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Abstract. A review is given of the geodetic concepts nec- essary to understand the time dependent gravity field and its
essary for oceanographers to make use of satellite gravityelationship to mass movements in the earth system.
data to define the geoid, and to interpret the resulting prod- The primary geodetic quantity of interest to oceanogra-
uct. The geoid is defined, with particular attention to sub-phers is the geoid. This is the level surface which would co-
tleties related to the representation of the permanent tide, anithcide with sea level if the ocean was in a static equilibrium.
the way in which the geoid is represented in ocean modelsit is the surface relative to which slopes must be calculated
The usual spherical harmonic description of the gravitationalo determine geostrophic currents (with a correction for at-
field is described, together with the concepts required to calmospheric pressure gradients). The geoid can be determined
culate a geoid from the spherical harmonic coefficients. Afrom space by measuring the Earth’s gravity field via its ef-
brief description is given of the measurement system in thefect on the motion of satellites and of control masses within
GOCE satellite mission, scheduled for launch shortly. Fi-those satellites.
nally, a recipe is given for calculation of the ocean dynamic  This note starts by defining the geoid, and noting some
topography, given a map of sea surface height above a refsubtleties to its definition. This is followed by a description
erence ellipsoid, a set of spherical harmonic coefficients forof the spherical harmonic representation of the geoid and
the gravitational field, and defining constants. some aspects of that which must be accounted for in inter-
preting the data. A description of the GOCE measurement
system is then given, followed by a recipe for how to calcu-
late the ocean dynamic topography given a mean sea surface
1 Introduction and a set of spherical harmonic coefficients for the gravita-
tional field.
Satellite gravity measurements are becoming an important
tool in physical oceanography, with the success of the
GRACE mission and the imminent launch of GOCE. Ac- 2 Definition of the geoid
cordingly, it is becoming important for oceanographers to
understand satellite gravity. This is not as straightforwardThe geoid is a “horizontal” or “level” surface, a surface
as might be thought, since there are a number of subtleties/hich is everywhere perpendicular to the local direction of
of geodesy associated with the interpretation of gravity datagravity. If there were no waves or currents in the ocean, it is
and the usual product takes the form of a set of spherical harwhere the sea surface would eventually settle in equilibrium.
monic coefficients. Oceanographers are generally not use8ince dynamics in the ocean make it possible for sea level to
to working with either of these, so the purpose of this notedepart from the geoid, the actual vertical distance of sea sur-
is to describe the basics of the relevant geodetic issues, witface height above the geoid is known as the ocean’s dynamic
particular reference to GOCE and its measurement systentopography.
The aim is to describe the static (time mean) component of The actual shape of the geoid includes structure at all
the gravity field, without going into the additional detail nec- length scales. To a first approximation it is a sphere with ra-
dius about 6371 km. A closer approximation is an ellipsoid,
Correspondence taC. W. Hughes with equatorial radius about 21.4 km longer than the polar ra-
(cwh@pol.ac.uk) dius. Relative to this ellipsoid, the geoid undulates by up to
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16 C. W. Hughes and R. J. Bingham: GOCE and the Geoid

100 m on the largest scales. On relatively short length scalealong a geopotential) of the geopotenti#), on a pressure

(a few km to a few hundred km) the geoid is closely relatedsurface, considered as mapped onto the horizontal surface.
to topography as the gravitational attraction of, for example,This is often written a&, W,=—gV, Z, making the approx-

a seamount will pull water towards it leading to a bump in imation thatg is constant, and hence that the geopotential on
the sea surface above it (although gravity is stronger immethe pressure surface can be represented as a geometric height
diately above the seamount, this does not lead to a depre<£ of the pressure surface above a geopotential surface.

sion in sea level. Rather, it is the lateral gravitational force  Both of these equations involve geometric approximations
which pulls water from either side of the seamount, leadingof the order of the aspect ratio of the flow or of the slope of
to a raised level above the seamount). This is the principlehe pressure surface, but both retain their essential form when
behind using sea level measurements from satellite altimetryjeneralized to account for these approximations. It is clear
to help map the sea floor, as used for exampl&hyth and  that it is the gradient of geopotential along a constant pres-
Sandwell (1997). At longer length scales, topography does sure surface which is important i)( and that geopotentials
not have such a large influence as the weight of mountaingre important as the surface along which pressure gradients
is balanced by low density anomalies beneath them (rathegre calculated (defining the directionlofin (3).

like the compensation of sea level anomalies by movements concept of dynamic topography is most clearly inter-

of_the“';lherrpl(_)lfln_we (l)then obserr1ved n t?et;)cean)r,] asthe mounf)reted as in) as the geopotential on a constant pressure sur-
tains "float” like icebergs on the mantle beneath. face. In the absence of a spatially-varying atmospheric pres-

The geoid is not, howev_er, S|mply a graynauonal €qUIPO- ;e the sea surface would be a surface of constant pressure,
tential surface. The Earth is rotating, and in the rotating ref-

; feel wifugal f hich t be add ind hence the geopotential on the sea surface would be a dy-
erence irame we feel a centriiugal force which must be added, 5 y;q topography. With variable atmospheric pressure we
to the gravitational attraction to give what is usually termed

. e must instead calculate geopotential on the inverse-barometer
gravity”.

. . . . ) corrected sea surface, as described below.
To summarise this in mathematical terms, if we write the Al velv. th td ) h b
acceleration due to gravity as the gradient of a potential ter nauye y, the concept of dynamic topography can be
conceived in terms of pressure as3).(As long as sea level
g=VW, (1) isclose to the geoid, it can be used with hydrostatic balance
o o plus an “inverse barometer” correction for atmospheric pres-
then the geoid is a surface of consta¥it(note the sign in  gyre, to calculate pressure on the geoid (this is something of

this equation: the geodetic convention is, counterintuitively, 5 fiction where the geoid is above sea level, but is sufficiently
that greater height and energy corresponds to lower potentiahccyrate for most calculations).

unlike electrostatic theory, for example). We are therefore interested in mapping either the geopo-

There are an infinite number of surfaces of consint tential along the IB-corrected sea level surface, or the height

(geopotential surfaces), which results in the question of ) . .
which one to define as “the” geoid. Although loosely de- of the IB-corrected sea level above the geoid (which leads to

. ) .. .a fictional pressure on the geoid). Note that, in the former
fined as the geopotential closest to observed sea level, it is in b 9 )

. . . _case, we do not actually need to calculate the geoid, only
practice usually calculated as the geopotential correspondmgne geopotential at a known set of positions. This makes the

to the value at the surface of a fictional reference ellipsoidal . . .
. : . calculation simpler (but see Sect. 6.3), and avoids some am-
earth with approximately the same mass, radius, and flatten-. .. .
iguities (such as choices of reference surfaces).

ing (i.e. equatorial bulge) as the real Earth. . . .
The main reason for oceanographic interest in the geopo- T 7 1S the height of the sea surface above the geoid,

tential lies in its special role in the primary dynamical bal- then the height of the IB-corrected sea surface is given by
ance of large-scale ocean currents: geostrophy. This relglTrgPa, Wherep is the density of seawater at the surfage,

tionship commonly appears in two related forms: is the local strength of gravity, angl, is atmospheric pres-
sure. Withg about 2% less than 10 m$ (and varying spa-

fug, = —k x V,W,, (2) tially by up to 0.25% from its mean value), apdabout 2—

3% greater than 1000 kgm, this leads to a conversion factor
and whereby 1 mbar (100 Pa) of pressure is closely equivalent to
pfg = K % Vp, ©) 1cm of sea level, to within 1.5%. For millimetric accuracy,

this equivalence can be assumed for integrations over dis-
wherep is water densityy,, is the two-dimensional, horizon- tances of up to about 70cm. Beyond that, a true local value
tal (i.e. along a surface of constaiit) geostrophic velocity, of density and gravity must be used. This is not a problem
k is a unit vector in the local vertical (upwards) direction, for calculating the IB correction, which is typically a few tens
and p is pressure. The Coriolis parameterfis=2Q2 sin¢’, of centimetres and could be calculated to full accuracy if re-
whereQ is the Earth’s angular rotation speed, aids lat- quired. However, it can be a problem for defining the height
itude (see Sect. 3 for a more precise definitionpf In of the sea level above the geoid since this covers a range of
the first form,V, W, represents the horizontal gradient (i.e. over two metres, and can be larger if the geoid is carelessly
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C. W. Hughes and R. J. Bingham: GOCE and the Geoid 17

defined to be a geopotential which is not close to mean sealsewhere, wherg’ is the density anomaly compared to the

level. reference earth.
~ The relationship between geopotentiland the gravita- A satellite measures quantities which permit the calcula-
tional potentialV’ due to the Earth’s mass is given by tion of derivatives ol at satellite altitude. Given this bound-

ary condition, and the assumption that the measurésiall
due to mass enclosed within the satellite orbit (requiring cor-
where® is the centrifugal potential. The gravitational poten- rections to be made for the effect of Sun and Moon, to be

W=V+o, (4)

tial is related to mass by discussed in the next subsection), it is possible to sdye (
5 to define an artificiaV in all space down to some depth be-
VeV = —4rGp (5)  neath the Earth’s surfac& (becomes singular deeper within

the Earth). In free space, thiswill correspond to the tru&

WhergG Is the gravitational ponstant, andis dens'|ty,. ex- but on descending beneath the Earth’s surface they diverge as
pressing the fact that mass is the source of gravitational at-

traction. Outside the Earth and its atmosphereD, soV o is no longer zero. This makes little dn‘feren_ce down to the.
) - surface of the ocean, where the only correction necessary is
obeys Laplace’s equation;

due to the atmosphere. This correction amounts to a constant
V3V = 0. (6) lifting of the geoid by about 6 mm over the ocedufnmel
and Rapp1976, plus smaller £1 mm) adjustments to ac-
In this case} is termed an harmonic function in free space. count for lateral variations in atmospheric mass. Larger ad-
It is usual to definéV such thatV tends to zero at infinite justments are necessary over land, where the geoid may lie
distance from the Earth. The centrifugal potential is given bypeneath the solid earth surface, but we will not be concerned
2 2 with those corrections here, and will in fact ignore the atmo-
Q%r2cod ¢ ) ) L . :

=7 @) spheric correction as it is dynamically irrelevant (the 6 mm

2 signal being constant over the ocean). This process of taking
whereQ is the Earth’s angular rotation ratejs radial dis- measurements at satellite altitude and projecting them down
tance from the Earth’s centre, agds angle subtended at the to the Earth’s surface or geoid is known as ‘downward con-
Earth’s centre, measured northwards from the equator (this i§inuation’.
geocentric latitude, which differs slightly from the geodetic
latitude used to defing’, which is normally used in maps, 21 The permanent tide system
ocean models, and altimetry products, see Sect. 3 for more
detail). r cosg is the distance from the Earth’s rotation axis,
measured perpendicular to that axisis zero at the rotation
axis, and surfaces of constabtare cylinders centred on the
axis, with @ increasing toco as distance from the axis in-
creases. The centrifugal acceleratdd® can also be written
as

The discussion above relates to the gravitational field of the
Earth, together with the centrifugal potential due to earth ro-
tation. A complicating factor is that there are also gravita-
tional forces exerted by the Sun and Moon, and the Earth ac-
celerates in response to these forces. This is the phenomenon
which produces the tidal forces leading to ocean and earth
Vd=—-2x (R xr), (8) tides. The usual definition of the geoid averages out the pe-

riodic forces, but an issue remains about the permanent tide.
whereS2 is the earth rotation vector, amnds the radius vector  This results from the fact that, averaged over a long time,

measured from the Earth’s centre of mass. the masses of the Sun and Moon would appear as broad, dif-
A second way of decomposiniyf is fuse bands hovering at great distance over the equator. This
W=UdxT, ) results in an addition to the gravitational potential, and an in-

crease in the Earth’s equatorial bulge in response to it. There
whereU is the so-called normal gravity potential (sum of are a number of ways of dealing with this effect.

gravitational and centrifugal) for an idealised reference earth, In the “mean tide” system, the effect of this extra band
and T is the anomalous potential due to the difference be-of mass is included in the definition of the gravity field and
tween the true mass distribution and that in the referenceyeoid. This means that the geoid corresponds to a genuine
earth.U is not harmonic, since it includes the centrifugal po- equipotential surface — the most physically meaningful case
tential, but7 is harmonic outside the Earth and atmosphere for oceanographers and simplest for comparison with satel-
obeying lite altimetry. Unfortunately, there are various technical rea-
sons why it is awkward to include the gravitational attraction

27 _
VT =0 (10) due to bodies outside the Earth in a description of the gravity
in free space, and field (it is, after all, suppo_sed to I_Je the gravity fiel(_j of the
Earth, not of the other bodies). This leads to the definition of
V2T = —47Gp' (11)  the “zero tide” system.
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18 C. W. Hughes and R. J. Bingham: GOCE and the Geoid

In the “zero tide” system, the gravitational attraction to whereh is another Love number. The conventional value
this extra band of mass is removed from the gravity fieldis abouth=0.62, again really appropriate only to relatively
definition (this correction is precisely known from measure- high frequencies (the value for a fluid earth isklor about
ments). This can occur as a side-effect of removing the time<.93). More detail about permanent tides can be found in
dependent tidal forces due to the Sun and Moon, if their av-Ekman (1989 and Rapp (1989, where the Love numbers
erage is not explicitly replaced in the calculation. To calcu- mentioned here are given.
late the true mean position of an equipotential surface, the
mean tide should then be added back into any geoid calcu-
lated based on a zero tide system. The zero tide system i3 The geometry of ocean models
well-defined, and is the most natural for a representation of o
the Earth’s gravity field as a sum of spherical harmonics, ad" @1 0céan model it is usual to use what are thought of as
discussed later. It is the system used, for example, for thepbherical coordinates: latitude, longitude, and vertical. Irre-

spherical harmonic representations of the GRACE GGMozshective of what vertical coordinate system the model uses,
mean geoidsTapley et al, 2005. there will be az coordinate implicit in the model which rep-

The “tide-free” or “non-tidal” system is a theoretical con- resents distance in the vertical. It is important to recognise
struct in which the gravity field is calculated by not only re- that surfaces of constantare not really determined by dis-

moving the mass of the Sun and Moon from the system, putance from the Earth’s pentre. They real!y represent surfaces
also allowing the Earth’s bulge to relax in response to that ab©f constant geopotential’.  The dynamics of the models
sence, and adding in the effect of the resulting redistribution@SSUme that gravity acts along tbedirection, and there-

of earth mass to the gravity field. This is purely theoretical as/o'® Perpendicular to a surface of constanMore accurate

it is not known how much the Earth would relax in responseMPlementation of the actual geometry of the geoid in an
to such a perturbation, and an assumption has to be madécean model would not involve adding gravitational forces
about the size of the (unmeasurable) “zero frequency Lovealong the horizontal d|_rect|ons, but involves re-mterpre_tlng
number” in order to calculate this effect. To convert from the geometry of the grid to account for the fact that a given
tide-free to mean tide, it is therefore necessary not only to ad§"ange ie, interpreted as geopotential, corresponds to dif-
back in the effect of the Sun and Moon mass, but also to know€rent lengths at different positions on the Earth. In prac-
what Love number was assumed in the system. In practice, §¢€ such a correction makes differences only at the 0.5%
form of “tide free” system is often used since, in correcting '€Ve! (the effect of the 21.4km bulge, smaller again for the
for the effect of time-dependent tides, a correction is usuallySMaller-scale effects), and is far from being the main source

also made for the extra gravitational effect due to the tidesCf €rTOr in ocean models. _

induced in the solid Earth by motions of the Sun and Moon.  Equally, the latitude in ocean models should be interpreted
This is a simple correction to make, again using a Love num-2S geodeuc_latltude _(also some.tlmes called geo_graphlc lati-
ber, and (again, unless the mean tide is explicitly repIaced}Ude)- That is the I_atltude used in all maps, and in altimeter
has the effect of producing measurements in the “tide-free’Products. It is defined as the angle between the normal to
system. However, this is a version of the “tide-free” Systemthe reference eII|p50|d_ and_ the equatorial plane, which dif-
which uses a Love number (usually 0.3) appropriate to tidalfers frgm the geocentric latitude becausg of the departure .of
frequencies instead of the true (unknowable) Love numbeth€ ellipsoid from a sphere. The conversion from geocentric
appropriate to the permanent tide, which is expected to bdalitude¢ to geodetic latitud’ is given by
closer to a valu&=0.93 (Lambeck 1980, calculated for a tang

fluid earth. The GRACE EIGEN-GLO04C gravity field is sup- tang’ = (1_—]0)2

plied in the “tide free” system.

The geoid in the mean tide system is higher at the equawheref is the ellipsoidal flattening (not to be confused with
tor and lower at the poles than in the zero tide system, thehe Coriolis parameter used in Sect. 1, the flattening is de-
difference being l@x(%—% sir ¢) cm (Rapp 1989. The fined asf=(a—b)/a wherea is the semimajor axis or equa-
difference between mean tide and tide-free geoids is largetorial radius of the ellipsoid andl is the semiminor axis or
by a factor(1+k) wherek is the Love number used (usually polar radius). The flattening used for GOCE processing is
0.3). the value from the Geodetic Reference System 188trifz,

A further complication occurs in consideration of land 19803 and is 0.00335281068118, or 1/298.257222101, al-
movement, for example in GPS coordinate fixing of tide though other values are used in other circumstances — see
gauges. Absolute positions relative to a reference ellipsoidSect. 6 for some examples. The difference between the two
are the same in both mean tide and zero tide systems. ltatitudes reaches a maximum of about 0°18Platitude 45
the tide-free system, however, the equatorial bulge is arti{geodetic latitude is greater than geocentric for a point in the
ficially reduced. Land positions in the tide-free system arenorthern hemisphere), corresponding to an offset distance
thus higher at the equator and lower at the pole than in thef about 21 km. If misinterpreted, this offset can have dra-
other systems, the difference being&@h(%—% sir? ¢) cm, matic consequences, as the height of the ellipsoid relative

(12)
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to a sphere can change by more than 70m over this disA (longitude), and- (distance from Earth’s centre), the grav-
tance. Note also that numerical problems may result if theitational potentialV is defined by

conversion formula is used at the poles, whete¢, since 11
tang— oco. GM & (R\'"
- V(g h) = ——
A more general transformation may be needed for points r

above or below the ellipsoid. Given geodetic latitydeand ;

perpendicular distandeabove the reference ellipsoid, spher- Py (SING)[C1.m COSMA + S| 1 SINMA] 16
ical coordinatesr, ¢) can be calculated from=+/X?+z2 Z (SN Cm b ’ (16)

=0 \"

;)
and tanp=z/ X, whereX (=/x2+y?) andz are given by "
X=@+hcosp’, z=(1-Pv+h)sing, (13) GM & /RN
derived fromMoritz (19801, where Vir¢. ) = —— > <7>
1=0

a4 (14) ;

V1= é2sir? c;b” Z Py (SING)[Cy 1y COSMA + S 1y SINMA], a7

m=0
ande?= f (2— f)=(a?—b?) /a?, wheree is the first eccentric-
ity. or
The more general formula can be a nuisance if it is to be
applied at a number of points with the same geodetic Iatitude,V(n b,0) =
because accounting for the effectioivill mean these points r 13

have different geocentric latitudes. If, instead, the geocentric .
latitude and radius foh=0 is used, and then is simply ~ With (P.» cOSmA, Py, sinm}) andY;,, the real and com-

added to the radius, this will incur an error of orde/r  Plex valued spherical harmonics of degresnd ordenn re-
in latitude andf2h/r in radius. Forh=100m, the greatest SPectively, andi ., Si.m, Ki.» numerical coefficients (com-

distance of the geoid from a reasonable reference ellipsoidP!€X; in the case ok; ,,). The other terms ar& M where
this will produce position errors of up to about 30 cm in the G i the gravitational constant arid the mass of the Earth

horizontal and 1 mm in the vertical. To this accuracy, it is * @mosphere (the product is known to much better accu-
possible to usell) to calculate a geocentric latitugefrom racy than either individually), an&t, which is a scale factor.

Vv =

GM & /R I+1 1
(7) Z Kl,mYl,m(¢7 A)s (18)
m=0

a geodetic latitude’, and then simply use These may be given by the values®@} and of semi-major
axisa for a reference ellipsoidal earth, but need not be. For
= \/aZ cof ¢ + b2sir ¢ + h (15) a full specification of the gravitational field, it is necessary

to know the spherical harmonic coefficients, and the values
of GM and R with respect to which they were computed.
There is no physical significance ®, it is simply a scale

for the radial coordinate.
In this approximation, the inverse transform is straightfor-

ward as the transformation of latitud&é2j can be treated factor used to ensure thak /r)*1 remains reasonably close

mdependeqtly of the radla_l coordlnatc-_z transfquﬁ)( The to 1 near the Earth’s surface, but it is vital that the harmonic
full conversion O.f geocentric to geode_uc coordinates ("?' thecoefficients be used with the same valueRois that with
inverse of 4‘3)) IS _rathgr mvolvgd. He|sk§nen and Moritz respect to which they were calculated. No further informa-
(1967 prowde an iterative solutlo.n in their Sect. 5.3, and an ;e needed in order to evaluate the Earth’s gravitational
algebraic method is given B¥ermeille(2002), but the degree

potential V at any point outside the Earth. To calculate the

of complication is not usually warranted by the increased ac'gravity potentialiv, the centrifugal potential must be added,

e e o et o 24 peeor i vl o anqler et e s b assumed
The spherical harmonic representation is analogous to a

height is given (as it usually is) in geodetic coordinates. Fourier representation of a field on a plane. The Fourier

coefficients describe the amplitude of each wavelength on
4 Spherical harmonics the plane. If the field obeys Laplace’s equation, then it can

be calculated above that plane from the same coefficients
The usual way to represent the Earth’s gravitational field is inmultiplied by e=“* wherex=+/k2+12 is the total horizon-
terms of spherical harmonics. This is because spherical hattal wavenumber andthe vertical distance above the original
monics are solutions to Laplace’s equation which are separagplane (this assumes the field decays to zerg-aso, oth-
ble in spherical coordinates, which makes them particularlyerwise there can also be exponentially growing solutions).
useful for calculations involving downward continuation (al- In spherical harmonics, we can think of a field defined on a
though other basis functions are sometimes used, most napherical surface of radiuB. If that field obeys Laplace’s
tably ellipsoidal harmonics). In terms of spherical harmon- equation then the value at raditisan be calculated by mul-
ics, and using spherical coordinagggeocentric latitude), tiplying each coefficient byR /r)'*1, showing how the field
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decays as increases. Again, there is another, growing solu-whenm=0, and
tion possible if the field is not required to decay at infinity, ( —m)!
in this case proportional ter/R)!. For our purposes, the le,m =22 +1
growing solution applies to masses outside the satellite orbit,
while the decaying solution applies to the part of the poten-otherwise.
tial resulting from the Earth’s mass. The degtéetherefore This representation has the advantage of reducing an ap-
analogous to the total horizontal wavenumbewhereas the  parently three-dimensional problem (the potential is a field in
orderm is like k, being a zonal wavenumber. The main dif- three dimensions) to two dimensions (zonal and meridional).
ference from the plane case is the way in which the spheriFor example, if the potential is known on some spherical sur-
cal harmonics depend on latitude and longitude. On a planefacer=Ro, it can easily be calculated on another spherical
the functions ofc andy are both sine waves. On a sphere, surfacer=R1, by multiplying all the coefficients”; ,, and
the function ofx is a sine wave, but the function gfis a  Sim (OF Ki,m) by (Ro/R1)'.
more complicated function of sifi(the Associated Legendre ~ Spherical harmonic representation also has the advantage
Functions). Furthermore, each péirm) defines a different ~ of neatly identifying the effect of length scale. The degree
associated Legendre function. [ is an inverse measure of horizontal length scale of geoid
It is usual to describe the gravitational field in coordinatesUndulations associated with a particular spherical harmonic.
with their origin at the centre of mass. This results in the At each degreé there are 2+1 coefficients corresponding
three degree 141) coefficients all being zero. Similarly, by to different ordersn, but all have in a sense the same char-
taking a factorGM out of the definition of the coefficients, acteristic length scale. That “in a sense” comes from count-
the degree zero coefficient is defined to be 1. These foufnd the number of circular nodes in each spherical harmonic.
coeffictients are often not given explicitly. The nodes lie along either circles of latitude, or great circles
Form=0 the harmonics have no dependence on longitudethrough the poles (meridian circles), and the total number of
and are therefore functions of latitude only. These harmon-Such nodes in a harmonic of degreis simply! (it must be
ics are known as “zonals” (the zonal coefficiefity are all ~ rémembered that, on many map projections, a great circle
zero). Form=l, the associated Legendre functidn,, is  through the poles would appear as two vertical lines, giving
positive everywhere (a|though its amp”tude becomes Con.the impreSSion of two nodal lines where in fact there is Only
centrated close to the equator for high degjeeesulting in ~ ©ne).
harmonics with nodes only along meridians, known as secto- Although the individual harmonics appear to treat the
rial harmonics. Other harmonics have both zonal and meridPoles in a special way, the sum of all harmonics at a par-
ional nodes, and are called tesseral harmonics. Sea Rig. ~ ticular degree does not. For example, a spherical harmonic

( +m)! (22)

examples of degree 3 harmonics. of degreel calculated from a rotated coordinate system in
To give explicit form to the Associated Legendre Func- Which the poles lie at 45latitude would look unlike any of
tions, they are given in unnormalized form by the conventional spherical harmonics, but could be calculated
as a weighted sum of only the conventional harmonics of de-
Mmoo gltm greel, another reason for associating “degree” with “inverse
Py ) = e (1) (19)  length scale”
~ 2 x It dultm gth scale .
The length scale associated with harmonics of a particular
or, more explicitly, as degred=L is usually quoted as the half wavelendghgiven
in km by

(21 — 2k)\u!—m—2%
K=\ —m — 2k)!

Pl ) =271 (=D (20) D =20 000/L. (23)
k=0

Given the different geometries of different harmonics, this is
wherer= cosp=+/1—u2, andv=(—m)/2 if I—m) is even, rather hard to relate to an actual wavelength of any partic-
v=(—m—1)/2 if odd. ular spherical harmonic, and is really a qualitative guide to

The spherical harmonics are usually used in “fully nor- the associated length scale. Another way of thinking of this
malised” form, which is defined so that the square of eachis in terms of the number of independent pieces of informa-
two-dimensional spherical harmonic function, integratedtion. The weighted sum of spherical harmonics up to degree
over the surface of a unit sphere, integrates 4o 4The  [=L involves Y_/ o(2/+1)=(L+1)? coefficients. The (ap-
functions are orthogonal, meaning that the product of twoproximate) area of the Earth's surface is#?, so the same
different harmonics integrates to zero over the unit sphereamount of information would be provided by dividing the
The normalization leads to normalised Associated LegenEarth up into areas of sizer&®?/(L+1)2 and assigning a
dre FunctionsP; ,,=N, ,, P, , with the normalization factor number to each such area. This is the area of a square of side

Im’ .

Ny given by " 2R.\/7 /(L+1)=22 585 (L+1) km, so a sum of all spherical
harmonics up to degrée-L provides the same amount of in-

me =2 +1) (22) formation as a grid at resolution 22 58%.4-1) km. In fact,
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Fig. 1. Four of the seven spherical harmonics of degree 3. The remaining three are produced by shifting the patterns to the east by a quartel
of a zonal wavelength. The number of circular nodal lines (horizontal lines plus half the number of vertical lines) is three in each case.

this is also the estimate of “half wavelength associated withmass, and one for the downward-decaying effect of the Sun

L" that one arrives at by pursuing the analogy betweand  and Moon.

« for a Fourier transform on a plane square domain. As noted in Sect. 2.1, the subtraction of tidal gravity due to
This is not a fair comparison to a typical finite-difference the Sun, the Moon, and the solid Earth response to these, may

ocean model, however, as such a model cannot be saitksult in solutions being given in the tide-free system (but us-

to have useful independent information at each grid point.ing the Love number, usually=0.3, appropriate to diurnal

Ocean models often suffer from “chequerboard” errors at theand semidiurnal tidal frequencies). The difference between

grid scale, and always use artificial diffusivity to damp out tide-free and zero-tide systems is due to the supposed adjust-

errors at the shortest scales. It is probably safe to say thanent in distribution of earth mass, and can therefore be cor-

any feature with fewer than 3 grid points per half wavelengthrected by alteration of the upward-decayifigg coefficient.

is unreliable in an ocean model. Taking this rough guide, The differenceCy o(tide-free) —C» o(zero-tide) is given by

the ocean model resolution equivalent to a dedree ap- Rapp(1989 as 139119« 10-8k,, which gives 41736x 102

proximately 20 00@3L km, giving an equivalent model res- for k2=0.3, and the supplementary informationTapley et

olution of 33 km for degred.=200. Model studies indicate al. (2005 recommends adding473x 10~ if a tide-free rep-

that the mean dynamic topography contains substantial variresentation of the GGMO02 geoids is desired.

ability (amplitudes over 10cm in the Southern Ocean and Subtracting 139119<10°8 from the upward-decaying

subpolar latitudes) at the short wavelengths corresponding t@’,, o term for a field in the zero-tide system would produce

degree 80 and higher (half wavelength less than 250 km). a potential in an artificial version of the mean-tide system.

This is artificial in that, while it would work quite accurately
4.1 The permanent tide in spherical harmonics from the point of view of defining where the geoid is, the

L . . . use of an upward-decaying correction to represent what is a
A complication of spherical harmonics concerns the handI'ngdownward-decaying field leads to a wrong correction to all

of the permanent tide. The simplest thing to do here is to US&ther geopotential surfaces. Used to define the geoid only,

the zero-tide system, in which the direct _grawtatlonal effectsuch a correction is approximately equivalent to applying the
of Sun and Moon is subtracted out. That is because the Mass rrection to geoid height as described in Sect. 2.1

of Sun and Moon lie outside the satellite orbit altitude, so the
spherical harmonics (in practice just tlie o term near to 4.2  Gibbs’ phenomenon

the Earth) representing the effect of this mass should be the

alternative ones which decay downwards. The correct wayThe fact that the geoid, a globally defined field, is most nat-
to represent this in a mean-tide system would be to have twairally given a spherical harmonic representation, while the
C2 o terms, one for the upward-decaying effect of the Earth'smean sea surface with which it is to be compared is defined
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Fig. 2. Fourier approximation of (left) a square wave and (right) a smoothed square wave using different numbers of sine waves. Black shows
the true wave, and red the Fourier approximation. The smoothed wave is produced by convolving the square wave with half a wavelength of
a cosine function which has wavelength equal to 1/20 of the domain (the same as the 20th sine wave).

in a point-wise fashion only for the ocean, presents a numbeto 100 m, meaning we need to worry about errors at the level
of difficulties for oceanographers. To compute the differenceof one part in 18. The effect of the smallest scales in the
between these two fields clearly requires that one of thengeoid, which cannot be measured by satellite with any use-
be transformed into the domain of the other, while ultimately ful accuracy, can be rather subtle. An illustration of this is
the difference between them —the mean dynamic topographprovided by the Gibbs phenomenon, derived from Fourier
— will be expressed geographically. analysis but equally applicable to spherical harmonics.

This requires a great deal of care, since we are attempt- The Gibbs phenomenon is the result of attempting to rep-
ing to extract the difference between sea level and geoid wittresent a discontinuous function over some domain as a sum
subcentimetre accuracy, and the geoid contains signals of upf smooth basis functions such as sine waves. The discon-
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1‘ 1‘0 solved in order to produce a relative error approaching’10
smoothing wavelength /min wavelength This means that we must worry not only about the fact that
the satellite geoid misses small scales over the ocean, but we
must also care about what it does over land, because this also
Fig. 3. The size of the errors as a function of resolution in the has the potential to contaminate the signal over the ocean.
Fourier approximation of square waves and smoothed square wavdsigure 4 shows the error introduced by a plausible differ-
as in Fig.2. Top: the standard deviation of errors over the entire ence in land values: in one case the land value of sea surface
domain (black) and in the far field, being the half of the domain height is taken as the geoid, and in the second case it is the
furthest from the steps (red). Bottom: the ratio of errors in for thg same but with the value over the Himalayas capped and spa-
smoothed wave (o errors for the square wave, for the full domalntially smoothed. If an infinite number of spherical harmonics
(black) and for the far field (red). were to be used, the resulting difference in dynamic topog-
raphy would be limited to the vicinity of the Himalayas, but
o ) . iven the expansion only to degree 100 in the figure it is clear
tinuity can be at the boundaries of the domain (if there aretghat the differr)ence spregds siggificantly overthgwhole globe.

any), or within the domain,'while pro““‘?‘”g the same eﬁect. These problems can be greatly reduced by carefully con-
More generally, the effect is the same if the function is nOtsidering the value of “sea surface height’ to be used over

aﬁtually dlscor|1t|nu$]ust E!Jt vr?rles ralt)lt;jly_cofmpa_red with tr_1((;land. Simply setting land values to zero leaves contamina-
shortest wavelength within the set of basis functions considy;,, oer the ocean due to Gibbs fringes both from the geoid

ered. This is illustrated in Fig2, in which the Fourier rep- over land, and from the discontinuity between the sea surface

resentation of a square wave is shown using sums of dlffer'over land and over ocean. Much better is to use the geoid it-

ent numbers of sine waves. The right hand panels show th’§elf over land, since then the fringes resulting from features

>ame, b.Ut for a square wave smoothed bY convolution with over land will exactly cancel in sea surface height and geoid
half cosine wave. The two cases are practlcall)_/ the same unt ields, when calculating the dynamic topography from their
the wavelength of the shortest sine wave consmi_ered becomeuﬁfference. The discontinuities at ocean/land boundaries will
compara-ble to thg scale of the smoothing functpn. also be greatly reduced, although significant discontinuities
What is clear is that the effect of the step is not local, || remain because the sea surface and the geoid do not
but spreads throughout the domain. This is summarized ifnaich at the coast. Working out the best ways to mitigate

Fig. 3. The top panel shows the size of the errors as a funcynese problems remains a topic of current research.
tion of resolution, for both the square wave (step) and the

smoothed wave, with the errors calculated over the whole4.3 Representation of errors

domain (black) and (red) over the far field (the half of the

domain furthest from the steps). The lower panel shows theA further complication of spherical harmonics concerns their
ratio of errors in the smoothed case to the step case, for theepresentation of errors. Although the size of the errors from
whole domain and for the far field. It is clear that both near satellite measurements is highly dependent on length scale,
the step and in the far field, errors remain substantial as longnaking spherical harmonics a natural choice to represent the
as the step is not resolved, and the step must be very well reerrors from that point of view, any lack of uniformity in the
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GOCE errors — gradiometer alone

GOCE errors — polar data added
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Fig. 5. Predicted errors in potential coefficients calculated from GOCE gradiometry alone. Left: with no a priori knowledge. Right: using
the gradiometer data to update a prior estimate, which provides values over the polar regions (and elsewhere). Negative values of the orde
correspond to the sine coefficients, and positive or zero values to the cosine coefficients. Values béﬁmdﬁlotted as black.

spatial coverage makes things rather complicated. For exanerror in any other eigenvector. The eigenvalues represent the
ple, GOCE will not be in a precisely polar orbit, and will expected root-mean-square value of the corresponding error.
therefore leave patches near the poles where the geoid &iven these, it would be possible to produce simulated spa-
poorly determined. This results in a large error in the esti-tial error fields by producing sums of the eigenvectors each
mated coefficient for any spherical harmonic (especially thewith coefficients chosen randomly from a normal distribution
near-zonals). Figurg illustrates this effect. The left panel with standard deviation given by the eigenvalue. Clearly the
shows the size of errors expected in individual coefficientscovariance matrix contains the information necessary to cal-
from a solution based on the GOCE gradiometer data aloneculate expected errors from the measured spherical harmonic
There are very large errors in the zonals and near-zonals, resoefficients, but careful thought is needed about how best to
sulting from the lack of information over the poles: these exploit that information.

large errors produce errors in the geoid near the poles of or-

der 100m. The right panel shows the equivalent errors for4.4 Omission errors

the case with added information over the poles, in which

these errors are greatly reduced. In practice, the gradiometdrinally, something more should be said about omission error.
data are sufficient to produce a good estimate of the geoid he error covariance provided with a set of spherical har-
over most of the globe, and the added polar data simply immonic coefficients is a measure of the errors in those coeffi-
proves the estimate over the polar gap (given careful concients only, and is known as “commission error”. In addition,
sideration of how to handle that gap), but, since the polarthe true geoid contains spatial scales at smaller length scales
gap projects strongly onto many spherical harmonics (particlhan those represented by any finite set of spherical harmon-
ularly the near-zonals), the errors in individual coefficientsics. Errors due to this missing information are omission er-
can be much larger than would be expected. rors. As noted above, these can be large, and it is important

. . . . to be clear about what is being compared with what, when
This emphasises the importance of considering the full erTdiscussing errors. A point measurement of sea level (for ex-

ror covanance, rat_her tha_n _the error variances of each f:oeﬁ'émple at a tide gauge) should only be compared with a point
cient. While certain coefficients may be poorly determined

. o . .. _'estimate of the geoid, which involves using geoid informa-
certain combinations of those poorly-determined coefficients;q ., ot 4l length scales. The omission errors must therefore

may be very well .determineq. This information is captured be accounted for in such a comparison. A satellite altime-
by the error covariance matrix. ter measurement is not quite a point measurement, but is an
The matrix is large: for an expansion to degree and ordem@verage over a circular area which depends on surface wave
250, there are 2%1coefficients, and the covariance matrix conditions (higher waves produce larger areas), but typically
therefore contains 2%%4x10° values, each representing has a diameter of about 5 kr€lgelton et al.1989.
the expected covariance between the errors in one coefficient The effect of omission error can be reduced by comparing
and the errors in another. Being a real, symmetric matrix it is,spatial averages of sea level and geoid. Although a simple
in principle, possible to calculate eigenvectors and eigenvalaverage over a defined area will have smaller omission error
ues by means of which a rotation of the matrix can be appliedhan a point measurement, there will still be significant error
to diagonalise it. Each eigenvector then represents a combiue to the interaction between small wavelength features and
nation of spherical harmonic coefficients (and hence a spatiathe sharp cut-off at the area edge. This can be reduced fur-
pattern) for which the expected error is independent of thether by comparing weighted averages of geoid and sea level,

Ocean Sci., 4, 1829, 2008 Www.ocean-sci.net/4/15/2008/



C. W. Hughes and R. J. Bingham: GOCE and the Geoid 25

where the weighting is by some smooth function which re- The second method, gradiometry, permits the recovery of
duces the effect of short wavelengths. The extent to whichshort wavelength features in the gravity field. Gradiometry
this reduces omission error will need to be determined foruses a pair of accelerometers to measure the difference in
different weighting functions, but can be substantial if the acceleration due to gravity and due to the rotation of the in-
typical length scale of the weighting function is longer than strument, between two nearby points (separated by 0.5 m for
the longest wavelength contributing to omission error. GOCE). There are three such pairs in GOCE, arranged along

Unfortunately, the mean sea surface has not been mednutually orthogonal axes, resulting in a full measurement of
sured at uniformly high resolution. There are poorly-sampledthe three-dimensional gradient of acceleration (9 numbers,
gaps between satellite altimeter tracks of the repeat missiongach representing the gradient of one component of acceler-
and the so-called “geodetic” missions of ERS-1 and Geosatation along one particular direction). The part of this mea-
although producing a densely-sampled grid in space, did nosurement which results from the gravitational potential can
sample at enough times to produce a well-determined timebe represented as a<3 symmetric tensor with termg;;
average, so the accuracy of the mean sea surface from awhereTy ;=92V /3xdy, etc.
timetry varies strongly from place to place. In addition, sea In addition to gravity gradients, the accelerometers are af-
ice and the non-polar nature of satellite orbits leads to poorefected by the rotation of the satellite. This arises from the
sampling at high latitudes, and limitations of the measure-centrifugal force, the effect of which can also be represented
ment system near land, coupled with the large amplitude@s @ symmetric tensor in apparent gravity gradients, and from
high-frequency sea level variations often observed in shalrate of change of rotation, the effect of which can be repre-
low water, mean that coastal mean sea level is particularlysented as an antisymmetric tensor. Since all components of
poorly determined. This is a particular problem for com- the tensor are measured, the antisymmetric component can
parison of tide gauge data with a mean dynamic topograph)be extracted and integrated with respect to time to produce
derived from satellite gravity and altimetry. The effect of @ measure of the rotation rate, from which the centrifugal
omission error on interpretation of sea level measurements d€rm can be calculated and therefore removed from the mea-
the coast, where an isotropic smoothing of sea level is impossurement. In order to avoid long-term drift in this estimate
sible, might only be reduced by recourse to local (airborne,0f rotation rate, and to supply the integration constant, star
or terrestrial and marine) gravity data at high resolution. Ex-tracker data are also incorporated into the integration. Each
amples of such combinations of data types can be found iraccelerometer has two sensitive axes and one less sensitive
the Arctic Forsberg and Skoury®2009, the northeastern axis. These are arranged so as to provide the most accu-
Atlantic (Knudsen et a).2007), and Taiwan idwang et al. rate values for the diagonal terrifs of the tensor, and for
2007). the off-diagonal term corresponding to the largest rotation

Although smoothing can reduce the effect of omission er-rate (that due to the orbita_l rotation). The other off-diagonal
rors, no purely local smoothing function can completely re- terms are less well determined (although accurate enough for

move errors due to omitted degrees in the spherical harmoni€@lculation of rotation rate), so the primary output of the gra-

expansion. Itis for this reason that attention should be payediometer measurement is the three diagonal components of

to reducing the contribution to these errors introduced viath€ gravity gradient tensor, after correction for rotational ef-

the Gibbs phenomenon as far as possible, before smoothinfg?CtS-

is applied. Sed®ingham et al(2008 for further discussion A good check on the accuracy of removal of the rotational
of this issue. effects results from the fact that (ignoring the constant gravi-

tational effect of the accelerometer itself) obeys Laplace’s
equationv2V=0. This means that the sum of the three di-
agonal terms (the trace of the tensor) should be zero. In con-
5 The GOCE measurement system trast, the apparent gravity gradient due to a rotation with an-
gular speed would lead to a trace ofa®.
The GOCE satellite measures the Earth’s gravity field intwo There is a further redundancy in the measurement in that,
ways, by satellite-satellite tracking (SST) plus accelerome-in principle, any one of these diagonal components, if mea-
ter, and by gradiometry. The former is the more familiar sured with sufficient density over a sphere enclosing the
technique (the same as that used by CHAMP). The accelEarth, is sufficient to determine the entire gravity field out-
eration of the satellite is due to a combination of gravita- side the Earth. In practice, each component is sensitive to
tional forces and body forces (such as atmospheric drag andrrors in a different way, and an optimal combination must
thruster forces). Using the onboard accelerometers to detebe found.
mine the acceleration due to body forces, the GPS tracking Being a differential measurement of the gravity field, the
of the satellite then constrains the estimation of gravitationalgravity gradients are relatively more sensitive to short wave-
accelerations, permitting the Earth’s gravitational field to belength features than other forms of measurement. This means
determined. This technique is particularly suited to measurthat the useful accuracy of the derived geoid can be pushed to
ing longer wavelength parts of the gravity field. smaller scales than previously. The nominal GOCE accuracy
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is 2cm to degree and order 200 (half wavelength 100 km).imation, into (L2) and (L5)) in order to calculate the corre-
This requires a low orbit, expected to be around 270 km alti-sponding spherical coordinatés ¢, 1). Using these values,
tude. The satellite will be maintained in this orbit by a drag- the spherical harmonic coefficients together wittv/ and
compensating ion thruster system which acts to minimise theR can be substituted intd {) to calculate the gravitational
total measured acceleration. This has the dual effect of mainpotential at that point. The same geocentriand¢ should
taining the altitude of the satellite, while increasing the sen-be substituted into7) to calculate the centrifugal potential
sitivity of the gradiometer. at the point, and the sum of these potentials then gives the

The orbit will be sun-synchronous, with an inclination of geopotential.
96.5°, meaning that there will be polar gaps within about 6.5
degrees of the poles where the measurement accuracy is de-Note that the use of7] requires a value of?, the Earth’s
graded. Gravity in these regions must be taken from previousingular rotation speed. You are free to choose a value, which
satellite, airborne, and/or terrestrial gravity measurements téhen becomes one of the defining constants of your geopoten-
permit the calculation of a global solution. The science phasdial field, although the normal choice would be the standard
of the mission will consist of two six-month periods of mea- valueQ=7.292115¢10 °rads ™.
surement.

The two measurement methods provide complementary Repeat this calculation at each latitude and longitude, and
information, with SST providing more accurate long wave- you have your dynamic topography. The only subtlety to
length information and the gradiometry constraining the note at this point is that using the actual map of the sea sur-
shorter wavelengths. The two contribute equally at halfface would introduce a large omission error. The surface
wavelengths near 500 km. More detailed information can bewhich should be used is a smoothed surface produced by
found in the GOCE mission selection repdeSA, 1999. using the spherical harmonic expansion of the sea surface

height field, reconstituted into a map but using only the num-

ber of harmonics which will be used from the gravitational
6 A recipe for calculation of dynamic topography field. Further smoothing may well be necessary, either in the

spatial domain, or in the spherical harmonic domain by re-
As described in Sect. 2, there are two ways to calculate thelucing the amplitudes of the higher harmonics, but this can
ocean dynamic topography given a map of IB-corrected sede performed on the dynamic topography rather than on the
surface height above some reference ellipsoid and a descrigea surface height, as long as the dynamic topography has
tion of the Earth’s gravity field. There is the (at first sight) been calculated using a matched pair (sea surface and gravi-
more straightforward method of calculating the geopotentialtational field) of sets of spherical harmonics. Note that, when
on the sea surface, and the more conventional but rather irexpressed as a geopotential using the geodetic sign conven-
volved method of calculating the height of the geoid abovetion, the dynamic topography is high where sea level is low
the chosen reference ellipsoid, and subtracting that from thécompared to the geoid), and vice versa. The dynamic to-
sea surface height. We will give descriptions for both meth-pography may be expressed as a height (geopotential height)
ods. Within these descriptions, we will assume that an ap+ather than as a potential by dividing by a standard value of
propriate definition of sea surface height over land and ovegravity, multiplied by—1. This standard value is usually
regions of missing sea level data has been chosen, and thgt=9.8 ms2 (Gill, 1982, but other values are sometimes
the corresponding set of spherical harmonics describing theised, so it is important to specify the value chosen.
distribution of sea surface height above the reference ellip-
soid has been calculated. We will return at the end to the Next, the permanent tide must be considered. If the

question of how best to do this. sea surface height is given in the mean tide system (i.e. it
is the actual position of the sea surface, the most natural
6.1 Geopotential at the sea surface representation), and the gravitational field is given as for

GRACE GGMO02 in the zero-tide system, then the sea sur-
Given a map of the sea surface, together with the sphericalace height will contain the tidal bulge resulting from direct
harmonic coefficients and defining constar@id{ andR) of attraction of the Sun and Moon, but this will be absent from
the gravitational field and the defining constants (semi-majorthe gravitational field. This can be remedied by subtract-
axisa and semi-minor axi$ or flattening f=(a—b)/a) of ing 19.8x(%—%’ sir? ¢) cm from the dynamic topography ex-
the reference ellipsoid relative to which the sea surface igressed in metres — see Sect. 2.1 for other possible combina-
given, it is straightforward to calculate the geopotential ontions of tide systems.
the sea surface.

For a given point on the sea surface, we know the geode- The dynamic topography is now given at the original po-
tic latitude ¢’, the longitudex, and the height: above the  sitions of the sea surface height measurements, meaning that
ellipsoid. Together with the defining constants for the ellip- there is no need to explicitly convert back from geocentric to
soid, these can be inserted iniB) (or, with a slight approx-  geodetic coordinates.
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6.2 Dynamic topography as difference from the geoidspherical harmonic in the less convenient conventional
height (rather than fully normalized) form. Note that, since the only
gravitational attractions involved in this idealized model
In principle, the calculation of geoid height from a set of are those due to the earth itself, this is a tide-free earth,
spherical harmonic coefficients cannot be performed in a sinand the corresponding ellipsoid and geoid are tide-free. No
gle step, asitinvolves calculating the potential at an unknowncorrection for this is necessary, since it is simply a reference
position. Once the geopotential corresponding to the geoic|lipsoid and field. As long as it is within about 100 m of
has been chosen, it is simple to calculate the geopotential ahe sea surface, it is sufficient for accurate application of the
any two heights above a chosen reference ellipsoid as abov@runs formula to calculate the true geoid.
and then to interpolate or extrapolate to find the approximate From these parameters, chosen exacﬂy as above, it is pos-
geoid height. Iteration, using two new points closer to thesible to derive all other dimensions and properties of interest.
approximate geoid, will soon converge to the required accu-Of particular interest are:

racy. Polar radius of the earth=6 356 7523141 m.
In practice, it is possible to obtain subcentimetre accuracy Reciprocal flattening’ ~1=298257222101.

in a single step, using the concept of a reference earth to- Equatorial gravityy,=9.7803267715 ns2.

gether with the Bruns formula: Polar gravityy,=9.8321863685 nis’.
T($, ) A formula (Somigliana’s formula) for gravity on the el-
N(p, 1) = . 24 lipsoid is:
¢ ) (24)  lip
Here,T=W —U is the anomalous potential representing the ., _ ¢¥» S’ ¢ + bye c052¢>’ (25)
difference between the true gravity potentiél=V +® and \/az si? ¢ + b2 co? ¢

U, the gravity potential for the reference earth élso in-
cludes®, so the centrifugal potentials cancel in the calcu- which can be re-expressed in terms of geodetic latiigde
lation of T'), andy is the strength of gravity. All terms are rather than the spherical coordinate geocentric latithide
calculated at the ellipsoidal surface of the reference earth, )
which must be within about 100 m of the sea surface in order,, _ ¢ cos'¢/ + by, sir? ¢/.
to retain subcentimetre accuracy. The redulis the height \/az co@ ¢ + b2sir? ¢/
of the chosen geoid above the surface of the reference earth,
and is known as the geoid undulation. The principle involvesin these formule, equatorial and polar gravity are given by
the same linearization as using extrapolation based on evalu- )

. . . . . GM e'q
ation of the potential at two points, but instead uses just ong,, = —— — Q2% (1 + _0) ; (27)
point together with a reference vertical gradignt ab 640

In order to use the Bruns formul24), it is necessary to GM ql
have a good description of the gravity field associated withy,, = — Q2p (_0> i (28)
a reference earth with ellipsoidal geopotentials. One such a 0

reference is GRS8(Moritz, 19809, which will be briefly oo/ s the second eccentricity defined as
described here. ' D _ 2 1, ,

The reference earth is based on Newton’s postulate, sube-,__s(alif/e/,g)’ a q_o—(?éiglﬁj)//ee/))_tin (ngte 1tr? é f ' forarz:\(cj:-
sequently proved by Maclaurin and Clairaut, that a rotatingqo_ ’

) . r valuation, th formul houl val
fluid planet can reach equilibrium as a spheroid. The result—Cu ate evaluation, these formulae should be evaluated by

ing external gravity field is completely defined by four pa- sfs::tutmg the I\_/Iaczlaur;(r)w serllei aegnrfflmzitlof f;)nrt%lSd,
rameters, without any need to know how density varies WithW/ Ic g'\fs qo_n_/znzlml(_ )'ne /(_ +h@n+3),
depth in the earth. The four parameters chosen for GRS800=—62_,-1(=1"¢'""/(2n+1)(2n+3); taking the sum to

(26)

are: ten terms is more than adequate).

Equatorial radius of the earth=6 378 137 m. The spherical harmonic coefficients of the corresponding
Product of the gravitational constant and mass of (earttravitational potential/ —® can also be derived. Since the
plus atmospherely M=3.986005< 1014 m3s2. ellipsoid is independent of longitude and symmetrical about

Dynamical form factor,=1.08263x 10-3. the equator, the only non-zero coefficients are those of the
Angular rotation speed of the earth form C2, 0. Following equations 1.73 and 2.92 on p. 31 and
0=7.292115¢10"5rad s°L. p. 73 ofHeiskanen and Moritf1967), these are given by
, szg xf;\;[mizcal A forr’g .fa(;:]or cfan be wrtirt:,en as c 1y 3¢?(1 — n + 5nJy /62) (29)
=(C— a“ where C is the reference earth’s mo- Caz,0=(— —,
ment of inertia about its axis of rotation, adis moment (@n+1)(@n +3)v/(4n +1)

of inertia about any equatorial axis. It is actually defined wheree is the first eccentricity defined in Sect. 3. Only a few
as 12:—\/3C2,o, i.e. the coefficient of the corresponding coefficients are needed as the amplitude decreases rapidly
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with n. For comparison with1(7), the scale factor is here  cients for the anomalous potenti&l Calculating? and the
set equal ta:. If a different scale factor is used, the coeffi- normal gravityy (from (25)) at points on the surface of the
cients in @9) should be multiplied bya/R)%*+1. reference earth, these can then be substituted into the Bruns
It can sometimes be useful to define the reference earth ifiormula @4), to obtain the geoid undulatioN relative to
terms of its geometry, rather than usifigas one of the defin-  the surface of the reference earth. This should be accurate
ing constants. This is the approach taken in the definition ofto better than 1 cm, but if millimetric accuracy is required,
the World Geodetic System, 1984 (WGS84), which defines ahen this can be achieved by iteration: calculate the differ-
reference earth using the same rotation rate and semi-maj@nce between the measured potential at the estimated geoid

axis as GRS80, but takes a slightly different valueGaif, height and the normal potential at the reference earth surface,
and uses the inverse flattenifig? as a defining constant in- given bylUp=G M (tan1 ¢’) /be’+2%a?/3 (again, use the ex-
stead of/s: pansion(tante)/e'= "% ((—=1)"¢?"/(2n+1)). Add this

G M=3.986005¢10"m3s 2. difference tor’, and reapplyZ4).

f1=298257223563. Note that the result of this procedure is a measure of the

Given these parameters (which imply a polar radius largeheight N of undulations of the geopotential surfadée=Up
than that for GRS80 by only about 0.1 mrd),can be calcu-  relative to the ellipsoid defined by the reference earth. If a

lated from different geopotential surfac®/=U; is instead chosen to
) 3 represent the geoid, then the differericdge—U1 should be
Jo = } ( _ 2Qa’e ) ’ (30) added toT before application ofZ4) (Smith, 1998. The
3 15G M qo difference between the sea surface height (measured relative

to this ellipsoid) andV is then the dynamic topography, al-
giving, for WGS84,/,=1.08262982%103. For reference, though again, a correction for the permanent tide may still
although it should be calculated accurately when using thidbe needed as above, and care must be taken to calculate the
formula, the term in brackets is approximately 0.4851666. geoid undulations at the geocentric latitudes which match the
The formulae given above, and more information, par-geodetic latitudes at which the sea surface height is given.
ticularly concerning the normal potential and related vari-
ables, can be found iHeiskanen and Morit¢1967), Moritz 6.3  Additional considerations
(19808 andMoritz (19801. With this information, it is pos- )
sible to calculate the gravitational potential not only for the It may seem from the above that the calculation of geopo-
GRS80 or WGS84 reference earths, but for any referencdential at the sea surface is much simpler than the calculation
earth given values ab M, 2,  and eithei, £, or Jo. of.di_fference betvyeen the geoid and sea surface. Howev_er,
The standard reference earths are not necessarily the bel€iS is somewhat illusory because of the need to take partic-
ones to consider when comparing with other data. For exular care over omission errors. In order to dO.thIS, the sea
ample, the orbits in Topex/Poseidon products are given re|a_sur_face must be represented as a sum of spherical harmonics,
tive to an ellipsoid withu=63781363 m (70 cm smaller than which leads to a need to supply a value over land. In order

GRS80) and 1f=298257, making the polar radius about to minimise omission errors, the value over land must be, in
1.5cm greater than it would be assuming the GRS80 flat:SOMe Sense, as close as possible to a geopotential while min-
tening. GRACE GGMO2 products use for scale facior imising discontinuities at the land/sea boundary. How best
the same equatorial radius as Topex/Poseidon, together witlp achieve this compromise is still a subject of research, but
GM=3.9860044156 10 m3s2, and the coefficients in the minimum which should be done is to replace land values

the GRACE EIGEN-GL04C product distributed from Pots- with geoid undulations, which necessitates the evaluation of
dam use the sam@M, but R = 637813646 m. It is prob- geoid undulations to the greatest degree and order which will

ably simplest to use as a reference earth one defined by tH€ considered in the calculation. _
reference ellipsoid used in the definition of the chosen sea A further balance must be achieved between the high-
surface height field, together with the value@M used in €St degree to be considered in the spherical harmonics, the
the gravitational field calculation, and the standard earth ro-2mount of spatial smoothing to be applied afterwards (or
tation rateQ2=7.292115¢10"5rad s°%. In this case, though, by tapering the amplitudes of the spherical harmonic coef-
it should be remembered that the scale fadanay not be ficients), and the size and length scales of errors to be per-

the same as the equatorial radiusf the reference ellipsoid mitted. This is a complicated subject and the best solution
and the reference earth. will depend on the application in mind, so no general guid-

Having chosen a set of parameters defining a referenc8MC€ can be given.

earth, and calculated the corresponding spherical harmonic
coefficients for the normal gravitational potential, these can
be subtracted from the spherical harmonic coefficients of the
measured potentidd (ensuring first that the coefficients have
been converted to use matching scale factors), to give coeffi-

Ocean Sci., 4, 1829, 2008 WwWw.ocean-sci.net/4/15/2008/



C. W. Hughes and R. J. Bingham: GOCE and the Geoid 29

7 Conclusions Forsberg, R. and Skourup, H.: Arctic Ocean gravity, geoid and sea-
ice freeboard heights from ICESat and GRACE, Geophys. Res.

We have tried here to provide all the information necessary Lett., 32, L21502, doi:10.1029/2005GL023711, 2005.

for oceanographers to make their first attempts at combiningsill, A. E.: Atmosphere-Ocean Dynamics. Academic Press, Lon-

sea surface height measurements with the kind of geopoten- don and Orlando, Florida, 662 pp., 1982.

tial coefficients typically provided by satellite gravity mis- Heiskanen, W. and Moritz, H.: Physical Geodesy, W. H. Freeman
sions. and Co,. San Francisco and London, 364 pp., 1967.

We hope that this brief guide to some of the geodetic sup/™ang: C., Hsiao, Y.-S., Shih, H-C., Yang, M., Chen, K.-H.,
. . . . . . Forsberg, R., and Olesen, A. V.. Geodetic and geophysical
tleties involved in the interpretation of satellite gravity data . . : .

il ke | ier f h loit th results from a Taiwan airborne gravity survey: Data reduc-
will make it easier for oceanographers to exploit these eX- oy ang accuracy assessment, J. Geophys. Res., 112, B04407,
citing new data sets, without falling into some of the traps  i:10.1029/2005J8004220, 2007.
which are obvious to ex'perienced geF)deSiS_tS, bUF less cleanudsen, P. and 19 coauthors: Combining altimetric/gravimetric
to oceanographers coming to the subject with a different set and ocean model mean dynamic topography models in the
of background knowledge. GOCINA region, in: Dynamic PlanetMonitoring and Under-

standing a Dynamic Planet With Geodetic and Oceanographic
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