Carbon dioxide & methane emission dynamics in central London (UK). C. Helfter¹, E. Nemitz¹, Janet F. Barlow² and Curtis R. Wood³ ¹Centre for Ecology and Hydrology, Edinburgh, UK. ²University of Reading, Reading, UK. ³Finnish Meteorological Institute, Helsinki, Finland. Email: caro2@ceh.ac.uk # Columnication (Columnication) Columnication (Columnication) Columnication (Columnication) Columnication (Columnication) Columnication (Columnication) Columnication (Columnication) Figure 1: Satellite image of central London and location of the BT tower within the congestion charging zone (CCZ). # Introduction Continuous monitoring of carbon dioxide (CO_2) and methane (CH_4) fluxes in central London (UK) began in August 2011. Measurements are taken by eddy-covariance (EC) atop the British Telecom (BT) tower, at a height of 190 meters above street level (Fig. 1). The EC system consists of a Gill R3-50 ultrasonic anemometer and a Picarro G2301-f CO_2 , CH_4 & H_2O analyser operating in high precision mode which provides water vapour corrected concentrations of CO_2 and CH_4 . Flux corrections are applied offline to account for damping caused by low sampling rate. These are functions of atmospheric stability and are of the order of 15% - 20 %. Based on analyses from previous measurement campaigns, the footprint entrains very densely populated, high traffic areas as well as traffic-calmed areas and the sources contributing the most to daytime fluxes measured at the BT tower are contained within a 5 km radius † . The BT tower provides thus a valuable platform for the monitoring of air pollution and the tracking of the evolution of greenhouse gas emissions at the heart of a European megacity. † Helfter C., Famulari D., Phillips G.J., Barlow J.F., Wood C.R., Grimmond C.S.B., Nemitz E., 2011. Controls of carbon dioxide concentrations and fluxes above central London. Atmospheric Chemistry and Physics 11, 1913-1928. ### Results ■ Concentrations of CO₂ and CH₄ are in phase over the entire diurnal cycle and the diurnal trends are consistent with cycles of growth and shrinkage of the atmospheric boundary layer. Trends of CO₂ fluxes are consistent with diurnal traffic patterns within the tower flux footprint (Fig.2). Figure 4: CH₄ fluxes versus CO₂ fluxes (diurnal averages for January – August 2012). Figure 5: Monthly values of the ratio of methane to carbon dioxide fluxes (R_f) . - •CH₄ and CO₂ fluxes are strongly correlated throughout day and night; however, the ratio of CH₄ to CO₂ fluxes (R_f) exhibits a marked dependence on time of day (Fig. 3). - Night time trends for R_f are thought to be traffic-driven; CO_2 emissions from traffic reach their minimum at around 03 04:00 GMT, whilst the CH_4 flux baseline (leaks from natural gas distribution network) remains constant. - R_f is nearly constant between 10:00 18:00 GMT (summer time slope is almost 0), suggesting an equilibration of sources of CO_2 and CH_4 during the day. - Baseline CH₄ emissions (29 tons CH₄ km⁻² yr⁻¹) obtained by extrapolating the regression function between CH₄ and CO₂ fluxes (Fig. 4) for $F_{CO2} = 0$ (i.e. CH₄ emissions from sources not contributing to CO₂ fluxes) are consistent with city centre values (Westminster and Camden: 28 tons CH₄ km⁻² yr⁻¹) reported by the UK National Atmospheric Emissions Inventory (NAEI). Figure 2: Diurnal trends in carbon dioxide and methane concentrations and fluxes measured at the BT tower between January and August 2012. Figure 3: Ratio of methane fluxes to carbon dioxide fluxes (R) measured between January and August 2012 as a function of time of day. - Little inter-monthly variation of CH₄ to CO₂ flux ratio (Fig. 5 the mean annual ratio (R_{annual}) is 5.2 ± 0.5 mmol CH₄ per mole of CO₂). - Emissions of CH_4 predicted on the basis of R_{annual} and CO_2 inventory data for the two London boroughs contributing the most to fluxes measured at BT tower exceed inventory estimates of CH_4 by a factor of 2 to 3 (for Camden and Westminster, respectively). ## Conclusions Methane emissions from central London exhibit diurnal patterns both for concentrations and fluxes. Fluxes are strongly correlated to those of carbon dioxide; although flux ratios exhibit diurnal cycles they are relatively constant on an annual basis. The baseline for methane fluxes is thought to result from leaks in the natural gas distribution network at a rate of 29 tons km⁻² yr⁻¹, which agrees with inventory data. However, a two- to three-fold difference was found between inventory and measured total fluxes, which could indicate an underestimation of CH_4 emissions from combustion sources by the inventory (e.g. road traffic, domestic and commercial heating). Central London methane emissions are estimated at 67 tons km⁻² yr⁻¹ and the global warming effect of CO_2 was found to be 25 times greater than that of CH_4 (100-year horizon).