0.2 was used for the mixing efficiency. Recent studies
using numerical simulations suggest this equation can be
considered as a valid representation for vertical turbulent
diffusivity for all scalars [Lindborg and Fedina, 2009].
2.3.2. Turbulent Viscosity
[30] Turbulent viscosity is commonly used within ocean

models to represent the vertical turbulent transfer of momen-
tum [Pacanowski and Philander, 1981; Large et al., 1994;
Zaron and Moum, 2009]. However, turbulent viscosity is
generally regarded as a poor descriptor of the turbulent
processes responsible for momentum transport [Tennekes
and Lumley, 1972; Hinze, 1975]. This is due partly to the
underlying simplicity of the gradient model for turbulent
mixing and the assumption that there is a single length scale
for turbulent processes [Hinze, 1975]. An additional problem
with the concept of turbulent viscosity is that momentum
can be transferred by turbulent overturning independent of
turbulent shear production through changes in pressure
[Tennekes and Lumley, 1972; Hinze, 1975].
[31] Assuming both buoyancy flux and pressure transport

are negligible and that the rate of turbulent kinetic energy
dissipation is equal in magnitude to the rate of production
of turbulent kinetic energy by the flow, turbulent viscosity
can be determined from

Kv ¼ e
Sh

2 (7)

[Peters et al., 1988; Thorpe, 2005], where the vertical scale
over which Sh is measured is the same as the vertical scale of

the flow responsible for the production of turbulent kinetic
energy. Here the vertical scale of the flow is considered to
be mesoscale, and for consistency the vertical shear used
in equation (7) is calculated in the same manner as the verti-
cal shear used when estimating the Richardson number (sec-
tion 2.6).
[32] Consistent with previous studies [Peters et al., 1988;

Zaron and Moum, 2009], the results of using equation (7) to
calculate Kv from the data should be viewed with the caveat
that the strong assumptions qualifying the application of
equation (7) may be hard to justify in an ocean context.
For further discussion on the validity and application of this
equation, see section 4.3.

2.4. Calculating the Vertical Shear

[33] The individual ADCP velocity components recorded
while each station was in progress were averaged in time
for each 8m depth interval to produce a station mean velocity
profile of 8m resolution. Where the raw ADCP data were
recorded with higher vertical resolution than 8m (cruises
D321 and D306), the ADCP data were first averaged into
8m intervals. The gradient in velocity from the mean profile
was calculated between successive depth levels from the
individual horizontal velocity components by first-order
differencing. The absolute gradients for the mean profile were
then combined by taking the root sum of the two components
squared to give the absolute vertical shear at the midpoint of
each depth interval.

2.5. Calculating the Buoyancy Frequency

[34] Prior to the calculation of the buoyancy frequency,
for consistency with the ADCP data, the microstructure
measurements of temperature and salinity for each cast were
averaged into a profile divided into 8m intervals from which
density was then calculated. The buoyancy frequency was
calculated using these measurements of density. The values
for N2 were averaged across the casts for each station for
each depth interval to produce a station mean buoyancy
profile.

2.6. Estimation of Richardson Number

[35] The Richardson number is highly scale-dependent,
with the instantaneous value of the Richardson number
calculated at a point in a stratified shear flow depending on
both the Richardson number of the mean flow, which is
calculated over scales of the same order as the flow velocity
and flow length scale [Turner, 1973], and the vertical resolu-
tion of the measurements of shear and buoyancy used in the
calculation [De Silva et al., 1999].
[36] The correlation between shear-driven mixing and

Richardson number is strongest when the measurement
scale of the Richardson number is of the same order as
the vertical scale of the shear generating the mixing.
For example, when vertical turbulent mixing is a result
of finescale shears (instability on vertical scales of 2 to
3m, Polzin [1996]) the Richardson number calculated at
a vertical resolution of 3m shows a close correlation to
observed turbulent dissipation, while the Richardson number
calculated at a vertical resolution of 10m shows no correlation
[Toole and Schmitt, 1987; Polzin, 1996]. However, regardless
of vertical resolution, the Richardson number alone is
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Figure 4. Turbulent kinetic energy dissipation (Log10 e W
kg�1) for all casts of station 16222 from cruise D321. Thick
black lines indicate the start time of each cast. The white
dashed line marks the depth of the surface mixed layer.
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regarded as a poor predictor of observed mixing as it does not
capture the variability in mixing [Peters et al., 1995].
[37] Here, the vertical scale of the overturning generating

the observed mixing, estimated using the Thorpe length
scale [Thorpe, 1977], is of order 1–3m for all observations
below the seasonal thermocline, except JC29 station 7 at
~140m depth where the Thorpe length scale is ~10m. This
would suggest that finescale shear may well be generating
the observed mixing and that the observed mesoscale flow
shear may not be directly responsible. Nevertheless, the
magnitude of the mesoscale flow Richardson number may
well correlate with the magnitude of the observed mixing
through influencing the strength of the finescale wave-flow
interactions which may actually be generating the mixing
[Polzin et al., 1996].
[38] At the mesoscale, in strong western boundary

currents, mixing has been observed to be associated with
vertical shear generated during frontogenesis [Van Gastel
and Pelegri, 2004; Nagai et al., 2009]. In the meanders of
the Gulf Stream, current mixing associated with shear is
observed to occur on vertical scales of greater than 25m
[Van Gastel and Pelegri, 2004]. Observations of enhanced
turbulent dissipation during frontogenesis in the Kuroshio
suggest a vertical scale of ~50m for vertical shear, although
it is not clear whether the mixing is associated with current
shear or other submesoscale mixing processes [Nagai
et al., 2009]. A recent study has proposed that for equation
(6) to be accurate, the vertical measurement scales should
be of order 20 times the vertical scales of the turbulent
overturning [Lindborg and Fedina, 2009]. Hence, a Thorpe
scale of order 1–3m would imply that for equation (6) to
be accurate the vertical measurement scales should be
between 20 and 60m. This suggests that vertical length
scales of at least 25m are appropriate for calculating the
Richardson number relevant to the shear generated by
mesoscale flow (mesoscale shear).
[39] The Richardson number was calculated from profiles

of vertical shear and buoyancy frequency using equation (1).
Profiles of vertical shear and buoyancy frequency calculated
from ADCP data and microstructure measurements of
temperature and salinity show not only large-scale velocity
and density trends but also the signatures of smaller scale pro-
cesses as variability about the mean profile. Consequently,
prior to calculating the Richardson number, profiles of vertical
shear and buoyancy were smoothed using a running average
filter to remove the effects of processes occurring at vertical
scales smaller than mesoscale. As the observations suggest a
range of vertical scales that may be appropriate to mesoscale
shear, the size of the smoothing window applied when
calculating the Richardson number was varied between 8m
(raw unsmoothed data) and 72m in size when fitting the data
to equation (3).

2.7. Fitting to Data

[40] Equation (3) was fitted to observations of the Richardson
number and contemporaneous observations of turbulent
viscosity and turbulent diffusivity, respectively, by allowing
the parameters as, ns, Kos, and Kbs to vary within limits sug-
gested by the literature (Table 1). In each case, Kos was con-
strained to be within the range 1� 10�5 to 1� 10�1m2 s�1,
as and ns were constrained to be within the range 1 to 100,
and Kbs was constrained to be within the range 1� 10�8 to

1� 10�3m2 s�1. These ranges were chosen to provide
flexibility for the optimizer routine without artificially over-
constraining the fit.
[41] Observations were fitted to equation (3) using a least

squares fit which minimizes the sum of the square of the
differences between the log of the observed turbulent
diffusivities, or viscosities, (Kobs) and the log of the turbulent
diffusivities, or viscosities, calculated from equation (3) by
using the parameters (Kfit) [Emery and Thomson, 1997].
Consequently, the residual sum of squares is dimensionless
and can be expressed as

residual sum of squares ¼
X log Kobsð Þ

log Kfitð Þ
� �2

:

[42] The parameter set and smoothing window combi-
nation with the lowest residual sum of squares was
selected as the best fit. Confidence limits for a fit and
for the individual parameters were estimated using the
percentile method from a bootstrapped distribution
[Efron and Gong, 1983] calculated by fitting to 10,000
resampled data sets.
[43] For quantitative comparison between two parametri-

zations, a dimensionless quality metric (QM) was calculated
from the residual sum of squares:

QM ¼ exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
residual sum of squares

number of observations

� �s
:

[44] The mean QM with confidence limits, for a parametri-
zation, were estimated from a bootstrapped distribution of
the residual data set. The QM quantifies variability in the
ratio of observation to parametrization. The uncertainty in
a given Kfit is expressed by the range [Kfit/QM, Kfit *QM].

3. Results

3.1. Turbulent Diffusivity

[45] When equation (3) is fitted to all the data for turbulent
diffusivity from all three data sets simultaneously, the best fit
is for a smoothing window of 56m with corresponding
parameter values of as= 1, ns= 1.49 (90% confidence
limit 1.35–1.66), Kos = 3.62 (90% confidence limit
2.86–4.8)� 10�4 m2 s�1, and Kbs = 8.14 (90% confidence
limit 7.89–8.59)� 10�6 m2 s�1 (Table 2). This gives a
parametrization for turbulent diffusivity of

Kt ¼ 3:6� 10�4 1þ Rið Þ�1:5 þ 8� 10�6 m2s�1
	 


;

with a QM of 2.48 (90% confidence limit 2.37–2.60). In
order to assess any potential bias in the parametrization,
the distribution of the difference between the log of the
observed diffusivity and the log of the diffusivity calculated
using the parametrization was calculated for the whole data
set. The mean of the distribution is zero, which suggests that
there is no consistent bias in the parametrization. Comparing
the observations of turbulent diffusivity to the values
calculated using the parametrization, 60% of the calculated
values are within a factor of two of the observations (Figure 5).
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The parametrization appears to be representative of the mean
observed diffusivity at any given Ri across the range of
Richardson numbers observed (Figure 6). However, there is
considerable variability in observations about this mean.
[46] Previous studies have commonly used a value of as=5

(Table 1). In order to assess the impact of fixing as= 5,
equation (3) was fitted to the full data set, as described above,
with as=5 and the remaining parameters, ns, Kos, and Kbs

allowed to vary within the ranges given above. For all smooth-
ing window sizes, the best fit QM for a fit with as= 5 is 2.50
(90% confidence limit 2.34–2.62), which is slightly larger
than the best fit QM for the fit with all parameters varying
(Tables 2 and 3). For all sizes of smoothing window,
confidence limits to the as=5 fit QM overlap the confidence
limits to the equivalent QM for the fit with all parameters
varying (Table 3).
[47] Kbs is considered to be a constant term representing

the diffusivity from processes other than mesoscale shear
(section 1.1). It is not unreasonable to expect that the diffu-
sivity from such processes may vary from place to place in
the ocean. In an attempt to estimate the likely variability in
Kbs, equation (3) was fitted to the three individual data sets
(using a 56m smoothing window) with the values from the

best fit parametrization for as, ns, and Kos (as = 1, ns = 1.5,
Kos = 3.62� 10�4m2 s�1 see above) and only Kbs varying.
Fitting equation (3) in this manner gave estimates of
Kbs for the D306 data set of 7.71 (90% confidence limit
6.28–9.30)� 10�6m2 s�1 with a QM of 2.46 (90%
confidence limit 2.33–2.60), for the D321 data set of 8.69
(90% confidence limit 7.1–10.59)� 10�6m2 s�1 with a QM
of 2.20 (90% confidence limit 2.02–2.39), and for the JC29
data set of 18.8 (90% confidence limit 11.15–26.92)� 10�6

m2 s�1 with a QM of 2.87 (90% confidence limit 2.52–3.12).
In all cases, the values of the QM 90% confidence limits
overlap the QM values for fitting the parametrization with
Kbs=8� 10�6m2 s�1 to the individual data sets (D306 QM
2.46 (90% confidence limit 2.33–2.61); D321 QM 2.20
(90% confidence limit 2.03–2.39); and JC29 QM 2.92 (90%
confidence limit 2.54–3.19)).

3.2. Turbulent Viscosity

[48] When equation (3) is fitted to the data for turbulent
viscosity (Kv) from all three data sets simultaneously, the

Figure 5. Scatter plot of turbulent diffusivity (Kfit) calcu-
lated from equation (3) versus observed turbulent diffusivity
(Kobs) for the same Richardson number. The sold line is plot-
ted at 1:1, and the dashed lines at 1:0.5 and 1:2, respectively.

Figure 6. Turbulent diffusivity (Kt) calculated from equa-
tion (3) using the best fit parameters given in section 3.1
plotted for Richardson number (Ri) in the range of 0 to
100. Black dashed lines indicate the bootstrapped 90% con-
fidence limits to the fit. Observations of turbulent diffusivity
from the three individual data sets used in the derivation of
equation (3) are marked. The dashed red line indicates a con-
stant diffusivity (Kbs) of 8� 10�6 m2 s�1; the blue dashed
line represents the best fit parametrization (equation (3))
without the Kbs term.

Table 2. Results of Fitting Equation (3) to Observations of Turbulent Diffusivity (Kt) Using Different Sized Windows (Sw) to Vertically
Smooth Observed Shear and Buoyancya

All Data
Sw (m) as ns Kos (m

2 s�1) Kbs (m
2 s�1) QM

0 8 (1.39–8.95) 1 (1–1.28) 6.02 (2.19–7.34)� 10�4 15.38 (13.11–17.37)� 10�6 2.77 (2.63–2.92)
24 12.18 (1–12.9) 1 (1–1.53) 14.6 (7.3–16.3)� 10�4 7.51 (5.89–9.76)� 10�6 2.56 (2.45–2.69)
40 11.44 (1–11.89) 1 (1–1.67) 15.4 (3.4–16.9)� 10�4 5.72 (4.51–9.51)� 10�6 2.51 (2.40–2.63)
56 1 1.49 (1.35–1.66) 3.62 (2.86–4.8)� 10�4 8.14 (7.89–8.59)� 10�6 2.48(2.37–2.60)
72 1 1.55 (1.39–1.74) 4.02 (3.11–5.36)� 10�4 9.02 (8.73–9.36)� 10�6 2.52 (2.40–2.64)

aThe figures in parentheses indicate bootstrapped 90% confidence limits. For the 56m and 72m smoothing windows, the bootstrapped fits returned a= 1
in all cases. The quality metric (QM) is calculated as described in section 2.7.
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best fits do not appear to be representative of the observa-
tions (Figure 7). Approximating Kv to a constant value of
1� 10�3m2 s�1 (Figure 7), the mean of the log transformed
observations, gives a QM of 2.66 (90% confidence limit
2.55–2.78), which is lower than any QM which can be
obtained from fitting equation (3) to observed Kv.

4. Discussion

4.1. The Richardson Number Range for Mixing
at the Mesoscale

[49] Direct observations of vertical mixing and Richardson
number (Ri) used in previous studies to derive parametriza-
tions of vertical mixing have been taken exclusively from
around the equator and have focused on the Equatorial Under-
current [Peters et al., 1988; Zaron and Moum, 2009]. The
range of Richardson numbers reported by Peters et al.
[1988] varied from 0.1 to ~14, with a large proportion of the
observations being for Richardson numbers less than 1. The
observational data used here come from three separate ocean
regions, with one data set taken in the presence of strong
mesoscale features (D321), one data set from a less dynamically
active region of the ocean (D306), and one in close proximity

to a vigorous frontal system (JC29). Considering the three data
sets individually, the D306 and D321 data sets cover broadly
the same range of Richardson number (1<Ri< 50), while
the JC29 data set covers a narrower range of smaller
value Richardson number (0.28<Ri< 10). The range
of Richardson numbers covered by the observations
(0.28<Ri< 50, section 3) is of the same order as reported
in previous studies of the Gulf Stream (3<Ri< 40, Pelegri
and Csanady [1994]) and of the Florida current (2<Ri< 20,
Winkel et al. [2002]). This would suggest that a parametriza-
tion for vertical mixing based on these observations ought to
be more broadly representative of ocean mixing associated
with the mesoscale than the one based on observations of the
Equatorial Undercurrent, as intended.

4.2. Turbulent Diffusivity

[50] The parametrization for vertical turbulent diffusivity
presented here consists of a Richardson number parametriza-
tion of mixing combined with a constant representing
vertical turbulent diffusivity arising from other unresolved
shear-driven processes (section 2). Together, these two
terms represent a parametrization of vertical turbulent
diffusivity for Richardson numbers between 1 and 50, which

Table 3. Results of Fitting Equation (3) to Observations of Turbulent Diffusivity Kt Using Different Sized Windows (Sw) to Vertically
Smooth Observed Shear and Buoyancya

All Data
Sw (m) as ns Kos (m

2 s�1) Kbs (m
2 s�1) QM

0 5 1 (1–1.1) 4 (3.6–5.3)� 10�4 14.8 (13–15.4)� 10�6 2.77 (2.63–2.91)
24 5 1 (1–1.14) 6 (6.1–9.3)� 10�4 6.7 (5.7–8.2)� 10�6 2.56 (2.44–2.68)
40 5 1.04 (1–1.23) 8 (6.7–13.2)� 10�4 5.88 (4.44–8.13)� 10�6 2.50 (2.39–2.62)
56 5 1.06 (1–1.25) 9 (7–14.8)� 10�4 5.84 (4.15–8.1)� 10�6 2.50 (2.39–2.62)
72 5 1.11 (1–1.3) 1 (7.2–17.4)� 10�3 6.74 (4.73–9)� 10�6 2.54 (2.42–2.67)

aParameter as is fixed at 5 and the remaining parameters allowed to vary as described in section 2.7. The figures in parentheses indicate bootstrapped 90%
confidence limits. The quality metric (QM) is calculated as described in section 2.7.

Figure 7. Best fit parametrizations (red line) estimated from all observations of turbulent viscosity (Kv)
and Richardson number (Ri) calculated using a range of smoothing windows (as described in section 2.6).
Dashed lines indicate the bootstrapped 90% confidence limits to the fit. The lognormal mean of the obser-
vations (1� 10�3 m2 s�1) is shown as a blue dashed line. Observations from the full data set are marked.
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is appropriate to the observations. Considering the two terms
separately, the Richardson number mixing term is dominant
(contributes more than 50% of the observed diffusivity) for
Richardson number <10, while the constant background
term dominates when the Richardson number >10
(Figure 6). The majority of the observations (73%) are for
Richardson numbers in the range of 1 to 10, with very few
(~3%) being for Richardson numbers less than 1 (Figure 9).
[51] Considering the Richardson number mixing term and

comparing the values of the parameters as = 1, ns= 1.5, Kos=
3.6� 10�4m2 s�1, estimated by fitting observations from all
data sets to equation (3), with those from previous studies
summarized in Table 1 [Peters et al., 1988; Pelegri and
Csanady, 1994; Yu and Schopf, 1997], ns is within the range
of previous estimates, and Kos is of the same order of
magnitude. However, as is lower than the commonly used
value of 5 and at the lower limit of the range of values used
to constrain the term while fitting (section 2.7).
[52] Fixing the value of as=5 and fitting to observation

results in a parametrization where the range of parameter
values (ns, Kos, and, Kbs) producing the best fits are within
the range of values used for these parameters in previous stud-
ies (Tables 1 and 3). However, fixing the value of as=5 and
fitting to observations does not produce a better (lower QM)
fit than fitting with all parameters varying (Tables 2 and 3).
Comparing the observations of turbulent diffusivity to the
values calculated using the parametrization where as=5,
60% of the calculated values are within a factor of 2 of the
observations. If we consider Ri above 1, then the parametriza-
tion where as=5 produces estimates of turbulent diffusivity
that in all cases are within the 90% confidence limits of the
parametrization obtained when all parameters are allowed to
vary (Figure 8). This suggests that the parametrization where
as= 5 represents the observations at least as well as the
parametrization obtained when all parameters are allowed to
vary. However, the parametrization obtained when all

parameters are allowed to vary is preferred as it represents
the fit to observations with the lowest QM.
[53] The value of Kbs derived from fitting equation (3) to

the full data set is of approximately the same magnitude as
values that have been used in previous parametrizations
(Table 1) and close to estimates of the open ocean value of
vertical mixing from wave-wave interactions of the internal
wave field (7� 10�6m2 s�1 Polzin et al. [1995]). Estimating
Kbs for the individual data sets results in values of Kbs from
7.7 to 19� 10�6m2 s�1.
[54] In all cases, the QM for the parametrization with the

data set-specific Kbs is within the 90% confidence limits of
the QM for fitting the parametrization with the whole data
set value of Kbs= 8� 10�6m2 s�1. For the D321 and D306
data sets, the confidence limits for the data set-specific Kbs

encompass the full data set value. This would suggest that
the value of Kbs derived from the full data set is not
unreasonable as a value of background vertical mixing for
these observations. The value of the JC29 data set Kbs is out-
side the 90% confidence limits to the full data set value.
However, there are only a small number of values in the
JC29 data set for Richardson number >10 (Figure 6) where
Kbs is the dominant term in the relationship. Applying the
full parametrization to the JC29 data results in a QM that
is no worse than that of the data set-specific Kbs fit (full
parametrization QM 2.92 (90% confidence limit 2.54–3.19)
data set-specific QM 2.87 (90% confidence limit 2.52–3.12)).
This suggests that estimates ofKbs from the JC29 data set alone
are likely to be ill-constrained.
4.2.1. Comparison to Previous Parametrizations
of Diffusivity
[55] Comparing the observations used here to previous para-

metrizations of vertical turbulent diffusivity [Pacanowski and
Philander, 1981; Peters et al., 1988; Large et al., 1994] shows
that for the range of Richardson numbers covered by the obser-
vations (1<Ri< 50), all of the previous parametrizations

Figure 8. Comparison of the parametrizations estimated with all parameters varying (red line) to those
where a = 5 (blue line). Dashed lines indicate the bootstrapped 90% confidence limits to the fits.
Richardson number (Ri) is calculated as described in section 2.6 using a range of smoothing windows.
Observations from the full data set are marked.
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underestimate the vertical turbulent diffusivity observed
(Figure 9). Yet these parametrizations are commonly imple-
mented in ocean models.
[56] The QM calculated by comparing the parametrization

of Pacanowski and Philander [1981] to the observations
(using a 56m smoothing window for Ri) presented here is
3.53 (90% confidence limit 3.36–3.70), when comparing
the parametrization of Large et al. [1994] the QM is 5.39
(90% confidence limit 5.1–5.72), and when comparing the
parametrization of Pacanowski and Philander [1981] the
QM is 27.64 (90% confidence limit 26.17–29.28). Changing
the size of the smoothing window changes the QMs but in no
case is the QM from these previous parametrizations smaller
than the QM for the parametrization presented here.
[57] The parametrization of Zaron and Moum [2009] was

tested in two forms, the “alternative” and the “revised” (“alt”
and “rev,” respectively, in Zaron and Moum [2009]). The
alternative form of the parametrization was derived directly
from observation and relates Ri to nondimensional turbulent
diffusivity, while the revised form of the parametrization
was designed to reproduce the Ri dependence of the
observed vertical turbulent flux. Of the two forms, the alter-
nate form is the most appropriate for comparison to the
results presented here as it was fitted directly to observations
of turbulent diffusivity. The observations of turbulent
diffusivity presented here were nondimensionalized by
dividing by |V|2/Sh, where both V and Sh were calculated
using a 56m smoothing window and compared to the
parametrization of Zaron and Moum [2009]. The QM for
the alternative form of the parametrization, calculated for
the nondimensional observations, is 4.95 (90% confidence
limit 4.30–5.74) (Figure 10). This indicates that the parame-
trization of Zaron and Moum [2009] is better than the para-
metrizations of Large et al. [1994] and Peters et al. [1988]
but worse than both the parametrization presented here and
the parametrization of Pacanowski and Philander [1981]
in representing the observations. In summary, for the
observations presented here, the new parametrization

provides a significantly more accurate reproduction of mixing
than all previous parametrizations.
4.2.2. Applicability of the Turbulent Diffusivity
Parametrization
[58] Richardson number is considered to be only a first-

order redictor of mixing as functional relationships between
Richardson number and mixing fail to capture the observed
variability in themixing [Peters et al., 1995]. This is clearly true
for the parametrization presented here and for similar, com-
monly used, Richardson number parametrizations (Figure 9).
However, the parametrization presented here is proposed for
implementation in mesoscale resolving ocean general circula-
tion models where the output of the parametrization represents
mixing integrated over large time and space scales (of order
km/days) compared to the scales of turbulent variability (of
order m/min). Consequently, a parametrization that is repre-
sentative of the mean of the observations is most appropriate
to use in a model.
[59] The Thorpe scales of the observed mixing (of order

1–3m) suggest that the mixing parametrized here is likely to
be occurring at the finescale [2–3m, Toole and Schmitt,
1987; Polzin, 1996]. Consequently, what the parametrization
may well be reflecting is the relationship between the internal
wave-mean flow-driven mixing and the strength of the
mesoscale flow, which has been suggested to be dependent,
in part, on mean flow Richardson number [Polzin et al.,
1996]. This would imply that the main source of the observed
variability in the mixing is likely to be due to variability in the
underlying internal wave field. The strength of internal wave-
flow interactions may potentially dominate internal wave-
wave interactions for flow with Richardson number <20
[Polzin et al., 1996]. This is consistent with the suggested
limits of applicability for which the Richardson number
mixing term in the parametrization presented here is dominant
(1<Ri< 10).
[60] Shear-driven mixing resulting from wave-wave

interactions of the internal wave field occurs typically at a

Figure 9. Turbulent diffusivity (Kt) calculated from equation
(3) and the parametrizations of Large et al. [1994],Peters et al.
[1988], and Pacanowski and Philander [1981] plotted for
Richardson number (Ri) in the range of 0 to 100. Observations
of turbulent diffusivity from the three data sets used in the
derivation of equation (3) are marked.

Figure 10. Nondimensional turbulent diffusivity (Φkt) cal-
culated from the parametrizations of Zaron and Moum
[2009] plotted for Richardson number (Ri) in the range of
0 to 100. Observations of turbulent diffusivity, nondimen-
sionalized by dividing by |V|2/Sh

2 (where Sh is the observed
shear and V is the observed velocity vector), from the three
data sets used in the derivation of equation (3) are marked.
Both forms of the Zaron and Moum [2009] parametrization
are plotted for completeness.
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vertical scale which is too small to be represented explicitly
within a mesoscale resolving ocean model with a vertical
scale of order 10m and as such is represented as the constant
Kbs term. The magnitude of the processes combined within
the Kbs term are likely to vary both temporally and spatially,
and representing such variability using a uniform constant
term, although common in implemented mixing parametri-
zations [Pacanowski and Philander, 1981; Peters et al.,
1988; Large et al., 1994], is unlikely to be representative
under all circumstances. The magnitude of the Kbs term
derived from the observations presented here is of the same
order of magnitude as similar terms used in previous para-
metrizations and, as such, is likely to be no worse a represen-
tation of finescale-shear-driven mixing. In regions of the
ocean away from mesoscale flow, in the absence of convec-
tion and double diffusion, where the Richardson number
is >10, the vertical turbulent diffusivity is likely to be
dominated by this background mixing term.

4.3. Turbulent Viscosity

[61] The usefulness of equation (7) in calculating turbulent
viscosity accurately at the mesoscale relies on two strong
assumptions; that that pressure transport of momentum is
negligible and that production and dissipation of turbulent
kinetic energy by the mesoscale flow are equal [Peters
et al., 1988; Thorpe, 2005; Zaron and Moum, 2009]. The
presence of a strong internal wave field may potentially
invalidate both these assumptions since internal waves are
likely to contribute both to the pressure transport of momen-
tum and to shear production of turbulent kinetic energy at
vertical scales smaller than the mesoscale [Peters et al.,
1988, 1995; Zaron and Moum, 2009].
[62] From the data used here, it is not possible to deter-

mine the magnitude of any internal wave driven pressure
transport of momentum. However, the Thorpe scales for
the observed mixing are consistent with a finescale-shear
production which suggests that internal wave shear may be
significant in the production of the observed dissipation.
Dissipation caused through internal wave-wave interactions
is generally accepted to scale with N2, such that e/N2

[Gregg and Sanford, 1988; Polzin et al., 1995], although
this scaling may not be appropriate for internal wave-flow
interactions [Polzin et al., 1996]. While not consistent with
the e/N2 scaling, the data presented here show a monotonic
increase in dissipation with increasing N2, which is sugges-
tive of an internal wave dissipation source (Figure 11).
Combined with the observed Thorpe scales, this apparent
monotonic relationship between e and N2 suggests that the
observed turbulent viscosity may indeed be being produced
at the finescale with the magnitude of the finescale mixing
influenced by the mesoscale flow shear. Consequently,
under these circumstances, approximating vertical turbulent
momentum transport using a turbulent viscosity would not
be appropriate.
4.3.1. Comparison to Previous
Parametrizations of Viscosity
[63] For completeness, the observations of viscosity

reported here are compared to the estimate of vertical turbu-
lent viscosity from previous parametrizations [Pacanowski
and Philander, 1981; Peters et al., 1988; Large et al.,
1994]. This shows that for the range of Richardson numbers
covered by the observations, none of the previous

parametrizations appear to represent the observations well
(Figure 12).
[64] The QM when comparing the parametrization of

Pacanowski and Philander [1981] to the observations of
turbulent viscosity (using a 56m smoothing window for
Ri) here is 7.2 (90% confidence limit 6.84–7.58), when
comparing the parametrization of Large et al. [1994] the
QM is 8.14 (90% confidence limit 7.76–8.57), and when
comparing the parametrization of Peters et al. [1988] the
QM is 48.64 (90% confidence limit 45.96–51.53). Hence,
none of the previous parametrizations of turbulent viscosity
represent the observations better than a constant turbulent
viscosity of 1� 10�3m2 s�1, which has a QM of 2.66
(90% confidence limit 2.56–2.78). Observations of turbulent

Figure 11. Scatter plot of N2 versus turbulent kinetic
energy dissipation (e) for observations from the full data
set. The black line indicates e/N2.

Figure 12. Turbulent viscosity (Kv) represented as a
constant 1� 10�3 m2 s�1 and calculated from the parametri-
zations of Large et al. [1994], Peters et al. [1988], and
Pacanowski and Philander [1981] plotted for Richardson
number (Ri) in the range of 0 to 100. Observations of
turbulent diffusivity from the three data sets are marked.
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viscosity were nondimensionalized, as described above, and
compared to the parametrization of Zaron and Moum
[2009]. As with the other parametrizations, neither form of
this parametrization appears to be representative of the non-
dimensional observations of turbulent viscosity (Figure 13).
The QM for the alternative form of the parametrization,
calculated for the nondimensional observations, is 12.78
(90% confidence limit 11.19–14.66). Changing the size of
the smoothing window changes the QM when comparing
to the previous parametrizations, but in no case is the QM
from comparing a previous parametrization smaller than
the QM for a constant turbulent viscosity.

5. Conclusions

[65] A new Richardson number based parametrization for
turbulent diffusivity has been developed (equation 3) using
observations from three separate ocean regions (section
2.1). The parametrization provides estimates of vertical tur-
bulent diffusivity in stratified shear flow typical of meso-
scale ocean features, incorporating eddies and fronts, and
has been shown to give a more accurate representation than
previous parametrizations [Pacanowski and Philander,
1981; Peters et al., 1988; Large et al., 1994; Zaron and
Moum, 2009]. This parametrization is considered to be ro-
bust for values of the Richardson number greater than 1 at
depths below the ocean surface boundary layer.
[66] The new Richardson number parametrization for turbu-

lent diffusivity has been formulated using dimensional
constants to be compatible with the majority of existing
Richardson number parametrizations of turbulent diffusivity
and could be used in conjunction with existing expressions
for low Richardson number mixing to give a parametrization
that is applicable across the full (zero to infinity) range of
Richardson number. The implementation of this new parame-
trization in an eddy resolving ocean model remains to be tried.

[67] The observations of turbulent viscosity reported here
are found to be best represented by a constant turbulent
viscosity of 1� 10�3m2 s�1. This may well be due to the
turbulent mixing occurring at the finescale rather than the
mesoscale with the parametrization reflecting the relation-
ship between the internal wave-flow-driven mixing and the
strength of the mesoscale flow. The presence of turbulent
mixing with multiple turbulent length scales undermines
the assumptions behind equation (7) and makes the estima-
tion of turbulent viscosity from observations of turbulent
kinetic dissipation and mesoscale flow-related vertical shear
problematic. Consequently, the finding that there appears to
be no robust relationship for mesoscale shear enhanced
turbulent viscosity is regarded to be at best tentative, and
further work is required to investigate this relationship.

[68] Acknowledgments. The authors wish to thank the officers, crew,
and entire scientific compliment aboard the R.R.S. Discovery and R.R.S.
James Cook during cruises D306, D321, and JC29.
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