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Abstract 21 

The free ion approach has been previously used to calculate critical limit 22 

concentrations for soil metals based on point estimates of toxicity. Here, the approach 23 

was applied to dose–response data for copper effects on seven biological endpoints in 24 

each of 19 European soils. The approach was applied using the concept of an effective 25 

dose, comprising a function of the concentrations of free copper and ‘protective’ 26 

major cations, including H
+
. A significant influence of H

+
 on the toxicity of Cu

2+
 was 27 

found, while the effects of other cations were inconsistent. The model could be 28 

generalised by forcing the effect of H
+
 and the slope of the dose–response relationship 29 

to be equal for all endpoints. This suggests the possibility of a general bioavailability 30 

model for copper effects on organisms. Furthermore, the possibility of such a model 31 

could be explored for other cationic metals such as nickel, zinc, cadmium and lead. 32 

 33 

Keywords 34 

soil; toxicity; copper; bioavailability; free ion approach  35 

 36 

‘Capsule’ 37 

Copper toxicity to soil organisms can be described as a pH-dependent function of the 38 

free copper ion, using a common pH dependence.39 
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1. Introduction 40 

Copper is a natural constituent of all soils, and in small quantities is an essential 41 

element for all plants and animals. Elevated concentrations of copper in soils can 42 

however lead to toxic effects on plants and soil–dwelling animals and hence on 43 

ecosystems as a whole (Flemming and Trevors, 1989). For this reason, ecological risk 44 

assessment of copper is an important aspect of the management of concentrations of 45 

the metal in soils. 46 

Along with other cationic metals such as zinc and cadmium, the influence of soil 47 

chemistry on the bioaccumulation and toxicity of copper is well attested (Lexmond, 48 

1980; Cheng and Allen, 2001). There is thus a need to develop approaches to quantify 49 

the influence of soil chemical properties on metal toxicity, in order to improve their 50 

ecological risk assessment. To date, approaches taken have been both empirical and 51 

mechanistic. In the former, endpoints from a single toxicity test, carried out in a 52 

variety of soils, are regressed against one or more soil properties believed to impact 53 

bioavailability. Such properties include soil solution pH, soil organic matter (OM) 54 

content and cation exchange capacity (CEC), and contents of mineral oxides of 55 

elements such as Fe and Mn. This type of work has been done for a number of soil 56 

organisms including barley and tomato (Rooney et al., 2006), wheat (Warne et al., 57 

2008) and microbial processes (Oorts et al., 2006; Broos et al., 2007) for copper. The 58 

mechanistic approach centres on the Biotic Ligand Model (Paquin et al., 2002) which 59 

postulates that toxicity results from binding of specific metal species (usually the free 60 

metal ion) to a receptor on the organism (the Biotic Ligand), in competition with other 61 

solution cations such as H
+
, Na

+
 and Ca

2+
. The concentration of metal bound to the 62 

biotic ligand, rather than a measurable or calculable pool of metal in the soil or soil 63 

solution, is assumed to correlate with the toxic response. The BLM was originally 64 

developed to describe the acute toxic effects of metal accumulation at the gill of fish, 65 

but has been applied to toxicity data for a number of other aquatic organisms.  Some 66 

progress has been made in applying the principles of the BLM to soil–dwelling 67 

organisms: acute BLMs have been developed for soil organisms such as the 68 

earthworm Aporrectodea caliginosa (Steenbergen et al., 2005) and the enchytraeid 69 

Enchytraeus albidus (Lock et al., 2006), and the model has been applied to describe 70 

the effects of metals on plants in solution (Lock et al., 2007). Thakali and co–workers 71 

(Thakali et al., 2006a, b) have developed BLMs to predict the effects of copper on 72 
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plants, invertebrates and microbial processes, based on testing using a set of European 73 

soils of contrasting soil chemistries (Rooney et al., 2006; Oorts et al., 2006; Criel et 74 

al., 2008). 75 

An alternative approach to considering bioavailability effects has been taken by Lofts 76 

and co–workers (Lofts et al., 2004; De Vries et al., 2007). Termed the free ion 77 

approach, this method considers the toxic effect to depend upon the free metal ion in 78 

soil solution, and also on the amounts of other solution cations that 'protect' the 79 

organism against metal toxicity. The variables considered are thus the same as would 80 

be considered by the BLM, but the expression describing the loading of the biotic 81 

ligand with toxic metal is replaced with an empirical function, and the 'biotic ligand' is 82 

not explicitly considered. The free ion approach was used to derive functions giving 83 

critical limits (risk threshold concentrations) for copper and other metals in soils 84 

directly from existing literature (Lofts et al., 2004; De Vries et al., 2007). Because of 85 

the limited nature of the available data, a number of key assumptions were made in 86 

the derivation of the critical limit functions. Such assumptions require investigation, 87 

either to confirm that they are reasonable, or to allow further refinement of the 88 

methodology. In the case of copper, datasets now exist (Rooney et al., 2006; Oorts et 89 

al., 2006; Criel et al., 2008) that are suitable for such a purpose. These datasets 90 

comprise seven toxicity tests covering a range of species and microbial processes, 91 

each carried out in the same set of soils. The soils were chosen to cover a range of key 92 

soil properties, thus making the datasets ideal for investigating metal bioavailability 93 

effects. The subset of toxicity data from the non-calcareous soils has been previously 94 

used to develop terrestrial BLMs (Thakali et al., 2006a, b). The purpose of the work 95 

presented here is to extend the free ion approach to these data and to test, for copper, 96 

the assumptions previously made in applying the approach. 97 

2. Theory 98 

The free ion approach is summarised in an empirical expression describing the 99 

variation of the effect concentration of a potentially toxic cationic metal in soil 100 

solution with the soil solution pH and concentrations of ‘protective’ cations. For 101 

copper: 102 

effect

1

z

sseffect

2 ]pC[pH]Culog[    
n

n  (1) 103 



  5 

Here pHss is the soil solution pH, [C
z+

] is the free concentration of a ‘protective’ 104 

cation, ,  and effect are constants, and [Cu
2+

]effect is the ‘effect’ concentration of the 105 

free copper ion. The subscript ‘effect' refers to a constant level of toxic effect, which 106 

can be for a single species or microbial process (e.g. a no-observed effect 107 

concentration or L(E)Cx) or for multi–species endpoint data (e.g. a given percentile of 108 

a sensitivity distribution of species endpoints).  The subscript 'effect' associated with 109 

the term  indicates that although this term is constant at a given effect level, it will 110 

vary according to the level of effect being described. The terms  and  are assumed 111 

to be independent of effect level. 112 

In the initial application of the theory by Lofts and co–workers (Lofts et al., 2004), 113 

two key assumptions were made. Firstly, the free concentrations of protective cations 114 

(e.g. Na
+
, Mg

2+
, Ca

2+
) were assumed to co–vary with pH. Thus, Equation (1) was 115 

reduced to:  116 

effectsseffect

2 pH]Culog[    (2) 117 

Previously employed literature data comprised chronic endpoints (no observed effect 118 

concentrations, NOECs, and 10% effect concentrations, EC10s) for plants, soil 119 

invertebrates and microbial processes. The data were rather unsystematic with respect 120 

to combinations of soil chemistry and test species, i.e. only a few test results were 121 

available for the same species across different soil types. Because of this, the data for 122 

all species were used together in a single analysis to derive the pH–dependence of free 123 

ion toxicity (the term  in Equation 2). Thus, the second assumption was that the pH 124 

dependence of free ion toxicity for all organisms and processes in the tests could be 125 

described by a single constant.  126 

The dataset used in the present study is sufficiently comprehensive to allow the two 127 

key assumptions previously made to be tested. Firstly, concentrations of the cations 128 

Na
+
, Mg

2+
, K

+
 and Ca

2+
 in soil solution can be calculated. Secondly, the pH 129 

dependence of free ion toxicity can be evaluated separately for each endpoint 130 

measured. Thus, we can formulate two central questions to be considered in the 131 

analysis of the new dataset: 132 

1. Are the endpoint–specific dependencies of pH upon Cu
2+

 toxicity sufficiently 133 

similar to justify the use of a single, endpoint–independent value, i.e. is  134 

similar for all endpoints? 135 
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2. Do the cations Na
+
, Mg

2+
, K

+
 and Ca

2+
 exert significant protective effects 136 

against Cu
2+

 toxicity and are these all similar for all endpoints, i.e. is n 137 

significantly different from zero and similar for all endpoints? 138 

1.1. The free ion effective dose model 139 

In applying the free ion approach to these data, it would be possible to replicate in part 140 

the previous work by calculating individual toxic endpoints (e.g. EC10s or EC50s) for 141 

each test in each soil, this time expressed as free metal ion concentration, and 142 

considering how these varied with soil chemistry parameters (e.g. Oorts et al,, 2006). 143 

However, a more powerful approach is to extend the free ion approach to consider the 144 

entire dose–response curve. If we rearrange Equation (1) as follows: 145 

  
n

n

1

z

sseffect

2

effect ]pC[pH]Culog[   (3) 146 

it becomes clear that, since  effect is constant for a given effect level, the right hand 147 

side of the expression is also constant. Generalising to any response level,  can be 148 

interpreted as an 'effective dose' that incorporates not only a concentration of the toxic 149 

substance, but also terms describing the effects of bioavailability. This expression can 150 

be substituted into a log–logistic dose–response equation, e.g., 151 

)D(D

0

eff,50effe1

R
R







 (4) 152 

where R is the response, R0 is the control response,  is the slope parameter, Deff is the 153 

effective dose of toxicant and Deff, 50 is the effective dose causing a 50% effect – 154 

equivalent to the ED50. If we simply substitute the effective dose term effect in 155 

Equation 3 for the term Deff  then the resulting expression can in principle be fitted to 156 

dose–response curves for the same toxicity test in different soils. Fitting parameters 157 

are the terms  and Deff, 50 in Equation 4 and the coefficients  and n in Equation 3. 158 

This expression will be referred to as the FRIED (FRee Ion Effective Dose) model. 159 

Although ion binding to the organism is not explicit in FRIED, the effective dose term 160 

can be related to bound metal. Mertens et al. (2007) showed that for the binding of a 161 

metal to an adsorbate in competition with H
+
 and other cations, expressed by a 162 

competitive Freundlich isotherm, (Equation 5): 163 

  
i

nnn
k

1

z2

bound
iCHM ]C[][H]M[]M[  (5) 164 
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can be rearranged to  165 

  









































i

1

z

M

C

ss

M

Hbound

M

2 ]Clog[-pH
]M[

log
1

]log[M i
n

n

n

n

kn
i . (6) 166 

Equation (6) can be simplified to 167 

  
i

1

z

ss

2 ]Clog[-pH]log[M iisrq  (7) 168 

where r and si are constants and q is given by the expression 169 




















kn
q bound

M

]M[
log

1
. (8) 170 

Equation (7) has the same form as Equation (1) if the concentration of bound metal is 171 

constant, i.e. q = γeffect and r = α.  Equation (8) can be rearranged to show that 172 

X]Mlog[ boundeffect   (9) 173 

where X is a constant. Thus, the effective dose term can be related to a conceptual 174 

quantity of metal bound to uptake sites on the organism. 175 

The FRIED concept has been previously applied to field data. Spurgeon et al. (2006) 176 

showed that an effective dose combining the zinc free ion and pH was a better 177 

descriptor of zinc effects on Lumbricus rubellus reproduction in a set of field–178 

contaminated soils than total, solution or free ionic zinc. The protective effect of the 179 

hydrogen ion was set a priori. Here, we will quantify the protective effect from the 180 

toxicity test data.   181 

2. Materials and Methods 182 

2.1. Soils dataset 183 

Nineteen soils from across Europe were used for the toxicity testing and selected soil 184 

properties are given in Table 1 (after Oorts et al. (2006)).  185 

Methods for the determination of soil metal and soil solution chemistry in spiked test 186 

soils are described in Rooney et al. (2006) and Oorts et al.(2006).  Soil solutions were 187 

analysed for Cu, major cations (Na, Mg, Al, K, Ca and Fe) and dissolved organic 188 

carbon (DOC). 189 
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2.2. Toxicity testing 190 

The toxicity tests comprised seven endpoints: two plant growth tests, two invertebrate 191 

reproduction tests and three microbial function tests, summarised in Table 2. All the 192 

tests have been described in detail elsewhere (see Table 2 for references). 193 

2.3. Soil porewater chemistry and speciation modelling 194 

Porewater samples were taken from all exposure soils and analysed according to the 195 

methods described by Oorts et al. (2006). Measurements of pH, dissolved organic 196 

carbon (DOC), and dissolved Cu, Na, Mg, Al, K, Ca and Fe were used here.  The total 197 

copper in the exposure soils was measured after digestion with boiling aqua regia. 198 

To apply FRIED it was first necessary to calculate the chemical speciation of the 199 

porewater solutions of the exposure soils in order to obtain concentrations of the Cu
2+

 200 

ion and of the ions Na
+
, Mg

2+
, Al

3+
, K

+
, Ca

2+
 and Fe

3+
. This was done using the 201 

WHAM/Model VI model (Tipping, 1994, 1998). Input parameters were the pH, total 202 

concentrations of the ions listed above, and the soil solution concentration of fulvic 203 

acid. The latter was estimated from the DOC concentration using the assumption that 204 

the dissolved organic matter comprised 65% fulvic acid and 35% material inert with 205 

respect to chemical binding (Tipping et al., 2003).  The speciation of Al and Fe(III) 206 

was modelled in one of two ways. Where the concentration of the metal exceeded the 207 

detection limit, speciation was calculated conventionally, allowing an Al(OH)3 (s) or 208 

Fe(OH)3 (s) solid phase to be formed if predicted. If Al or Fe(III) were not detected in 209 

solution, the speciation was predicted assuming equilibrium with Al(OH)3 (s) or 210 

Fe(OH)3 (s) respectively. Standard solubility constants were 8.5 and 2.7 respectively. 211 

2.4. Application of FRIED 212 

The dose–response equation (4) was fitted to each set of endpoint data, comprising all 213 

the responses for each toxicity test across all the soils. Prior to data fitting, the set of 214 

responses in each soil were adjusted relative to a baseline response level of 100, thus 215 

allowing responses from different soils to be modelled together. The baseline 216 

response level in each soil was set to the mean of the control response and any 217 

responses exceeding the control.  218 

The FRIED model (Equation 3) was initially applied to each dataset using an effective 219 

dose term comprising terms for the free copper concentration and pH (Model 2). Two 220 

models (Model 0 and Model 1) were fitted as reference models. Model 0 used the 221 
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logarithm of the total soil copper concentration as the dose, while Model 1 used the 222 

logarithm of the free ionic copper. Initially, Model 2 was fitted separately to each 223 

endpoint to obtain a set of specific  values representing the protective effect of H
+
 224 

for each endpoint. The entire dataset was then fitted forcing a single value of  in 225 

order to test the assumption that a single  is a reasonable simplification. The 226 

possibility of additional protective effects due to Na
+
, Mg

2+
, K

+
 or Ca

2+
 was then 227 

tested by extending the effective dose term in Model 2 to include an additional term 228 

for each ion in turn, and re–fitting the entire parameter set for each endpoint.  229 

The Bayesian Information Criterion (BIC) (Schwartz, 1978) was used to compare the 230 

goodness of the model fits. For multiple models applied to the same dataset the 231 

smallest BIC indicates the optimum trade off between model complexity (number of 232 

parameters) and fit. We also calculated the fraction of variance explained (FVE), 233 

which is the fraction of the variance accounted for by the poorer fitting model that is 234 

then accounted for by the better fitting model. The FVE is given by: 235 

i

j

ij
SOS

SOS
-1FVE ,   (10) 236 

where i and j represent the poorer and better fitting models, respectively, and SOS is 237 

the sum of squared differences between observed and calculated responses. In order to 238 

estimate the uncertainty in the parameters, fitting was done by a bootstrap method 239 

involving repeated sampling of the dataset and fitting of each sample to generate a 240 

large population of parameter sets (, ED50, , n) for statistical evaluation. Two 241 

thousand sample datasets were generated by sampling with replacement. 95% 242 

confidence intervals on parameters were taken as the 2.5%–ile and 97.5%-ile of the 243 

resulting distributions of each parameter value. Confidence intervals on the predicted 244 

dose–response curve (predicted response plotted against effective dose) were 245 

calculated by generating a predicted dose–response curve from each of the 2,000 246 

parameter sets and taking the 2.5%–ile and 97.5%-ile of the predicted response at 247 

each value of the effective dose modelled. 248 

2.5. Model application test 249 

The parameterised model for Hordeum vulgare root elongation was applied to an 250 

independent dataset of toxicity in 17 Chinese soils (Li et al., 2010). Li and co–workers 251 

performed 5–day root elongation tests in soils that were first leached to remove excess 252 
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salts following copper spiking. We applied FRIED to predict the EC50s, expressed as 253 

total copper in the soil. Firstly, free copper ion concentrations at the EC50 in each soil 254 

were calculated using the FRIED parameters for Hordeum vulgare. Then, the 255 

‘geochemically active’ concentrations of copper at the EC50 were calculated using the 256 

empirical function of Groenenberg et al. (2010): 257 

SOM}log{89.0pH90.026.5
]Culog[

Cu}log{
ss85.02

ads 


 (11) 258 

where {Cu}ads is the geochemically active copper concentration in mol/g soil and 259 

{SOM} is the soil organic matter content as a %. Finally, geochemically active copper 260 

was corrected to total soil copper by accounting for fixation processes following 261 

spiking, using the model of Ma et al. (2006). 262 

3. Results 263 

Table 3 shows fits to Models 0, 1 and 2 for the individual toxicity tests. Model 2 264 

(Deff = log[Cu
2+

] - ·pHss) consistently gave a superior fit to the data than Model 1 265 

(Deff = log[Cu
2+

]). In only three toxicity tests out of seven did Model 1 explain over 266 

half the variance in the observations, while Model 2 consistently explained over half 267 

the variance in all the tests. It is worth noting that the maize residue mineralisation 268 

(MRM) test was relatively insensitive to copper within the range of applied 269 

concentrations (Figure 2), thus the R
2
 was low relative to the goodness–of–fit 270 

expressed as the root mean squared error (RMSE). Excluding this test, Model 2 271 

explained at least 65% of the observed variance in each test, while Model 1 explained 272 

55% of the variance at best. The proportion of the unexplained variance (FVE) due to 273 

Model 1 that was explained by Model 2 was between 34% and 69% depending upon 274 

the individual test. 275 

The BIC values for Models 0, 1 and 2 (Table 3) showed that, with the exception of 276 

MRM, Model 2 provided the best performance. Excluding the MRM results, Model 2 277 

explained between 11% and 54% of the unexplained variance due to Model 0. Model 278 

0 was slightly superior to Model 2 for MRM, explaining 4% of the variance 279 

unexplained by Model 2. This result may be due to the relatively small range of 280 

effects seen in the test, which is due to the relative insensitivity of the endpoint. 281 

Assuming that random errors in the measured responses are comparable in magnitude 282 

to those for the other endpoints, we would expect model fits to this dataset to be more 283 
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sensitive to such errors. Model 1 was generally inferior to Model 0, except for two 284 

tests (Folsomia candida reproduction and potential nitrification) (Table 3). 285 

3.1. Modelling with global parameters 286 

Lofts et al. (2004) assumed that the effect of pH on copper toxicity could be described 287 

by a single parameter common to all the target organisms/processes. In order to 288 

investigate this assumption quantitatively, the entire dataset was re–analysed forcing a 289 

single  across all the endpoints (Model 2a). This composite model had a total of 15 290 

parameters (seven  values, seven Deff, 50 values and one ) compared to a total of 21 291 

parameters when test-specific  values were fitted. Fitting parameters are shown in 292 

Tables 4 and 5. Forcing a global  decreased the overall R
2
 and increased RMSE and 293 

BIC in comparison with the overall values calculated from the test–specific fits (Table 294 

6). Nonetheless the decline in goodness–of–fit was not large and the imposition of a 295 

global  appeared a reasonable simplification. Furthermore, the BIC favoured Model 296 

2a over Model 0, indicating that even with a global , using the free ion approach 297 

significantly improved the description of the results compared with using total metal 298 

as the dose. The fitted  values mostly fell within a reasonably narrow range between 299 

unity and two, with the exception of the MRM test. This suggested a further 300 

simplification of the model by also forcing a global  (Model 2b), further reducing the 301 

number of parameters to nine. Fitting results using this model are shown in Table 6. 302 

The increase in RMSE and decrease in R
2
 compared to Model 2a were marginal, and 303 

the BIC favoured Model 2b over Model 2a. Figure 3 compares the overall fits of 304 

Models 2, 2a and 2b. 305 

3.2. Effect of pH and major cations in the effective dose 306 

The effective dose term in Model 2 was extended to consider the effect of an 307 

additional cation as well as H
+
. This model was then applied to each endpoint in turn, 308 

in each case fitting the effect of one major cation (Na
+
, Mg

2+
, K

+
, Ca

2+
) in addition to 309 

H
+
, giving 28 fits in all. The entire parameter set (, , Deff, 50, ) was fitted in each 310 

case. The resulting fits were compared to the fits obtained using Model 2 by 311 

comparing BIC values. The cation was considered to exert an effect where the BIC 312 

value for the fit using the extended model was smaller than that for the corresponding 313 

fit using Model 2. Table 6 indicates whether the cation exhibited a ‘protective’ or a 314 
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‘toxic’ effect, judged from the sign of the coefficient, , of p[C
z+

] in Equation 3. A 315 

negative coefficient indicates a 'protective' effect while a positive coefficient indicates 316 

a 'toxic' effect. Generally there was little systematic pattern to the effects found. Of 317 

the 28 fits, an effect due to the major cation was found in 17. However, only in six of 318 

these cases was the effect 'protective'; in the remaining cases, an apparent 'toxic' effect 319 

of the additional cation was seen. The most consistent pattern of effect was observed 320 

for Ca
2+

, with a 'toxic' effect observed in six of the seven tests. Enhancement of 321 

toxicity due to Mg
2+

 was observed in four tests and a protective effect in one other. 322 

Na
+
 showed a toxic effect in only one test and a protective effect in three others, while 323 

K
+
 showed no enhancing effects and protective effects in two tests only. 324 

3.3. Application to the Chinese dataset 325 

The expression for the EC50 as the free copper ion for Hordeum vulgare, from the 326 

parameterised model, is 327 

60.2pH79.0]Culog[ ssEC50

2   (12) 328 

Li et al. (2010) measured the pH of the soils using a deionised water extraction. To 329 

convert their values to pHss, we applied the expression given by De Vries et al. 330 

(2007): 331 

28.0pH05.1pH
2Hss  O  (13) 332 

Ten soils had pHss values within the calibration range of FRIED (pHss = 3.1–8.0); 333 

therefore, the analysis was confined to these soils. Back–calculation from copper free 334 

ion to total soil copper at the EC50 gave the result shown in Figure 4. The root mean 335 

squared deviation in log total Cu (mg/kg) was 0.17, and nine of the ten measured 336 

EC50s were predicted to within a factor of two. A small optimisation of Deff, 50 from 337 

-2.60 to -2.42 further reduced the root mean squared error to 0.038 (Figure 4). 338 

4. Discussion 339 

4.1. Performance of the FRIED model 340 

FRIED was successful in describing the variability in copper toxicity across the 341 

different soils. In six of the seven tests, FRIED fits were superior to those obtained 342 

taking total soil metal as the effective dose. FRIED fitting confirmed a significant 343 

effect of pH on Cu
2+

 toxicity, in agreement with previous work such as that by 344 

Steenbergen et al. (2005) on the acute toxicity of Cu to the earthworm Aporrectodea 345 
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caliginosa, Thakali et al. (2006a, b) on the non-calcareous soils of this dataset, and the 346 

work of Lofts et al. (2004) on deriving critical limit functions. The pH dependence of 347 

Cu
2+

 toxicity has also been previously demonstrated for the plant and microbial 348 

process toxicity data used here, by calculating soil–specific EC10s and EC50s 349 

expressed as Cu
2+

 and regressing these against soil pH (Oorts et al., 2006; Zhao et al., 350 

2006). FRIED extends this approach by fitting a set of complete dose–response 351 

curves, instead of ECx values.  352 

We have tested the key assumption made by Lofts et al. (2004) that the pH–353 

dependence of free ion toxicity is the same regardless of the soil organism or process 354 

under consideration.  While modelling the whole dataset forcing a single   gave an 355 

inferior fit in comparison to that obtained by allowing endpoint–specific  values, the 356 

goodness–of–fit was not greatly poorer and the model was favoured over those where 357 

protective effects of H
+
 were not considered. Thus, the assumption of a global  is 358 

reasonable if specific data on the  value for a given endpoint are not available, as 359 

was the case in the work of Lofts et al (2004). In that work, an  value of -1.21 was 360 

derived, later refined to -1.26 (De Vries et al., 2007). This is a larger dependence of 361 

apparent free ion toxicity on pH than we have calculated when forcing global  values 362 

in Models 2a and 2b (-0.89 and  -0.94 respectively). The dataset of Lofts et al. (2004) 363 

was not systematic in terms of individual endpoint measurement across different soil 364 

compositions.  The datasets used here are structured and comprehensive in respect of 365 

measurements across a range of soil compositions, for a range of organisms and 366 

processes. Thus, it is not surprising to find that the  value differs between the two 367 

studies. A logical next step would be to use the global  value in an updated 368 

calculation of a critical limit function for copper. 369 

The term  quantifies Cu
2+

:H
+
 competition at the site of toxic action. Thus, the 370 

similarity among  values for the different endpoints implies similarity in the ion 371 

binding behaviour at the site(s) of toxic action on the organisms.  It has been 372 

suggested that the underlying mechanism of Cu toxicity is binding of Cu to thiol 373 

groups in proteins and consequent damage to their structure (Letelier et al., 2005); this 374 

has been noted as a reason for the sensitivity of plant ATPases to Cu (De Vos et al., 375 

1991) and thus might also be related to the well–established effects of Cu on the 376 

Na
+
/K

+
-ATPase in animals (e.g. Lauren and McDonald, 1986)). If Cu initially binds 377 

to ATPase carrier proteins or ion pumps on the cell membrane, this may account for 378 
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the apparent similarity in the binding behaviour of the uptake sites in different taxa, 379 

particularly because it is recognised that there is a high conservation of the amino acid 380 

sequence and crystal structure of known ion pumps such as metazoan Na
+
/K

+
-381 

ATPases (e.g. Pressley, 1992; Ma et al., 2005). Further investigation of this 382 

phenomenon would be facilitated with knowledge of  values for other organisms, 383 

such as freshwater species. De Schamphelaere and Janssen (2006) found that the toxic 384 

effects of copper (expressed as Cu
2+

 activity) on the growth rate of two algal species 385 

(Pseudokirhcneriella subcapitata and Chlorella vulgaris)could be described as a 386 

function of pH. Their calculated slope values are compared with the slopes derived in 387 

this study in Figure 5. It can be seen that the slope for Chlorella vulgaris is not 388 

statistically different from four of the slopes calculated in this study, and the slope for 389 

Pseudokirchneriella subcapitata is not statistically different from one slope calculated 390 

in this study. Based on this analysis, we tentatively suggest that the hypothesis of a 391 

common, organism–independent slope for the pH dependence is worthy of further 392 

investigation. 393 

Imposing a global  value as well as a global  produced a fit superior to that where 394 

endpoint–specific s were allowed; although the RMSE was slightly inferior, the BIC 395 

indicated that this was well compensated by the smaller number of parameters (Table 396 

5). The resulting model contains only a single species–specific parameter, Deff, 50, and 397 

can be used to derive a generic expression for estimation of an effect concentration of 398 

Cu
2+

 from any other effect concentration. Rearranging Equation 4 gives a general 399 

expression for the concentration of Cu
2+

 causing a given level of effect in a soil: 400 


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
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R

RR
R

0
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

  (14) 401 

Considering two different response levels R1 and R2 of a given organism or process to 402 

copper in two soils having pHss values denoted pHss, 1 and pHss, 2, we can derive the 403 

following expression: 404 
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 (15) 406 

which allows one effect concentration to be estimated from the other. Using global 407 

values of  and , this expression is potentially useful for risk assessment since it 408 
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allows an effect concentration for a given species to be calculated in a target soil, 409 

given only an effect concentration in another soil of known pHss. 410 

The lack of consistent effects due to other cations (Na
+
, Mg

2+
, K

+
, Ca

2+
) is an 411 

interesting finding, particularly as the model fitting suggests an additional toxic effect 412 

due to these cations in some cases. Thakali et al. (2006a, b) did not find protective 413 

effects due to ions other than H
+
 when applying a BLM to the subset of non-414 

calcareous soils, other than an Mg effect on potential nitrification. Protective effects 415 

of Mg
2+

 and Ca
2+

 against Cu toxicity have been previously observed, for example by 416 

Kinraide et al. (2004) and Luo et al. (2008) for root elongation of wheat (Triticum 417 

aestivum) in nutrient solutions. On the other hand, Steenbergen et al. (2005) found 418 

that Mg
2+

 and Ca
2+

 did not protect the earthworm A. caliginosa against the acute 419 

toxicity of Cu
2+

 but appeared to contribute to the toxicity. They suggested that co–420 

variance between H
+
, Mg

2+
 and Ca

2+
 activities was at least partly responsible for these 421 

observations. Such co–variance is also observed here; soil solution ion concentrations, 422 

particularly Mg and Ca, tend to increase with increasing copper dose (Figure 6) due to 423 

competitive displacement from binding sites on the soil solids by Cu. Clearly these 424 

side effects of dosing with a soluble metal salt may be confounding a rigorous 425 

analysis of protective effects; future studies need to consider how such side effects 426 

might be minimised, for example by leaching the soil following dosing and prior to 427 

toxicity testing (e.g. Bongers et al., 2004; Oorts et al., 2007; Smolders et al., 2009; Li 428 

et al., 2010). 429 

This study bears comparison to the work of Thakali et al. (2006a; 2006b) on the 430 

development of a terrestrial BLM for copper. In this study, we have used a soils 431 

dataset covering both non–calcareous and calcareous soils, while Thakali et al. 432 

confined their analysis to the non–calcareous soils of the same dataset.  In applying 433 

the BLM to the data, Thakali and co–workers found it necessary to fix the fractional 434 

occupancy of the biotic ligand corresponding to a 50% effect, before fitting binding 435 

constants for Cu
2+

 and H
+
. FRIED avoids the need to fit separate affinity parameters 436 

for the potentially toxic metal and competing ion(s) as the  parameter expresses the 437 

relative binding affinities of Cu
2+

 and H
+
. FRIED has also been useful in illustrating 438 

common patterns of Cu bioavailability across different endpoints, supporting the 439 

hypothesis of a single  made by Lofts et al. (2004). This would likely be difficult to 440 

achieve using a BLM unless concentrations of metal at site(s) of toxic action were 441 
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measured. It would be highly desirable to investigate whether similar patterns in 442 

bioavailability parameters exist for other cationic metals. 443 

The ability of FRIED to predict EC50s in the independent dataset of Li et al. (2010) 444 

largely to within a factor or two, without any optimisation, is an encouraging finding 445 

for the validity of the model and suggests its potential for use in risk assessment for 446 

prediction of toxicity as the total metal in soil, when coupled with expressions to 447 

relate the predicted toxic free ion concentration to the total or the geochemically 448 

active soil metal concentration. Here, we calculated the total soil copper from the free 449 

ion using a two–stage calculation entailing the calculation of the geochemically active 450 

metal pool. Alternative possibilities are the direct calculation of the total metal from 451 

the free ion, given a suitable empirical relationship, or the calculation of the 452 

geochemically active metal from the free ion using a speciation model. 453 

An important difference between this study and the BLM work of Thakali and co–454 

workers was that the latter related the free Cu ion to the total soil metal using WHAM, 455 

while this study calculated free Cu from measurements on the soil solution.  The 456 

ability of the parameterised BLM to predict toxicity on the basis of total soil metal is 457 

useful for standard–setting and risk assessment purposes. However, for the purpose of 458 

optimally parameterising a toxicity model based on the chemistry of the soil solution 459 

it is likely that calculating free ion from the soil solution is more reliable than 460 

calculating it based on measurements of the soil solid phase composition.  461 

As we have shown by application of the model to the Chinese soils dataset of Li et al. 462 

(2010), FRIED could readily be coupled to an empirical or mechanistic partitioning 463 

model to enable the link to total soil metal concentration to be made. 464 
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Table 1. Selected properties of the soils used in toxicity testing 

Soil Location pHa Corg
b 

g/kg DW soil 

Cinorg
c 

g/kg DW soil 

Clayd 

g/kg DW soil 

Cue 

mg/kg DW soil 

Gudow Germany 3.0 51 0 19 2 

Nottingham UK 3.4 52 0 78 17 

Houthalen Belgium 3.4 19 0 31 2 

Rhydtalog UK 4.2 129 0 1 14 

Zegveld Netherlands 4.7 233 0 7 70 

Kövlinge I Sweden 4.8 16 0 54 6 

Souli I Greece 4.8 4.1 0 376 31 

Kövlinge II Sweden 5.1 24 0 67 8 

Montpellier France 5.2 7.6 0 82 5 

Aluminusa Italy 5.4 8.7 0 501 21 

Woburn UK 6.4 44 0 166 22 

Ter Munck (Leuven) Belgium 6.8 9.8 0 140 22 

Vault de Lugny France 7.3 15 60 365 21 

Rots France 7.4 13 149 257 14 

Souli II Greece 7.4 26 474 434 34 

Marknesse Netherlands 7.5 13 100 247 18 

Barcelona Spain 7.5 15 72 195 88 

Brécy France 7.5 15 176 485 31 

Guadelajara Spain 7.5 3.8 365 246 7 
a measured using 0.01M CaCl2. 
b organic carbon. 
c inorganic carbon. 
d Clay fraction measured after removal of organic matter from soil. 
eMeasured using boiling aqua regia extraction. 
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Table 2. Summary of toxicity tests carried out. 

Test species/process Endpoint Number of data points Reference 

Hordeum vulgare Root growth 125 Rooney et al. (2006) 

Lycopersicon esculentum Shoot growth 126 Rooney et al. (2006) 

Folsomia candida Reproduction 93 Criel et al. (2008) 

Eisenia fetida Reproduction 79 Criel et al. (2008) 

Potential nitrification Inhibition 79 Oorts et al. (2006) 

Maize residue mineralisation Inhibition 132 Oorts et al. (2006) 

Glucose–induced respiration Inhibition 98 Oorts et al. (2006) 
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Table 3. Test–specific parameters and fitting measures for the effective dose Models 0, 1 and 2
a
. Abbreviations for the toxicity tests are: 

Hv  Hordeum vulgare root elongation; Le  Lycopersicon esculentum shoot elongation; Fc  Folsomia candida reproduction; Ef  Eisenia 

fetida reproduction; PN  potential nitrification; MRM  maize residue mineralization; GIR  glucose–induced respiration.  

 Model 0: Deff = log[Cu]soil (mg/kg DW soil)  

Test      Deff, 50     RMSEb R2 FVEM2, M0
c FVEM2, M1

c BICd 

Hv 3.36 (2.70, 4.27)  2.34 (2.25, 2.42)  –  21.7 0.67 – – 789 

Le 2.96 (2.24, 4.34)  2.52 (2.40, 2.64)  –  28.5 0.49 – – 864 

Fc 1.63 (1.16, 2.19)  2.66 (2.47, 2.91)  –  25.0 0.40 – – 613 

Ef 3.88 (2.73, 6.88)  2.44 (2.34, 2.55)  –  23.5 0.60 – – 516 

PN 2.42 (1.65, 3.91)  2.67 (2.49, 2.86)  –  30.0 0.43 – – 555 

MRM 1.31 (1.02, 1.68)  3.70 (3.48, 4.04)  –  11.6 0.54 – – 666 

GIR 1.83 (1.29, 2.54)  2.89 (2.70, 3.17)  –  23.3 0.50 – – 636 

 Model 1: Deff = log[Cu2+] (M)  

Test      Deff, 50     RMSE R2 FVEM2, M0
 FVEM2, M1 BIC 

Hv 0.62 (0.52, 0.75)  -7.06  (-7.56, -6.57)  –  25.8 0.54 (–) – 832 

Le 0.54 (0.43, 0.71)  -6.95  (-7.56, -6.39)  –  28.9 0.48 (–) – 867 

Fc 0.60 (0.45, 0.81)  -5.26  (-5.74, -4.83)  –  21.9 0.54 0.24 – 592 

Ef 0.39 (0.21, 0.69)  -4.99  (-5.89, -3.64)  –  33.0 0.21 (–) – 570 

PN 0.85 (0.61, 1.32)  -5.66  (-6.19, -5.15)  –  26.7 0.55 0.21 – 536 

MRM 0.17 (0.09, 0.27)  3.05  (-0.18, 11.01)  –  15.8 0.15 (–) – 748 

GIR 0.30 (0.19, 0.43)  -3.86  (-4.86, -2.15)  –  28.5 0.26 (–) – 675 

 Model 2: Deff = log[Cu2+] – ·pHss  

Test      Deff, 50     RMSE R2 FVEM2, M0
 FVEM2, M1 BIC 

Hv 1.74 (1.46, 2.18)  -2.60 (-3.14, -2.06) -0.79 (-0.88, -0.70) 15.4 0.84 0.50 0.64 703 

Le 1.67 (1.21, 3.19)  -1.75 (-2.61, -0.97) -0.98 (-1.11, -0.83) 23.2 0.67 0.34 0.36 812 

Fc 1.05 (0.87, 1.29)  -1.72 (-2.69, -0.62) -0.75 (-0.93, -0.55) 17.0 0.72 0.54 0.37 545 

Ef 1.93 (1.31, 3.22)  0.30 (-0.52, 1.31) -1.18 (-1.36, -1.02) 22.2 0.65 0.11 0.55 507 

PN 2.15 (1.27, 10.03)  -2.44 (-3.59, -1.29) -0.63 (-0.80, -0.45) 21.6 0.71 0.48 0.34 503 

MRM 0.72 (0.55, 0.96)  2.68 (1.78, 3.74) -1.11 (-1.24, -0.98) 11.8 0.53 (–) 0.44 671 

GIR 1.57 (1.26, 2.14)  1.07 (0.43, 1.78) -1.15 (-1.25, -1.06) 15.8 0.77 0.54 0.69 560 
a Values in brackets are the 95% confidence intervals of the parameters, calculated by bootstrapping. 
b root mean squared error in % response. 
c Fraction of variance unexplained by Model 0 or Model 1, that is explained by Model 2. 
d Bayesian information criterion. 
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Table 4. Fitted parameters for the variants of Model 2 (FRIED) where either  (Model 2a) or  and  

(Model 2b) are forced to global values
a
. 

 Model 2a: global  

Test     Deff, 50     

Hv 1.66 (1.41, 2.04) -1.81 (-2.41, -1.51)    

Le 1.53 (1.12, 2.63) -2.27 (-2.71, -1.86)    

Fc 1.07 (0.89, 1.32) -0.96 (-1.42, -0.49)    

Ef 1.37 (0.85, 1.98) -1.26 (-1.80, -0.89) -0.89 (-0.95, -0.82) 

PN 1.95 (1.24, 11.21) -0.89 (-1.37, -0.44)    

MRM 0.71 (0.57, 0.91) 1.50 (1.14, 1.62)    

GIR 1.10 (0.78, 1.47) -0.35 (-0.83, 0.11)    

 Model 2b: global  and  

Test     Deff, 50     

Hv    -1.58 (-1.96, -1.16)    

Le    -1.92 (-2.34, -1.53)    

Fc    -0.72 (-1.14, -0.26)    

Ef 1.33 (1.21, 1.48) -0.99 (-1.36, -0.63) -0.94 (-1.00, -0.88) 

PN    -0.58 (-1.03, -0.08)    

MRM    1.39 (1.07, 1.71)    

GIR    -0.10 (-0.50, 0.37)    
a Figures in brackets are the 95% confidence intervals of the parameter, obtained by bootstrapping. 
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Table 5. Fitting statistics for models using the different effective dose terms. Errors are calculated by 

combining the results of fitting to all seven endpoints. Models 2a and 2b contain one or two parameters 

forced to global values (see text for details).  

Model Effective dose RMSEa R2 FVEM0 FVEM1 BICb 

0 log[Cu]soil 23.5 0.55 (–) (–) 4722 

1 log[Cu2+] 25.8 0.46 (–) (–) 4858 

2 log[Cu2+] – ·pHss 18.3 0.73 0.40 0.50 4395 

2a log[Cu2+] – ·pHss 19.5 0.69 0.31 0.43 4458 

2b log[Cu2+] – ·pHss 19.9 0.68 0.29 0.41 4442 
a Root mean squared error in the response. 
b Bayesian information criterion. 
c Fraction of variance explained; see text for explanation. 
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Table 6. Performance of effective dose models comprising terms for pH and one of p[Na
+
], p[Mg

2+
], p[K

+
] and p[Ca

2+
]. The letters P and T indicate an improved model fit 1 

due to inclusion of the additional term, based on a lower value of the Bayesian Information Criterion for the extended model. The letter P indicates an apparent protective 2 
effect ( < 0) and the letter T indicates an apparent toxic effect ( > 0). Where no letter is shown, the additional term did not improve the model fit. 3 

 Deff = log[Cu2+] – ·pHss –  ·p[Cz+] 

Test Na+ Mg2+ K+ Ca2+ 

Hv  T P T 

Le  T  T 

Fc P P P T 

Ef T T  T 

PNR P    

MRM  T  T 

GIR P   T 

 4 
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Figures 

Figure 1. Comparison of fits of Model 1 (left hand panes) and Model 2 (right hand panes) for 

effects on H. vulgare, L. esculentum, F. candida and E. fetida.  

Figure 2. Comparison of fits of Model 1 (left hand panes) and Model 2 (right hand panes) for 

effects on potential nitiration rate (PN), maize residue mineralization (MRM) and glucose–

induced respiration (GIR). 

Figure 3. Results of fitting the data globally with single values of  and . Observed and 

predicted response plotted against the standardised effective dose, Deff, S [Deff, S = ·(Deff -

 Deff, 50)]. Closed circles: H. vulgare; open circles: L. esculentum; closed triangles: F. 

candida; open triangles: E. fetida; closed squares: potential nitrification rate (PN); open 

squares; maize residue mineralization (MRM); closed diamonds: glucose–induced respiration 

(GIR). 

Figure 4. Prediction of EC50s for copper effect on H. vulgare root elongation in the dataset of 

Li et al. (2010), using the endpoint–specific parameter set (Model 2). Solid points represent 

EC50s calculated by blind prediction, open points represent EC50s calculated by optimisation 

of Deff, 50. The solid line is the 1:1 line, the dashed lines indicate a factor of two difference 

between observation and prediction. 

Figure 5. Endpoint–specific α values from this study (solid circles), compared with those of 

De Schamphelaere and Janssen (2006) (open circles). Hv  Hordeum vulgare root 

elongation; Le  Lycopersicon esculentum shoot elongation; Fc  Folsomia candida 

reproduction; Ef  Eisenia fetida reproduction; PN  potential nitrification; MRM  maize 

residue mineralization; GIR  glucose–induced respiration; Ps  Pseudokirchneriella 

subcapitata growth rate (72 hours); Cv  Chlorella vulgaris growth rate (72 hours). Error 

bars refer to 95% confidence intervals calculated by bootstrapping (endpoints of this study) 

and 2 × the standard error (endpoints of De Schamphelaere and Janssen, 2006). 

Figure 6. Example of variations in Na, Mg, K and Ca concentrations in soil solution with 

increasing Cu dose. Concentrations of Na, Mg, K and Ca measured in soil solution from 

Rhydtalog soil following test of H. vulgare root elongation, as a function of the measured Cu 

dose to the soil. Closed circles: Na; open circles: Mg; closed triangles: K; open triangles: Ca. 

The lines are for guidance. 



  24 

log[Cu
soil

] (mg/kg dw soil)

0 1 2 3 4

R
e

s
p

o
n

s
e

0

20

40

60

80

100

log[Cu
2+

] (M) + 0.79pH
ss

-8 -6 -4 -2 0 2 4

R
e

s
p

o
n

s
e

0

20

40

60

80

100 H. vulgare

 

log[Cu
soil

] (mg/kg dw soil)

0 1 2 3 4 5

R
e

s
p

o
n

s
e

0

20

40

60

80

100

120

140

log[Cu
2+

] (M) + 0.98pH
ss

-8 -6 -4 -2 0 2 4

R
e

s
p

o
n

s
e

0

20

40

60

80

100

120

140 L. esculentum

 

log[Cu
soil

] (mg/kg dw soil)

0 1 2 3 4

R
e

s
p

o
n

s
e

0

20

40

60

80

100

120

log[Cu
2+

] (M) + 0.75pH
ss

-8 -6 -4 -2 0 2 4

R
e

s
p

o
n

s
e

0

20

40

60

80

100

120 F. candida

 

log[Cu
soil

] (mg/kg dw soil)

0 1 2 3 4

R
e

s
p

o
n

s
e

0

20

40

60

80

100

120

log[Cu
2+

] (M) + 1.18pH

-8 -6 -4 -2 0 2 4

R
e

s
p

o
n

s
e

0

20

40

60

80

100

120 E. fetida

 

Figure 1. 
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Figure 2. 
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Figure 4. 

  

Observed EC50 (mg Cu/kg soil)

100 1000

C
a

lc
u

la
te

d
 E

C
5

0
(m

g
 C

u
/k

g
 s

o
il
)

100

1000



  28 

 

Figure 5. 
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