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Summary 11 

 12 

1.  Clustering multivariate species data can be an effective way of showing groups of species or 13 

samples with similar characteristics.  Most current techniques classify the samples first and then the 14 

species.  A disadvantage of classifying the samples first is that relatively subtle differences between 15 

occurrence profiles of species can be obscured. 16 

 17 

2.  The k-means method of clustering minimizes the sum of squared distances between cluster centres 18 

and cluster members.  If the entities to be clustered are projected on the unit sphere, then a natural 19 

measure of dispersion is the sum of squared chord distances separating the entities from their cluster 20 

centres;  k-means clustering with this measure of dispersion is called spherical k-means (SKM).  We 21 

also consider a variant in which the sum of squared perpendicular distances to a central ray is 22 

minimized. 23 
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 1 

3.  Unweighted SKM is liable to produce clusters of very rare species. This feature can be avoided if 2 

each point on the unit sphere is weighted by the length of the ray that produced it.  The standard SKM 3 

algorithm converges to very numerous local optima.  To avoid this problem, we have developed a 4 

computationally intensive algorithm that uses multiple randomizations to select high-quality seed 5 

species. 6 

 7 

4.  The species clustering can be used to define simplified attributes for the samples.  If the samples 8 

are then classified using the same technique, the resulting matrix of clustered species and clustered 9 

samples provides a biclustering of the data.  The strength of the relationship between clusters can be 10 

measured by their mutual information, which is effectively the entropy of the biclustering. 11 

 12 

5.  The technique was tested on five ecological and biogeographical datasets ranging in size from 30 13 

species in 20 samples to 1405 species in 3857 samples.  Several variants of SKM were compared, 14 

together with results from the established program Twinspan.  When judged by entropy, SKM always 15 

performed adequately and produced the best clustering in all datasets but the smallest. 16 

  17 

Introduction 18 

 19 

Methods of classifying species and samples from multivariate species occurrence data were much 20 

investigated in the 1960s and 1970s.  A distinction was made between Q-mode methods, in which the 21 

samples or stands were clustered, and R-mode methods, in which the species were clustered.  22 

Occasionally, as in Lambert & Williams’s (1962) nodal analysis and Hill’s (1979) program Twinspan 23 

both samples and species were clustered, one after the other.  By the end of the 1970s, it was accepted 24 

that the correct procedure is to classify the samples first.  R-mode methods were in eclipse. 25 

 26 
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More recently, in the period 1995-2010, there has been renewed interest in numerical classification, 1 

mainly in the fields of text mining (Manning, Raghavan & Schütze, 2008) and genomics. 2 

 3 

Along with the general increase of interest in numerical classification, two-way classification has 4 

received increased attention.  Two-way classification is variously known as biclustering (Madeira & 5 

Oliveira, 2004; Gupta & Aggarwal, 2010), co-clustering (Banerjee et al., 2007; Jain, 2010) or two-6 

mode clustering (Van Mechelen et al., 2004; Schepers & Van Mechelen, 2011; Hageman et al., 7 

2012).  The term biclustering, used here, was apparently introduced by Mirkin (1996), who does 8 

indeed cite Twinspan as an example.  There has, however, been little flow from methodologies used 9 

in text mining and bioinformatics into ecology. 10 

 11 

A promising approach to clustering and biclustering is to treat these methods as fitting models to a 12 

data matrix.  An interesting example is set out by Martella & Vichi (2012).  They and several other 13 

authors (ter Braak et al., 2009; Schepers and Van Mechelen, 2011) use the least-squares criterion to 14 

approximate either a raw matrix or a similarity matrix.  Approximations to a raw matrix based on 15 

unweighted least squares are generally not suitable for occurrence data in ecology and biogeography.  16 

We set out a crude multiplicative model for such data, but do not use it except as a means of 17 

estimating the Akaike Information Criterion to select the numbers of clusters. 18 

 19 

Our interest in R-mode clustering was rekindled during a study of European plant distributions 20 

(Finnie et al., 2007).  For this purpose, we compared species distributions with cluster centroids, using 21 

the cosine measure of similarity.  This measure is widely used in text mining (Manning et al., 2008). 22 

Finnie’s (2007) clustering algorithm was agglomerative, building up clusters from pairs of similar 23 

individual species.  It was rather complicated and had some arbitrary parameters.  Therefore, in a 24 

subsequent study of British and Irish liverworts (Preston, Harrower & Hill, 2011), we used a simpler 25 

method.  We called it Clustaspec.  It starts by being agglomerative, and continues with a second phase 26 

in which the smallest clusters are systematically removed and their species distributed to larger ones.  27 

When Clustaspec was applied to other datasets, it usually gave good results, but it had a tendency to 28 



4 
 

generate small clusters of rare species confined to special habitats.  We were not entirely satisfied 1 

with it. 2 

 3 

Both Finnie’s (2007) method and Clustaspec tidied up the final clustering by means of an iterative 4 

relocation algorithm, by which each species was allocated to the nearest cluster centre, repeating the 5 

process until stability was reached.  For clustering in Euclidean space, this method is known as the k-6 

means algorithm (Krishna and Murty, 1999).  Finnie’s algorithm and Clustaspec defined proximity in 7 

terms of the cosine similarity measure.  Their relocation algorithm was therefore a case of the 8 

spherical k-means (SKM) algorithm, whose properties have been investigated by Vinh (2008).  There 9 

is, however, an important difference.  In the SKM algorithm described by Vinh, the objects to be 10 

clustered are first projected on the surface of the unit hypersphere, and are thereafter clustered by the 11 

SKM algorithm.  In the algorithm used by us, the unit hypersphere was not considered, the cluster 12 

centres being calculated simply as the centroids of untransformed vectors.  As explained below, this 13 

amounts to weighted SKM, with weights proportional to the length of the untransformed vectors.  The 14 

weights make a big difference. 15 

 16 

In Clustaspec, we used the SKM algorithm merely for tidying up the clusters.  Vinh (2008) shows that 17 

the SKM algorithm will converge to a local optimum of the SKM objective function, defined as the 18 

sum of squared chord distances between cluster centres and individual cluster vectors.  He also points 19 

out that there are very many such local optima.  Indeed, there are so many local optima that the quest 20 

for the global optimum can be very arduous.  For this quest, we have devised an algorithm based on 21 

‘key species’.  These are defined as those species that are most closely aligned to the cluster centres.  22 

Key species were used by Finnie et al. (2007) and Preston, Harrower & Hill (2011) to name the 23 

clusters.  In the algorithm described below, they are used also to initiate the clusters. 24 
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Data and methods 1 

DATASETS 2 

Five datasets were studied in detail (Table 1): 3 

1. Dune meadow data, discussed by Jongman et al. (1995); 4 

2. Danube meadow data from a 25 km
2
 study area east of Ulm, as discussed by Mueller-5 

Dombois & Ellenberg (1974) and used in the manual for Twinspan (Hill, 1979); 6 

3. The Arable bryophyte dataset analysed by Preston et al. (2010); 7 

4. The Liverwort dataset used by Preston, Harrower & Hill (2011); and 8 

5. An equivalent dataset for British and Irish native vascular plants;  the dataset comprises all 9 

native records mapped by Preston et al. (2002), including old records as well as recent ones, 10 

but excluding records of native species from localities where they are known to be introduced. 11 

 12 

COMPUTER PROGRAMS 13 

The program Clustaspec was written in R by Harrower for classifying liverworts.  Our program for 14 

spherical k-means was subsequently written by Hill in Fortran, using the GNU Fortran G77 v0.5.25 15 

compiler for Windows XP (Free Software Foundation, 1999).  Both Clustaspec and the new program, 16 

Spherikm (SPHERIcal K-Means), can be downloaded from the BRC website http://www.brc.ac.uk. 17 

 18 

As in Euclidean k-means clustering, the number of clusters, k, has to be specified in advance.  The 19 

best clustering is defined to be that which minimizes the sum of squared distances between cluster 20 

members and their centroids.  Specifically, let 21 

 A = [aij]    (i = 1,...,m;  j = 1,...,n) 22 

be a matrix specifying the occurrence of n species in m samples;  the value of aij is either the quantity 23 

of species j found in sample i or may be 1 or 0 if A is a matrix of presences and absences.  Let aj be 24 

the vector of elements corresponding to species j, i.e.  25 

 aj = [aij]   (i = 1,...,m) 26 
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Define 1 

 bj = aj / ║aj║ 2 

This is the projection of aj on the unit hypersphere.  Then the spherical k-means problem is to find a 3 

set of cluster centres 4 

 x1, ...,xk 5 

on the unit hypersphere that minimize the sum of squared chord distances between the vectors bj and 6 

and the cluster centres.  In symbols, the criterion to be minimized is  7 

 D = ∑j (bj – xh)
T
(bj – xh) = ∑j 2(1 - bj

T
xh)

 8 

As bj
T
xh is simply the cosine of the angle between aj and xh, an equivalent problem is to maximize the 9 

sum of cosines between the vectors and their cluster centres.  In our calculations, we have used a 10 

weighted version of the summed cosine criterion, i.e.  11 

  D[w] = ∑ wj bj
T
xh 12 

Different weighting systems, from wj = 1 (standard SKM) to wj = ║aj║ are compared below.  In the 13 

case where weights wj = ║aj║, the centroid of a cluster of weighted points bj on the unit hypersphere 14 

is then exactly aligned to the cluster centroid of vectors aj in the original space. 15 

We have made much use of the spherical k-means algorithm.  The SKM algorithm starts with an 16 

initial set of trial cluster centres, and derives a new set by the following two steps (Vinh, 2008). 17 

1. The membership assignment step – each vector is assigned to the cluster of the trial cluster 18 

centre to which it is closest; and 19 

2. The centre adjustment step – new cluster centres are located at the centroid of the members 20 

defined by step 1. 21 

If these two steps are repeated, the algorithm converges to a local optimum. 22 

 23 
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Our algorithm, mentioned in the introduction, is based on seed vectors.  The initial clusters consist of 1 

a set S of seed vectors s1, s2, ... , sk , selected from a1, a2, ... , an .  Let the local optimum derived from S 2 

by application of the spherical k-means algorithm to the seed vectors be denoted by SKM(S).  In each 3 

of the clusters defined by SKM(S), there will be a best-aligned vector (a ‘key species’ in the 4 

terminology used above).  A self-regenerating set of seeds S is one such that the key vectors in the 5 

clusters of SKM(S) are identical to the seeds.  When solutions are restricted to those local optima 6 

derived from self-regenerating seeds, the search for the (restricted) global optimum is more tractable.  7 

The algorithm proceeds in three stages using random or restricted-random vectors S as seeds for 8 

SKM(S): 1 make a shortlist of suitable seeds;  2 select a list of k seeds sequentially from the shortlist 9 

by adding in the most frequently-selected key vector that is not already in the selected list;  3 adjust 10 

the list by trying out alternative seed lists in which each element of the list s1, s2, ... , sk  selected at 11 

stage 2 is replaced with an unselected vector from the shortlist.  If any replacement seed list decreases 12 

the sum of squared deviations, select the best and repeat stage 3 with the new seed list until stability is 13 

reached.  This process, consisting of stages 1 to 3, is repeated 10 times and the best solution out of the 14 

10 replicates is retained. 15 

 16 

PERPENDICULAR SPHERICAL K-MEANS 17 

There are potentially two variants of the spherical k-means problem.  They differ, as explained in the 18 

discussion, in how much leverage is given to aberrant cluster members.  In spherical k-means as 19 

outlined above, we minimize the sum of squared chord distances.  This method is abbreviated below 20 

as CSKM for chord spherical k-means.  However, in principle an equally suitable criterion is the sum 21 

of squared perpendicular distances (Fig. 1).  There is a small complication with this method, in that 22 

the minimum is not generally achieved by dropping perpendiculars to the ray through the centroid of 23 

the cluster.  Specifically, let the minimizing ray be x.  Then, ignoring the weights, we seek to 24 

minimize 25 

 D = ∑i sin
2
 (angle between bj and x) 26 

    = nj -∑j cos
2
 (angle between bj and x) 27 
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    = nj - ∑j (bj
T
x)

2
 1 

subject to the constraint that x is on the unit hypersphere, i.e. 2 

 x
T
x = 1 3 

To find the direction of x, we solve the problem with Lagrange multipliers and minimize 4 

 Λ = D - λ x
T
x 5 

Differentiating with respect to x, Λ is minimized when 6 

 dΛ/dx = -2 ∑i (bj
T
x) bj - 2λ x = 0 7 

Therefore 8 

 x = (-1/ λ) ∑i (bj
T
x) bi 9 

This relationship allows us to solve for x iteratively, starting with a trial vector x(0) which is the 10 

centroid of bj and then repeating the process so that 11 

 x(1) = (-1/ λ(1)) ∑i (bj
T
x(0)) bj 12 

and so on.  The value of (-1/ λ(1)) is chosen to be the positive value that places x(1) on the unit 13 

hypersphere.  Note that because the vectors bj and x are in the positive quadrant, all the coefficients 14 

bj
T
x are also positive.  Once the direction of x is known, calculation of D, the sum of squared 15 

deviations, is immediate. 16 

BICLUSTERING AND MEASURES OF CONCENTRATION 17 

Biclustering of the data was achieved by first clustering the species, then condensing the data to 18 

account for species clusters (i.e. adding together the species vectors in each cluster), transposing, and 19 

clustering the samples by the same method.  Suppose, for example, that a given sample contains 20 

species A, B, C and D, all with quantity 1, and that A, C and D belong to Species-cluster 1 and B 21 

belongs to Species-cluster 2.  The composition of the sample for the purposes of the secondary 22 

clustering is Species-cluster 1 quantity 3, Species-cluster 2 quantity 1. 23 

 24 

With presence data, a well known goodness-of-fit measure for a two-way table is the chi-squared 25 

statistic based on the sum of squared deviations between observed and expected values in cluster cells 26 
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∑(o-e)
2
/e.  This statistic does not generalize readily to data types where the original values are 1 

quantities or are ordinal classes.  A measure that generalizes better is the dimensionless (geometric) 2 

mean ratio of observed to expected values.  Let I denote a cluster of samples and J denote a cluster of 3 

species.  The observed value oIJ is the sum of matrix elements in clusters I and J, i.e. 4 

  oIJ  = ∑ i ∈ I ∑ j ∈ J aij 5 

Then the expected value is defined as 6 

  eIJ  = ∑I oIJ ∑J oIJ / ∑I ∑J oIJ 7 

Concentration can be measured by the statistic 8 

 9 

 10 

In reporting results, K is called the ‘concentration ratio’ because it measures the geometric mean ratio 11 

of the observed values in the cluster cells to those that would be expected if species occurred at 12 

random.  In the case where the data aij are presences and absences, K is effectively the G statistic of 13 

Sokal & Rohlf (1981) which measures the entropy (more properly the mutual information) of the 14 

biclustering.  It can be argued that mathematically the best solution is that which maximizes the 15 

entropy (Banerjee et al., 2007). 16 

CLUSTER PRESENTATION AND CHOICE OF CLUSTER NUMBERS 17 

For clarity of presentation, the clusters, once defined, were arranged by a two-stage process.  First 18 

they were ordered by correspondence analysis (Hill, 1982, Jongman et al., 1995).  Then they were 19 

clustered hierarchically by Ward’s method (Legendre & Legendre, 1998), an agglomerative technique 20 

which at each stage unites the pair that minimally increases the total within-cluster variance.  Clusters 21 

were ordered so that the hierarchy resulting from Ward’s method could be presented cleanly.  In other 22 

words, when groups were united, they were placed side-by side.  Correspondence analysis order was 23 

retained if there was a choice, with the cluster having minimum axis score appearing as the first in the 24 

final order.  The hierarchy was printed out in Newick format for viewing in Dendroscope (Huson et 25 

al., 2007).  We give two examples in the Supplementary Information. 26 

 27 

∑∑ oIJ 

∑∑ oIJ  ln(oIJ/e IJ) 

 
 

 

 

 
 

 

 
 exp  K 
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For selecting cluster numbers, the biclustering was approximated by fitting a multiplicative model 1 

with the same row totals, column totals and cluster totals 2 

  âij  = ai. a.j oIJ / (oI. o.J) 3 

and then calculating an analogue of the concentration ratio 4 

  K’ = exp (ΣΣaij  ln(aij / âij) / ΣΣaij) 5 

K’ measures the size of the residuals after fitting âij.  If the values aij were counts, then the G statistic, 6 

which is distributed as χ
2
 would be 7 

  G = 2N ln(K’) 8 

where N is the total count, i.e. ΣΣaij.  Let F be the number of fitted constants, k1 the number of species 9 

clusters and k2 be the number of sample clusters.  Then in this case, ignoring a constant offset in AIC,  10 

  F = (k1 - 1)(k2 - 1) + m + n – 1 11 

  AIC  =  G + 2F  = 2N ln(K’) + 2F . 12 

If this criterion is to be applied where aij are not counts then an analogue for N needs to be found.  If 13 

the values aij are presences and absences (0 or 1) N can be taken to be the total ΣΣaij .  If aij are 14 

quantities such as species abundance values, a suitable choice of N is, in the notation of Hill (1973) 15 

the number N2, i.e. (ΣΣaij)
2 
/ ΣΣaij

2
.  The value of AIC calculated here using N2 is called ‘quasi-AIC’, 16 

to emphasize the fact that it is not based on likelihood in a statistical model. 17 

TESTING THE METHODS 18 

The standard SKM analyses, for the purposes of this paper, are those in which projections of data on 19 

the unit hypersphere are weighted in proportion to ║aj║, the length of their vectors.  These are 20 

signified as W1 as the weights are ║aj║
1.0

.  Both the chord variant CSKM and the perpendicular 21 

variant PSKM have been tested.  W00 is SKM as usually understood, with species and samples 22 

projected on the unit sphere and given equal unit weight ║aj║
0.0

.  Two other species weightings were 23 

considered, namely W0, in which species were weighted as in W00 but samples in the subsequent 24 

sample clustering were weighted as in W1.  W0.5 is defined similarly, with species weights ║aj║
0.5

 25 

and sample weights ║aj║
1.0

. 26 

 27 
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Datasets other than the vascular plant dataset were transposed to check whether it is better to cluster 1 

the species first and then the samples, or vice-versa.  Transposed analyses, in which the samples were 2 

clustered first and the species clustered second, are denoted by Transposed W00, Transposed W1, etc. 3 

 4 

Twinspan does not produce a specific number of clusters, but does generate a hierarchy for both 5 

species and samples.  To compare it with the other methods, clusters were defined on the basis of the 6 

higher levels of the hierarchy, trying to avoid very small clusters that would give the other methods an 7 

unfair advantage.  This process was not automated and clusters were selected by eye. 8 

Results 9 

CONCENTRATION RATIOS 10 

Except for the dune dataset, the highest concentration ratios were found either with standard weighted 11 

CSKM or PSKM (Table 2).  In the biogeographical datasets, the PSKM arrangement was the most 12 

concentrated, whereas in the Danube and Arable datasets, the CSKM arrangement was more 13 

concentrated.  Twinspan produced less highly concentrated solutions.  Clustaspec produced results 14 

that were rather similar to those from SKM but were somewhat less concentrated. 15 

DUNE MEADOW DATA 16 

The Dune dataset, the most species-poor, is small enough to be displayed in full in Fig. 2.  Some 17 

samples had much bare ground.  In sample 17, only Anthoxanthum odoratum had cover value greater 18 

than 2;  its cover value 4 signifies less than 5% vegetation cover.  Two biclusterings are shown.  The 19 

first (Fig. 2a), with a concentration ratio of 1.51, is the standard SKM solution for 7 species clusters 20 

and 5 sample clusters.  The second (Fig. 2b), with concentration ratio 1.44, shows the simplified 21 

solution with 5 species clusters and 4 sample clusters suggested by the quasi-AIC statistic.  For this 22 

dataset and not the others, better results were obtained for the (7,5) case by clustering the samples first 23 

and then the species.  For the preferred (5,4) case, it was better to cluster the species first.  24 
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DANUBE MEADOW DATA 1 

The Danube dataset is displayed in Fig. 3, which shows 6 clusters for 34 species and omits the 60 2 

species with lowest average biomass.  An expanded version of the figure, colour-coded for 3 

concentration ratios and including the PSKM biclustering, is given the Supporting Information, along 4 

with the solutions suggested by quasi-AIC, which have 5 species clusters and 5 sample clusters.  5 

Concentration ratios were 1.56 for the (6,8) case and 1.47 for the (5,5) case. 6 

OTHER DATASETS 7 

Table 3 shows bicluster totals for the arable field dataset.  The concentration ratio was 1.23 for the 8 

(9,12) case, which was investigated in detail.  The minimum quasi-AIC was found with 24 species 9 

clusters and 28 sample clusters.  This solution had concentration ratio 1.37, and is set out briefly in the 10 

Supporting Information. 11 

 12 

Bicluster totals and concentrations for the liverwort and vascular-plant datasets are not shown here but 13 

are given in the Supporting Information. 14 

Discussion 15 

THEMES AND ALGORITHM 16 

When differing weighting schemes W0, W0.5 and W1 were applied, it became apparent that a 17 

relatively small suite of cluster themes appeared repeatedly.  An analysis of themes for liverwort 18 

analyses (see Supporting Information) revealed 16 themes from 8 analyses, each of which had 10 19 

species clusters.  Four themes, namely Southwest coast, Irish Atlantic, Calcicole montane and Eastern 20 

snowpatch, were nested within larger W1 themes.  Two themes, Middle western and Rather upland, 21 

were intermediate between W1 themes. 22 

 23 

The algorithm, based on random seeds, cannot be guaranteed to converge to the global optimum.  Our 24 

use of cluster seeds is similar to the MedoidKNN procedure proposed by Kalogeratos & Likas (2011).  25 
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Our algorithm is somewhat complicated, but we found that simpler algorithms were frustratingly 1 

unable to locate really good solutions.  Solutions that were close to the optimum displayed almost all 2 

the same themes.  For example, the second-best solution for CSKM W1 applied to the vascular plants 3 

was found in two of the ten main replicates. It had mean cosine 0.79932 compared with 0.79939 for 4 

the best.  Its 20 themes were the same.  Of its key species, 13 were identical to those in the best 5 

solution, and five appeared as number 2 in order of alignment to the best solution.  Of the remaining 6 

two, Carex echinata was 5th in order of alignment to the moorland cluster, and Alisma plantago-7 

aquatica had moved from the eutrophic lowland cluster to the aquatic lowland cluster.  In the best 8 

solution the cosine similarity of A. plantago-aquatica to the eutrophic cluster was 0.910, while its 9 

similarity to the aquatic cluster was 0.878.  Clearly these are small differences, but in our judgement, 10 

the mathematically suboptimal solutions were for the most part somewhat inferior ecologically. 11 

 12 

The algorithm is not especially quick.  Typically, a solution for one of the larger problems required 13 

about 50,000 iterations of the SKM algorithm.  Applied to the arable dataset, with 11,003 elements, 14 

the calculation took 27 and 40 minutes respectively for CSKM and PSKM to extract 9 species clusters 15 

and 12 sample clusters, using a desktop computer with a 2.8 GHz processor.  Calculations for the 16 

vascular plant dataset, which is 140 times bigger, took about a week, partly because of the large size 17 

of the dataset and partly because more groups were sought. 18 

 19 

We have no doubt that efficiency could be improved, but this would require either parallel processing 20 

or a more subtle algorithm. 21 

WHAT MAKES A GOOD CLUSTERING? 22 

From the early days of plant ecology, clustering has been used for data exploration.  During the period 23 

1950-1980 investigators sought objectivity through the use of numerical methods.  The methods of 24 

Braun-Blanquet and his followers were frequently attacked as lacking objectivity.  However, Goodall 25 

(1953) noted early on that Braun-Blanquet’s method of ‘character species’ could in principle be made 26 

objective.  It has much resemblance to the algorithm based on key species, used here. 27 
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In biogeographical analyses (Finnie et al., 2007, Preston, Harrower & Hill, 2011), we have 1 

successfully employed R-mode methods that rely on the cosine measure of similarity.  Forty years 2 

earlier, Orloci (1967) had proposed the method of ‘optimal agglomeration’.  This is essentially 3 

Ward’s minimum variance method (Legendre & Legendre, 1998) on the surface of a hypersphere.  It 4 

also uses the cosine measure of similarity but never achieved much popularity.  This may well be 5 

because optimal agglomeration used unweighted vectors, i.e. the weighting scheme W0, which in our 6 

study proved less satisfactory than W1 (Table 1). 7 

 8 

How then should we judge clustering methods?  Their ability to extract clear patterns is essential.  9 

They should not pick out minor groups at the expense of the broad picture.  For these reasons, the 10 

concentration ratio has all the hallmarks of a good criterion by which biclusterings can be judged.  11 

Perhaps, it should be used directly, just as maximum entropy methods are used in other applications.  12 

We do not know of a direct algorithmic approach to the maximization problem and have therefore 13 

used variants of SKM and compared them by the concentration ratio (Table 1).  In principle, the 14 

‘double k-means’ approach explored by Martella & Vichi (2012) could be extended from k-means to 15 

SKM using the concentration ratio as objective function.  The problem of avoiding local optima 16 

would be just as severe with double SKM as with ordinary SKM, but double SKM might be useful to 17 

clean up approximate solutions derived by sequential clustering (species, followed by samples). 18 

 19 

A good clustering should not have too many or too few clusters.  For the two smaller datasets, the 20 

application of quasi-AIC to restrict cluster numbers was successful.  For the Dune Meadow data, the 21 

groups (Fig. 2b) make obvious ecological sense and are: 1 dicots (and one grass) of low-nutrient 22 

permanent grassland; 2 dicots (and one moss and annual grass) of short turf; 3 competitive pasture 23 

grasses (and one dicot); 4 dune-slack margins; and 5 dune-slack centres.  For the Danube Meadow 24 

data (Supporting Information, Figure S1b) the five groups are: 1 Dry calcareous grassland 25 

(Mesobromion); 2 Poa pratensis (dominant in one aberrant sample); 3 coarse pasture grasses (and 4 26 
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dicots); 4 wetland grasses (confined to a sample that was regularly inundated); and 5 dicots (plus two 1 

grasses and one sedge).  This classification brings out themes corresponding to two main gradients, 2 

dry to wet, and high-grass to high-dicot.  In addition, it distinguishes an aberrant sample. 3 

 4 

With the arable bryophyte data, quasi-AIC suggested a substantial increase in cluster numbers from 5 

(9,12) to (24,28).  The 24×28 concentration matrix is shown in the Supporting Information (Fig. S2).  6 

There is undoubtedly much structure even at this level of subdivision, but in most applications it is 7 

preferable to have a succinct overview.  Indeed, Preston et al. (2010) recognized just six species 8 

assemblages based on detrended correspondence analysis followed by k-means clustering. Many of 9 

the clusters recognized by both CSKM W1 and PSKM W1 with 9 species clusters and 12 sample 10 

clusters are broadly similar to assemblages described by Preston et al. (2010). 11 

 12 

The hierarchy derived by Ward’s method (illustrated in Supplementary Information Fig. S3 and Fig. 13 

S4) also provides an overview.  There is indeed no straightforward answer to what makes a good 14 

clustering.  It depends on whether the investigator is looking for detail or for broad features. 15 

COMPARISON OF METHODS 16 

All the classifications outlined above produced recognizable patterns that can be interpreted in 17 

ecological or biogeographical terms.  There was a clear progression from the more balanced W1 18 

analyses to the W0 analyses, which generated some small but rather distinct clusters of rare species as 19 

well as some large clusters.  The pattern is shown for liverwort clusters (Table 4).  The two least 20 

concentrated biclusterings resulted from Twinspan and CSKM W0;  here the largest sample clusters 21 

were 1402 and 790, i.e. 41% and 23% of all 3459 samples.  The Twinspan classification was 22 

especially uneven, and failed to distinguish a category of montane species.  In CSKM W0, the 23 

maximum cell concentration of 52.1 was for 10 Irish-Atlantic species in a cluster of 33 hectads among 24 

which 26 were in Ireland and 7 in Britain.  Clearly the W0 biclusterings were too uneven to be 25 



16 
 

generally suitable.  The W0.5 biclusterings, on the other hand, were nearly as concentrated as the W1 1 

biclusterings. 2 

 3 

The PSKM W1 classification of the arable dataset produced two essentially single-species clusters, 4 

Bryum klinggraeffii in one cluster and B. violaceum in the other. This dataset has less inherent 5 

structure than the other datasets from Britain and Ireland, because it was obtained from a single, rather 6 

uniform habitat that is confined to the lowlands. The liverwort and vascular plant datasets cover the 7 

whole environment, including woods, grasslands, rivers, coasts and mountains. The CSKM and 8 

PSKM methods produced very similar results for a given weighting when applied to these data. 9 

 10 

Apart from the fact that PSKM minimizes the sum of squared distances to rays not passing through 11 

exact cluster centroids, the main difference between CSKM and PSKM is that PSKM maximizes 12 

∑j (bj
T
x)

2 
 whereas CSKM maximizes ∑j (bj

T
x).  This distinction underlies the main practical 13 

difference between them, namely that CSKM emphasizes overall conformity to the centroid, whereas 14 

PSKM pays less attention to species that are more deviant, emphasizing those that are well aligned.  15 

PSKM produced marginally higher-entropy biclusterings than CSKM for the two biogeographical 16 

datasets.  Our analyses do not indicate that either of the two is always better.  We note in passing that 17 

the most truly spherical k-means clustering would be angular spherical k-means (ASKM), which 18 

minimizes the sum of squared angles to a central ray.  ASKM would take longer to compute than 19 

CSKM, because as with PSKM the position of the central ray has to be calculated by a recursion 20 

formula.  ASKM would be more sensitive to poorly-aligned elements than CSKM, but we have not 21 

programmed it and do not report on its properties here. 22 

 23 

Although the differing weightings of CSKM and PSKM produced results that differ in their 24 

concentration ratios, the selection of a preferred weighting may on occasion be better judged by the 25 

requirements of the user rather than by differences in concentration ratio.  The particular choice may 26 

depend on the dataset in question.  To our way of thinking, the W1 methods produced a satisfactory 27 

classification of the liverworts, which have very few ubiquitous species.  When applied to vascular 28 
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plants, among which widespread species are more frequent, the W1 weighting produced three groups 1 

of almost ubiquitous species, differing in the rather small areas of Britain and Ireland from which they 2 

are absent. For vascular plants, therefore, W0.5 weightings generated a more interesting set of 3 

patterns, which will be reported elsewhere. 4 

Conclusions 5 

Spherical k-means is shown to be a powerful clustering method, especially for R-mode analyses.  It 6 

has hitherto been neglected because it tends to produce very unequal cluster sizes unless the 7 

commoner species are given greater weight.  It also requires careful programming to avoid 8 

unsatisfactory local optima.  There is no general answer to whether CSKM or PSKM is better;  we 9 

recommend doing both and selecting the solution with higher concentration ratio.  The quasi-Akaike 10 

criterion is good for selecting the number of clusters in small datasets, but in large datasets 11 

convenience is likely to be the main consideration. 12 
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TABLES 
 

There are 4 tables 

 

 
Dune Danube Arable Liverwort Vascular 

Area sampled 
Netherlands, 
Terschelling 

Germany, 
E of Ulm 

Britain and 
Ireland 

British Isles 
and Channel 

Islands 

British Isles 
and Channel 

Islands 

Data type 
Abundance 

class 
Biomass % 

Abundance 
class 

Presence-
absence 

Presence-
absence 

Sample units 
2 x 2 m 

quadrats 
Meadows 

Arable 
fields 

10 x 10 km 
squares 

10 x 10 km 
squares 

Number of species 30 94 164 300 1405 

Number of samples 20 25 812 3459 3857 

Number of non-zero items 197 788 11003 116973 1510290 

Number of species clusters 7 6 9 10 20 

Number of sample clusters 5 8 12 12 24 

 

Table 1.  Five datasets studied in detail, and the number of clusters into which they were grouped; 

abundance classes for the Dune and Arable datasets used the van der Maarel and DAFOR scales 

respectively. 
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Analysis type Dune Danube Arable Liverwort Vascular 

CSKM W00 1.45994 1.49856 1.11625 1.17084  

CSKM W0 1.44953 1.54587 1.14634 1.18142  

CSKM W0.5 1.50525 1.56026 1.19799 1.20960 1.16624 

CSKM W1 1.51112 1.56470 1.22544 1.22135 1.17142 

CSKM Transposed W00 1.42943 1.49001 1.18576 1.18150  

CSKM Transposed W0 1.51533 1.51884 1.20869 1.20149  

CSKM Transposed W0.5 1.51533 1.51999 1.21039 1.21359  

CSKM Transposed W1 1.51575 1.49826 1.21362 1.22167  

      

PSKM W00 1.49113 1.41471 1.15671 1.19455  

PSKM W0 1.50812 1.54737 1.18087 1.20631  

PSKM W0.5 1.50566 1.56142 1.21264 1.22513 1.16852 

PSKM W1 1.51112 1.54140 1.22415 1.22743 1.17321 

PSKM Transposed W00 1.42943 1.46029 1.16147 1.20285  

PSKM Transposed W0 1.51533 1.51842 1.21127 1.21437  

PSKM Transposed W0.5 1.51533 1.48263 1.20934 1.21829  

PSKM Transposed W1 1.51575 1.49668 1.20983 1.22495  

      

Twinspan 1.46822 1.51006 1.18407 1.15397  

Twinspan Transposed 1.36876 1.37165 1.10600 1.16533  

Clustaspec 1.50423 1.54139 1.17147 1.19633  

Clustaspec Transposed 1.51952 1.42099 1.19820 1.21366  

 

Table 2.  Concentration ratios for biclustering by various clustering methods.  CSKM and PSKM are 

chord and perpendicular spherical k-means respectively; W00, W0, W0.5 and W1 are differing 

weighting schemes.   Maximum values are shown in bold type. 
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(a) 

Cluster 1 2 4 6 3 7 5 8 9 11 12 10 

1 469 97 174 263 51 29 7 48 49 17 11 8 

5 694 541 1162 1741 233 43 67 264 1102 575 219 416 

2 172 472 336 400 81 5 48 28 116 79 9 173 

4 32 35 49 50 37 8 77 8 6 4 8 4 

3 263 231 237 351 299 143 24 246 160 112 87 108 

6 53 8 8 51 11 137 1 88 57 29 41 6 

7 45 92 82 206 25 17 30 50 200 279 35 534 

8 180 137 255 1026 88 81 80 363 1099 1303 489 527 

9 6 1 13 50 1 15 0 19 54 93 238 17 

 

(b) 

Cluster 1 2 4 6 3 7 5 8 9 11 12 10 

1 4.21 1.03 1.29 1.09 1.06 1.04 0.36 0.74 0.30 0.12 0.17 0.08 

5 1.08 1.00 1.49 1.25 0.84 0.27 0.60 0.71 1.15 0.69 0.57 0.69 

2 0.98 3.20 1.59 1.06 1.07 0.11 1.57 0.28 0.45 0.35 0.09 1.06 

4 1.10 1.43 1.40 0.80 2.96 1.11 15.22 0.47 0.14 0.11 0.46 0.15 

3 1.28 1.33 0.95 0.79 3.36 2.78 0.67 2.05 0.52 0.42 0.71 0.56 

6 1.19 0.21 0.15 0.53 0.57 12.28 0.13 3.39 0.86 0.50 1.55 0.14 

7 0.31 0.75 0.47 0.66 0.40 0.47 1.18 0.59 0.93 1.47 0.41 3.92 

8 0.35 0.32 0.41 0.93 0.40 0.63 0.89 1.22 1.44 1.95 1.60 1.10 

9 0.13 0.03 0.23 0.50 0.05 1.30 0.00 0.71 0.79 1.55 8.67 0.39 

 

Table 3.  Arable bryophyte data, showing (a) bicluster totals and (b) individual cell concentrations 

(observed/expected) for the standard CSKM biclustering.  Rows are species clusters;  columns are 

sample clusters.  The mean concentration for the whole biclustering is 1.23, which is the weighted 

geometric mean of the individual cell concentrations in (b), weighted by the totals in (a). 
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Analysis Concentration 
Max cell 

concentration 
CV 

spec 
CV 

samp 
Min 

spec 
Max 
spec 

Min 
samp 

Max 
samp 

CSKM W1 1.221 11.5 0.37 0.48 17 51 82 559 

PSKM W1 1.227 11.6 0.38 0.37 13 51 74 439 

CSKM W0.5 1.210 13.6 0.39 0.70 11 51 49 695 

PSKM W0.5 1.225 15.4 0.25 0.61 19 40 46 635 

CSKM W0 1.181 52.1 0.67 0.90 10 73 16 790 

PSKM W0 1.206 53.3 0.50 0.94 10 57 21 793 

Twinspan 1.154 21.4 0.65 1.70 13 77 5 1402 

Clustaspec 1.196 17.1 0.56 0.38 10 66 81 526 

 

Table 4.  Liverwort cluster size in relation to concentration of biclustering; CV is coefficient of 

variation in cluster size, spec refers to species cluster size, samp to sample cluster size. 
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CAPTIONS FOR THE FIGURES 

 
Figure 1.  The two types of spherical k-means.  Vector x is the centre of the cluster and bi is a 

member of the cluster.  In ordinary (chord) SKM we minimize the sum of squared chord distances 

∑║BC║
2
, while in perpendicular SKM we minimize the sum of squared perpendicular distances 

∑║BA║
2

. 

 
Figure 2.  Dune dataset, showing (a) the standard W1 solution resulting from both CSKM and PSKM 

(concentration ratio 1.51) and (b) the simplified solution with minimum quasi-AIC (concentration 

ratio 1.44).  Species names are abbreviated as in ter Braak & Šmilauer (1998). 

 
Figure 3.  Danube Meadow dataset with biclustering by CSKM, concentration ratio 1.56.  Values are 

biomass %.  Species with average biomass less than 0.4% of the total have been omitted.  The symbol 

+ indicates presence but with less than 0.5% of the biomass in that sample. 
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Figure 2 

 (a)          (b) 

 
7 6 10 5 17 2 1 18 11 19 4 9 13 3 12 15 14 20 16 8 10 7 5 2 6 1 18 19 11 17 9 13 4 3 8 12 15 14 20 16

Pla lan 5 5 3 5 2 3 3 Pla lan 3 5 5 5 3 3 2

Rum ace 3 6 5 2 2 Rum ace 3 5 6 2 2

Tri pra 2 5 2 Tri pra 2 2 5

Ant odo 2 3 4 4 4 4 Ant odo 4 2 4 3 4 4

Ach mil 2 2 4 2 2 3 1 Ach mil 4 2 2 3 2 1 2

Hyp rad 2 2 5 Leo aut 3 3 3 5 3 5 6 5 2 2 2 2 2 3 2 2 2 2

Air pra 2 3 Bra rut 2 2 2 6 6 3 4 2 2 2 2 4 4 4 4

Emp nig 2 Tri rep 6 2 2 5 5 2 2 3 3 2 1 2 2 3 1 6

Lol per 6 6 6 2 5 7 2 7 5 2 6 4 Hyp rad 5 2 2

Poa pra 4 3 4 2 1 4 4 3 4 4 4 2 5 4 Sal rep 3 3 5

Poa tri 5 4 4 6 7 2 5 5 9 6 4 2 4 Vic lat 1 1 2

Ely rep 4 4 4 4 6 4 Emp nig 2

Bel per 2 2 3 2 2 2 Air pra 3 2

Bro hor 2 4 2 4 3 Poa pra 4 4 2 4 3 4 3 4 1 4 2 4 5 4

Leo aut 3 3 3 3 2 5 5 5 6 2 2 2 2 2 2 2 2 3 Lol per 6 6 2 5 6 7 2 7 2 5 6 4

Bra rut 2 6 2 2 6 4 3 2 2 2 4 4 4 4 2 Poa tri 4 5 6 7 4 2 5 9 5 6 4 4 2

Tri rep 2 5 6 2 5 2 3 2 1 3 2 2 3 1 6 2 Ely rep 4 4 4 6 4 4

Vic lat 1 1 2 Bel per 2 2 3 2 2 2

Sal rep 3 3 5 Bro hor 4 2 2 4 3

Alo gen 2 2 3 5 7 8 4 5 Alo gen 2 3 5 2 7 5 8 4

Agr sto 8 3 5 4 4 4 4 5 7 4 Agr sto 3 5 8 4 4 4 4 4 5 7

Sag pro 2 3 5 2 2 4 2 Sag pro 3 2 2 2 5 2 4

Jun buf 2 4 3 4 Jun buf 2 4 3 4

Cir arv 2 Cir arv 2

Che alb 1 Che alb 1

Ele pal 5 4 4 8 4 Ele pal 4 5 4 4 8

Ran fla 2 2 2 4 2 2 Ran fla 2 2 2 2 4 2

Jun art 4 3 4 3 4 Jun art 4 4 3 4 3

Cal cus 4 3 3 Cal cus 4 3 3

Pot  pal 2 2 Pot pal 2 2



1 4 9 3 10 15 2 12 24 23 22 5 17 16 20 25 18 21 19 14 6 13 8 11 7

Brom erec 50 74 47 35 21 37 10

Koel pyra 3 2 3 3

Fest rubr 15 2 3 4 6 2 2 + + 2 2 + 1 + 2

Camp rotu 1 1 + + 1 1 1 + 1 + + 1 +

Fest ovin 2 1 2 1

Care flac 2 3 1 2 3 2

Salv prat 2 4 5 1 4

Poa prat 4 5 10 10 8 15 74 25 20 16 9 4 5 10 6 10 10 1 1 5 2 2 4 6 3

Gali moll 3 1 2 7 12 3 2 6 3 12 3 3 3 5 5 2 6 1 2 14 24 10 4 5 6

Ranu acri + + + 3 + + + + + 2 1 + + 1 + + + 1 2 2 + 1 2

Plan lanc 1 1 1 1 1 1 1 1 + 8 2 2 + 2 1 + 1 1 + 2 1 4 4 + 4

Achi mill 6 1 2 3 8 2 + 1 3 + 4 2 + 5 6 + 12 + 16 4 1

Leuc vulg 1 + 2 3 5 1 + 3 6 1 1 + 1 1 3 + + 2 4 1 1 + 2

Tara offi + + + + + + + 4 + 3 + + + 1 + 1 2 1 3

Cent jace + 6 + 1 1 2 + 2 2 2 + 4 2 3

Hera spho + 1 + 1 + 3 1 + 1 + + + 26 4

Arrh elat + 2 5 2 8 15 1 10 30 26 25 4 15 15 24 35 22 25 22 12 4 10 4 9 4

Dact glom 5 5 2 15 6 6 5 32 8 8 8 12 15 15 5 18 18 18 1 10 12 15 10 12 4

Fest prat 5 3 2 6 5 10 2 2 15 20 28 5 2 3 12 15 10 2 3 2 8 10 2

Tris flav 3 5 4 2 2 4 16 8 5 10 8 5 8 6

Vero cham + + + + 1 + 1 + 2 + + + 1 1 1 1 + 1 + + + 1

Heli pube 1 4 + 1 1 1 2 20 4 13 28 4 + 8 4 3

Trif prat + + 1 + + 2 2 + 4 1 + + + + 1 + + 1

Holc lana + 1 2 15 2 + 2 1 1 2 2 1

Geum riva + + + 1 + + + 1 1 2 + 5 3 1

Rume acsa + + + 1 + 1 + + 1 1 1 + 1 2 2 1 3 2 1

Cirs oler 1 + + 2 + 3 2 + 18 12 + 20 3 20

Desc cesp 10 5 2 1 2 28 11

Alop prat 10 2 1 2 15 8 4 10 6

Care acfm 2 1 2 4 10

Dauc caro 1 + 1 1 1 + 1 + 2 + + + + 1 1 + 1 2 5 1

Crep bien + + 1 + 6 1 2 + 1 1 + + 1 8 +

Glyc flui 20

Phal arun 28

Figure 3 
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SUPPORTING INFORMATION 

 

Danube meadow dataset 

Figure S1 (a)-(d).  CSKM and PSKM biclusterings for Danube Meadow Data.  Colours show the 

concentration of the individual biclusters, from dark green (> 3.5) to light green (>1.0) and grey 

(>0.5).  Solutions for k1=6, k2=9 show the greater tendency of PSKM to pick out aberrant species and 

samples;  here, a sample with 28% Deschampsia cespitosa is picked out by PSKM but not by CSKM.  

The best solution according to the quasi-Akaike measure is PSKM with k1= k2=5. 

Fig. S1 (a) CSKM, k1 = 5, k2 =5, concentration ratio 1.46 

1 1 1 1 1 1 2 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 5

9 15 1 3 10 4 2 11 7 8 22 25 17 18 23 16 13 20 5 14 21 12 6 24 19

Brom_erec 47 37 50 35 21 74 10 1

Fest_rubr 3 6 15 4 2 2 + 2 + 1 2 + 2 2 + 1

Salv_prat 2 1 4 5 4 1

Care_flac 1 2 3 2 3 2 1

Koel_pyra 3 3 3 2 1

Poa__prat 10 15 4 10 8 5 74 6 3 4 9 10 5 10 16 10 2 6 4 5 1 25 2 20 1 2

Arrh_elat 5 15 + 2 8 2 1 9 4 4 25 35 15 22 26 15 10 24 4 12 25 10 4 30 22 3

Dact_glom 2 6 5 15 6 5 5 12 4 10 8 18 15 18 8 15 15 5 12 10 18 32 12 8 1 3

Fest_prat 5 6 3 2 5 10 2 8 15 3 28 12 2 5 2 2 20 2 15 10 3 2 10 3

Gali_moll 2 3 3 7 12 1 2 5 6 4 3 2 3 6 12 5 10 5 3 14 1 6 24 3 2 3

Heli_pube 4 1 + 1 3 2 4 4 13 4 28 20 + 1 8 1 3

Tris_flav 3 4 5 2 16 5 5 4 10 6 8 8 8 2 5 3

Achi_mill 2 2 6 3 8 1 + 1 4 + + 12 + 5 4 6 2 16 + 1 3 3

Plan_lanc 1 1 1 1 1 1 1 + 4 4 2 + + 1 8 2 4 1 2 2 1 1 1 + + 3

Leuc_vulg 2 1 1 3 5 + + + 2 1 1 1 1 1 1 3 + 2 + 3 4 6 + 3

Hera_spho + 1 4 + + 1 + 1 + 26 1 3 + + 3

Holc_lana 2 2 15 2 + 1 1 2 2 1 + 3

Cent_jace + + 6 1 3 2 + 2 2 4 + 1 2 2 3

Ranu_acri + + + + 3 + 1 2 + 2 + + + + 2 1 1 1 + + 2 + + 3

Tara_offi + + + + + 3 1 + + + 1 4 2 + 3 + + 1 + 3

Trif_prat + + 1 + + 1 + + + 2 1 + + 4 + 1 2 + 3

Vero_cham + + + + 1 + + 1 + + 1 + 2 1 + 1 + 1 1 1 + + 3

Sile_dioi 1 + 4 + 1 + 1 + + 2 + 3

Cirs_oler 3 20 20 + 3 2 1 + + + 18 2 12 + 4

Desc_cesp 28 11 2 10 1 5 2 4

Alop_prat 6 10 10 1 2 4 2 15 8 4

Crep_bien + + + 8 1 + 1 6 1 2 + + 1 1 + 4

Care_acfm 4 10 2 1 2 4

Dauc_caro 1 + 1 1 1 + 1 1 5 + + 1 2 + 2 1 + + + 1 4

Rume_acsa + + + 2 1 3 1 1 + + 1 1 1 + 2 + 1 2 1 4

Geum_riva 3 1 5 + + + + 1 + + 1 + 2 1 4

Ajug_rept 1 + 1 1 3 + + + + + + + + 1 1 + 4

Phal_arun 28 5

Glyc_flui 20 5  

S1 (b) PSKM, k1 = 5, k2 =5, concentration ratio 1.47 (selected by quasi-AIC) 

1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 5 4 4 4 4 4 4 4

9 1 15 3 10 4 2 16 18 20 22 5 25 17 21 12 24 19 6 11 13 14 8 7 23

Brom_erec 47 50 37 35 21 74 10 1

Koel_pyra 3 3 3 2 1

Fest_rubr 3 15 6 4 2 2 + 2 2 2 + 2 1 + + 1

Care_flac 2 1 3 3 2 2 1

Salv_prat 2 1 4 5 4 1

Poa__prat 10 4 15 10 8 5 74 10 10 6 9 4 10 5 1 25 20 1 2 6 2 5 4 3 16 2

Arrh_elat 5 + 15 2 8 2 1 15 22 24 25 4 35 15 25 10 30 22 4 9 10 12 4 4 26 3

Dact_glom 2 5 6 15 6 5 5 15 18 5 8 12 18 15 18 32 8 1 12 12 15 10 10 4 8 3

Fest_prat 5 6 3 2 5 5 12 2 15 20 3 28 15 10 2 10 3 10 2 2 8 2 2 3

Tris_flav 3 4 5 2 10 5 8 16 8 5 8 2 5 6 4 3

Vero_cham + + + + 1 + 1 1 + + 1 + 1 1 + + 1 + + + 1 2 3

Leuc_vulg 2 1 1 3 5 + + 1 3 1 + 1 + 3 6 + 4 + 1 2 1 2 1 3

Achi_mill 2 6 2 3 8 1 + 5 12 6 4 2 + + + 1 3 4 16 1 + 3

Heli_pube 4 1 + 1 13 4 28 2 20 4 + 1 1 8 4 3 3

Trif_prat + + 1 + + 1 + + + 4 + 2 + 1 + + 1 2 3

Holc_lana 1 15 2 2 + 1 2 1 2 2 + 3

Sile_dioi 1 + 4 + + + + 2 + 1 1 3

Glyc_flui 20 5

Phal_arun 28 5

Rume_acsa + + + 1 1 1 + 1 + + 1 1 2 2 1 2 3 1 + 4

Cirs_oler + + + 3 2 2 + 12 3 + 18 20 20 1 4

Gali_moll 2 3 3 7 12 1 2 5 6 5 3 3 2 3 1 6 3 2 24 5 10 14 4 6 12 4

Plan_lanc 1 1 1 1 1 1 1 2 1 1 2 2 + + 1 1 + + 1 + 4 2 4 4 8 4

Geum_riva 1 + + + + + 1 + 1 2 3 + 5 1 4

Dauc_caro 1 1 + 1 1 + 1 + 1 1 + + + + + 1 2 5 1 2 4

Ranu_acri + + + + 3 + + 1 2 1 + + + + + + 2 1 2 1 + 2 + 4

Ajug_rept 1 + + + + + + + 1 1 + 1 + + 3 1 4

Tara_offi + + + + + 1 + + 3 + + + + 1 2 + 1 3 4 4

Alop_prat 2 10 2 1 15 8 6 4 10 4

Crep_bien + + 1 1 1 2 + + 1 + 1 + + 8 6 4

Care_acfm 2 1 2 4 10 4

Desc_cesp 10 5 2 28 1 2 11 4

Cent_jace + + 6 1 2 2 2 + 1 2 2 4 3 + 4

Hera_spho + 1 + + 1 + 3 + 1 + + 26 4 1 4  
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S1 (c) CSKM, k1 = 6, k2 = 8, concentration ratio 1.56 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1 1 2 2 2 3 4 4 4 6 6 6 6 6 6 6 6 8 5 5 5 7 7 7

Species___ 1 4 9 3 10 15 2 12 24 23 22 5 17 16 20 25 18 21 19 14 6 13 8 11 7

Brom_erec 50 74 47 35 21 37 10 1

Koel_pyra 3 2 3 3 1

Fest_rubr 15 2 3 4 6 2 2 + + 2 2 + 1 + 2 1

Camp_rotu 1 1 + + 1 1 1 + 1 + + 1 + 1

Fest_ovin 2 1 2 1 1

Care_flac 2 3 1 2 3 2 1

Salv_prat 2 4 5 1 4 1

Poa__prat 4 5 10 10 8 15 74 25 20 16 9 4 5 10 6 10 10 1 1 5 2 2 4 6 3 2

Gali_moll 3 1 2 7 12 3 2 6 3 12 3 3 3 5 5 2 6 1 2 14 24 10 4 5 6 3

Ranu_acri + + + 3 + + + + + 2 1 + + 1 + + + 1 2 2 + 1 2 3

Plan_lanc 1 1 1 1 1 1 1 1 + 8 2 2 + 2 1 + 1 1 + 2 1 4 4 + 4 3

Achi_mill 6 1 2 3 8 2 + 1 3 + 4 2 + 5 6 + 12 + 16 4 1 3

Leuc_vulg 1 + 2 3 5 1 + 3 6 1 1 + 1 1 3 + + 2 4 1 1 + 2 3

Tara_offi + + + + + + + 4 + 3 + + + 1 + 1 2 1 3 3

Cent_jace + 6 + 1 1 2 + 2 2 2 + 4 2 3 3

Hera_spho + 1 + 1 + 3 1 + 1 + + + 26 4 3

Arrh_elat + 2 5 2 8 15 1 10 30 26 25 4 15 15 24 35 22 25 22 12 4 10 4 9 4 4

Dact_glom 5 5 2 15 6 6 5 32 8 8 8 12 15 15 5 18 18 18 1 10 12 15 10 12 4 4

Fest_prat 5 3 2 6 5 10 2 2 15 20 28 5 2 3 12 15 10 2 3 2 8 10 2 4

Tris_flav 3 5 4 2 2 4 16 8 5 10 8 5 8 6 4

Vero_cham + + + + 1 + 1 + 2 + + + 1 1 1 1 + 1 + + + 1 4

Heli_pube 1 4 + 1 1 1 2 20 4 13 28 4 + 8 4 3 4

Trif_prat + + 1 + + 2 2 + 4 1 + + + + 1 + + 1 4

Holc_lana + 1 2 15 2 + 2 1 1 2 2 1 4

Geum_riva + + + 1 + + + 1 1 2 + 5 3 1 5

Rume_acsa + + + 1 + 1 + + 1 1 1 + 1 2 2 1 3 2 1 5

Cirs_oler 1 + + 2 + 3 2 + 18 12 + 20 3 20 5

Desc_cesp 10 5 2 1 2 28 11 5

Alop_prat 10 2 1 2 15 8 4 10 6 5

Care_acfm 2 1 2 4 10 5

Dauc_caro 1 + 1 1 1 + 1 + 2 + + + + 1 1 + 1 2 5 1 5

Crep_bien + + 1 + 6 1 2 + 1 1 + + 1 8 + 5

Glyc_flui 20 6

Phal_arun 28 6  

S1 (d) PSKM, k1 = 6, k2 = 8, concentration ratio 1.54 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 1 1 2 2 2 3 4 4 5 5 5 5 5 5 5 5 7 8 6 6 6 6 6 6

Species___ 1 4 9 3 10 15 2 12 24 22 5 16 25 18 20 17 21 11 19 8 6 13 14 23 7

Brom_erec 50 74 47 35 21 37 10 1

Koel_pyra 3 2 3 3 1

Fest_rubr 15 2 3 4 6 2 2 + 2 2 2 + + 1 + 1

Camp_rotu 1 1 + + 1 1 1 + + + + 1 1 1

Fest_ovin 2 1 2 1 1

Care_flac 2 3 1 3 2 2 1

Salv_prat 2 4 5 1 4 1

Poa__prat 4 5 10 10 8 15 74 25 20 9 4 10 10 10 6 5 1 6 1 4 2 2 5 16 3 2

Gali_moll 3 1 2 7 12 3 2 6 3 3 3 5 2 6 5 3 1 5 2 4 24 10 14 12 6 3

Rume_acsa + + + 1 1 + 1 1 1 + + 2 1 3 2 1 2 + 1 3

Cirs_oler + + 3 + 2 2 3 + 20 12 + 18 1 20 3

Plan_lanc 1 1 1 1 1 1 1 1 + 2 2 2 + 1 1 + 1 + + 4 1 4 2 8 4 3

Ranu_acri + + + 3 + + + + 2 1 + + 1 + + 1 + + 2 2 1 + 2 3

Dauc_caro 1 + 1 1 1 + 1 + + + + 1 1 + + 5 1 2 2 1 3

Leuc_vulg 1 + 2 3 5 1 + 3 6 1 + 1 3 1 + + + 1 4 1 2 1 2 3

Achi_mill 6 1 2 3 8 2 + 1 3 4 2 5 + 12 6 + + 4 16 + 1 3

Tara_offi + + + + + + + + 3 + 1 + + 1 1 2 + 4 3 3

Cent_jace + 6 + 1 1 2 2 2 2 + 2 4 + 3 3

Crep_bien + + 1 + 1 2 1 1 + + + 8 1 + 6 3

Hera_spho + 1 + + 3 + + + 1 1 + 26 1 4 3

Desc_cesp 10 5 28 2 2 1 11 5

Care_acfm 2 1 4 2 10 5

Geum_riva + + 1 + + + + 1 3 1 5 2 + 1 5

Arrh_elat + 2 5 2 8 15 1 10 30 25 4 15 35 22 24 15 25 9 22 4 4 10 12 26 4 4

Dact_glom 5 5 2 15 6 6 5 32 8 8 12 15 18 18 5 15 18 12 1 10 12 15 10 8 4 4

Fest_prat 5 3 2 6 5 10 2 15 20 5 3 12 2 28 15 10 10 8 3 2 2 2 2 4

Tris_flav 3 5 4 2 2 16 8 10 5 8 5 8 6 4 4

Vero_cham + + + + 1 + 1 + + + 1 1 1 + 1 + + + 1 + 2 1 4

Alop_prat 10 2 1 2 15 6 10 8 4 4

Heli_pube 1 4 + 1 1 1 2 20 13 4 28 4 + 8 4 3 4

Trif_prat + + 1 + + 2 + 4 1 + + + + + 1 + 2 1 4

Holc_lana 1 15 2 2 2 + 2 1 1 2 + 1 4

Glyc_flui 20 6

Phal_arun 28 6  
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Arable bryophyte dataset 
 

The concentration matrix for the arable bryophyte data, classified following the quasi-Akaike criterion 

into 24 species clusters and 28 sample clusters, is shown in Fig. S2.  It shows some marked local 

concentrations.  The most extreme of these, species cluster 21, with key species Didymodon luridus, is 

heavily concentrated in sample cluster 25, which has only 6 samples, all in the Cotswolds (a small 

area of England with Jurassic limestone bedrock).  The next most extreme example is species cluster 

6, with key species Didymodon insulanus.  It is concentrated in just 8 samples, from bulb fields (not 

arable in the ordinary sense) in the extreme southwest of England. 

 

The hierarchy for the 24 species clusters is shown in Fig. S3.  Each cluster is named by its key 

species, whose name is followed by a brief description of the cluster characteristics.  The top-level 

division comes between clusters 13, which is a very widespread, and 15, which comprises species that 

are characteristic of eutrophic and calcareous soil.  Note that the bottom left and top right of the 

concentration matrix are generally little occupied.  The striking exception is cluster 4, characterized 

by Leptobryum pyriforme, in sample cluster 22, towards the top right.  The distribution of L. 

pyriforme in arable fields is genuinely very odd.  It occurs both in weedy, often sandy communities 

such as cluster 22, and on disturbed peat.  Cluster 22 is visually conspicuous in the concentration 

matrix, but consists of only 10 samples. 
 

 

Figure S2.  Arable bryophyte cluster concentration ratios, with 24 species clusters and 28 sample 

clusters. 
 

Species Sample cluster

cluster 1 5 2 4 3 6 8 7 9 14 11 16 13 10 12 24 17 25 15 19 20 26 27 28 18 21 23 22

1 19 2.9 1.7 0.5 0.8 2.3 1.9 0 0.1 0.1 0.2 0.2 0.7 1.2 0.6 0 0.4 0.4 0.5 0.1 0 0 0.2 0.4 0 0.1 0 0

4 4 2.2 2.5 0 0.9 1.7 2.9 0 0 0.4 0.4 0.9 1.5 0 0.4 0 0.3 0 0.6 0 1 0 0 0.6 1 1.7 0.8 7.6

6 1.6 2 1 2.1 0.7 1.7 1.4 21 0.7 0.7 0.3 0.9 0 1.2 0.7 0 0.3 0 0.8 0 0 0 0.4 0.5 0 0 0.2 0.5

8 1.1 2 1.4 1.9 1.5 1.4 2 1 1.1 1.4 0.6 0.6 0.9 2.1 1.1 1.2 1.4 0.9 0.6 0.3 0.7 0.3 0.6 0.6 0 0.1 0.1 0

10 1.6 3.1 0.6 0.6 1.6 1 0.8 0.8 0.5 0.7 0.8 0.7 0.9 5 0.9 1.3 2.4 1 0.7 0.6 0.4 0.6 0.3 0.8 0.5 0.6 0.4 0.8

14 0 0.9 0.2 0.8 0.6 0.1 0.1 0 0.5 1 0.3 0.2 0.3 7.8 7.4 12 2.7 0.6 0.5 1 0.2 0.8 0.5 0.4 0 0.3 0.3 0

21 0.8 1 0.2 0.2 0.2 0.4 0.2 0 0.2 0.3 0.9 0.5 0.5 1.5 4.1 0.6 1.4 33 0.4 0.6 0.7 0.3 1.1 1.7 0.2 0.4 0.4 0

2 3.2 1 4.8 7.5 1.4 0.4 1.4 2.3 0.7 0.4 0.3 0.1 0.6 1.1 1 0 0.7 0 0.7 0 0 0 0 0 0.1 0 0 0

9 0.6 1 2.3 2.8 1 0.8 0.6 0.8 1.8 1.9 4.1 1.1 0.3 0.4 0.4 0 0.5 0.3 1.2 0.4 0.6 0.1 0.5 0.2 0.5 0.2 0.1 0.2

3 0.9 0.9 2 1.7 5.2 0.5 1.1 0.2 2.5 0.9 0.4 0.4 0.5 0.9 3.2 0.2 0.7 0.1 0.7 0.4 0.4 0.1 0.3 0.1 0.1 0 0.1 0.1

5 2.9 2.3 0.6 0 1.7 2.6 2 1.3 0.6 0.5 1.8 1.3 2.3 0 0 0 0.2 0.4 0.9 0.4 1.1 0.2 0 0.2 0.8 1.4 0.2 0

12 1.5 0.9 0.7 0.2 0.6 2 0.7 1.1 0.3 0.1 1.4 1.3 2.1 1.7 0.4 0 1.2 0 1.1 0.9 0.4 0.7 0 0.3 2.9 2.4 1.1 5.1

7 2 0.8 2.2 0.7 0.9 3.5 1.5 1.4 1.6 0.6 1.6 1.4 1.1 0.2 0.4 0 0.2 0.1 0.9 0.4 0.5 0 0.2 0.1 1.9 0.5 0.2 0.7

11 0.9 0.6 1.6 1.5 0.8 0.5 1.1 0.3 1.4 1.2 0.7 0.6 1 0.1 1.5 1.5 1.2 0.1 4.1 1.2 0.7 0.6 1 0.9 0.1 0.6 0.3 0.7

13 0.8 1.1 1.1 1.1 1.3 1.2 1.7 0.7 1.1 1.5 1.1 1.1 1.3 0.2 0.8 0.5 0.8 0.6 0.8 1.2 1 0.4 0.7 0.5 0.8 0.8 0.8 0.5

15 0.3 0.6 0.4 0.3 0.1 0.6 0.3 1.1 0.9 0.7 1.4 1.5 3 0.5 0.7 0.2 1 1.1 1 0.8 1.7 1.3 0.8 1.3 1.4 1.4 2.1 2.3

19 0.1 0.3 0.4 0.3 0.5 0.5 0.3 0.5 0.6 0.6 2 1.1 0.8 0.4 0.6 0.1 1 1.2 0.7 0.6 0.8 1.9 0.8 0.8 2.5 3.3 2.9 5.9

17 0.8 0.4 0.3 0.1 0.1 0.5 0.3 3.6 0.4 0.3 1.6 0.6 0.6 0.4 0 0 0.1 1.1 0.1 0 0.7 0.2 0.2 0.2 12 1.6 0.3 2.5

16 0.1 0.7 0.5 0.4 0.9 0.1 0.6 0 0.8 0.8 0.6 0.7 0.7 0 1 1.5 1.5 1.1 1.4 3.5 0.9 3.2 1.2 1.4 0.1 0.5 3.3 0.6

22 1 0.5 0.8 0.5 0.1 1.3 1.2 0.5 1.5 0.7 0.7 2.6 0.8 0.1 0.4 0.1 0.4 1.5 1 1.8 0.8 1 0.7 1.3 0.3 1.3 2.4 0.2

18 0.4 0.7 0.4 0.7 0.4 0.5 0.5 1.6 1.1 1.2 0.7 1.5 0.4 0.2 0.3 0.3 0.9 1.9 0.8 0.6 2.8 1 2.7 1.2 1.5 1.8 0.4 1.5

20 0.1 0.3 0.2 0.6 0.3 0.5 0.3 0.4 0.8 1.2 0.5 0.9 0.6 1 0.9 1.9 1.2 1.3 1.2 1.8 1.9 3 1.5 1.8 1.2 1.6 1.7 0.4

23 0 0.1 0 0.4 0 0.1 0 2 0.2 1 0.1 1 0.2 0.7 0.5 0 1.1 1.9 0.5 0.8 1.2 1.3 12 4.2 0.2 1.4 1.6 1.8

24 0 0.1 0 0.4 0 0 0.5 0 0.1 0.4 0.3 0.5 0.1 0.6 0.6 5.7 0.5 1.4 1.3 0.8 1.4 2.1 4.8 9 0.5 0.9 0.7 0.8  
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Figure S3.  Cluster hierarchy for 24 species groups shown in Fig. S2 

  
 

Liverwort distribution dataset 

 

The cluster hierarchy for the liverwort distribution analysis is shown in Fig. S4.  This shows 10 

themes that characterize liverwort distributions.  Six additional themes were revealed in other 

analyses (Table S1).  Figs S5a and S5b show the cluster totals and concentration ratios.  Note the low 

liverwort totals in the lowland hectad clusters (to the left of the diagram in Fig. S5a). 

 

Figure S4.  Cluster hierarchy for liverwort analysis PSKM W1;  each cluster is identified by a key 

species and a theme 

 

  
 

Key species Theme

Lophocolea heterophylla Lowland

Metzgeria furcata Ubiquitous

Microlejeunea ulicina Southwestern

Diplophyllum albicans Calcifuge

Odontoschisma sphagni Bog

Marsupella emarginata Upland

Preissia quadrata Calcicole upland

Moerckia blyttii Montane

Plagiochila punctata Atlantic

Bazzania tricrenata Northern atlantic

No Key sp. Character of group

1 Atri_undu Peat - acid in NW

4 Lept_pyri Peat - including fenland

6 Didy_insu Scilly bulbfields

8 Oxyr_hian Pleurocarp surviving plough

10 Brac_ruta Pleurocarp, fallow and setaside

14 Fiss_taxi Fallow, germinating from spores

21 Didy_luri Cotswold limestone lumps

2 Foss_ Liverworts and hornworts from spores

9 Ricc_glau Liverworts from spores, southwestern

3 Ephe_serr Neutral soil, often clay, from spores

5 Bryu_suba Acid from tubers

12 Cera_purp Acid, weedy

7 Tric_cyli Acid from tubers and spores

11 Dicr_schr Basic and neutral from tubers

13 Dicr_stap Very common from tubers

15 Bryu_dich Weedy, mainly from veg propagules

19 Funa_hygr Weedy, high nutrient

17 Bryu_ Weedy, on sandy soils, esp Norfolk

16 Bryu_klin Very common from tubers, esp on clay

22 Bryu_viol Very common from tubers, esp on sand

18 Barb_conv Very common, including NW

20 Phas_cuspVery common, not so much in NW

23 Bryu_rude Basic soils avoiding clay

24 Dicr_vari Basic soils including clay
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 Theme CSKM W1 PSKM W1 CSKM W0.5 PSKM W0.5 CSKM W0 PSKM W0 Twinspan Clustaspec 

Lowland Loph hete Loph hete Loph hete  Ricc flui  Loph hete Loph hete 

Ubiquitous Metz furc Metz furc Dipl albi Metz furc Metz furc Metz furc Metz furc Pell epip 

Southwestern Phae laev Micr ulic Ceph stel Ceph stel Ceph stel Ricc croz Phae laev Phae laev 

Southwest coast      Ricc croz     

Calcifuge Dipl albi Dipl albi  Dipl albi  Dipl albi Ceph bicu   

Bog Odon spha Odon spha Odon spha Odon spha  Odon spha  Clad flui 

Middle western     Sacc viti   Leje lama   

Rather upland        Frul tama   

Upland Mars emar Mars emar Trit quin Trit quin Mars emar Anas orca Mars emar Scap undu 

Calcicole upland Colo calc Prei quad Colo calc    Anas minu 

Atlantic Plag punc Plag punc Plag punc Harp moll Harp moll Harp moll Drep hama Harp moll 

Irish atlantic    Radu holt  Leje hibe Radu holt    

Northern atlantic Bazz tric Bazz tric Bazz tric Anas orca Scap orni Scap orni  Anas orca 

Calcicole montane     Jung bore Jung bore Trit poli  Scap dege 

Montane Moer blyt Moer blyt Moer blyt Moer blyt Mars cond Pleu albe Mars spha Moer blyt 

Eastern snowpatch               Mars cond 

 

Table S1.  Themes of species clusters emerging from the analyses of the liverwort dataset; full names of the key species are Anastrophyllum minutum,  

Anastrepta orcadensis,  Bazzania tricrenata,  Cephalozia bicuspidata,  Cephaloziella stellulifera,  Cladopodiella fluitans,  Cololejeunea calcarea,  

Diplophyllum albicans,  Drepanolejeunea hamatifolia,  Frullania tamarisci,  Harpalejeunea molleri,  Jungermannia borealis,  Lejeunea hibernica,  Lejeunea 

lamacerina,  Lophocolea heterophylla,  Marsupella condensata,  Marsupella emarginata,  Marsupella sphacelata,  Metzgeria furcata,  Microlejeunea 

ulicina,  Moerckia blyttii,  Odontoschisma sphagni,  Pellia epiphylla,  Phaeoceros laevis,  Plagiochila punctata,  Pleurocladula albescens,  Preissia 

quadrata,  Radula holtii,  Riccia crozalsii,  Riccia fluitans,  Saccogyna viticulosa,  Scapania degenii,  Scapania ornithopodioides,  Scapania undulata,  

Tritomaria polita,  Tritomaria quinquedentata 
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Liverwort - PSKM W1 Concentration ratio 1.227

(a) bicluster totals
Spclus 1 2 3 4 7 5 6 9 8 10 11 12 Total

  Loph hete 1 1357 777 1781 1666 461 842 1355 170 963 282 203 52 9909

  Metz furc 2 1183 2202 2437 2425 770 1713 2575 940 2248 1384 1226 226 19329

  Micr ulic 3 76 262 337 455 187 1361 533 209 374 623 381 14 4812

  Dipl albi 4 445 816 2833 5472 1647 3108 6020 3716 6117 3433 3555 831 37993

  Odon spha 5 21 60 98 362 1076 246 458 822 901 669 722 160 5595

  Mars emar 6 59 103 300 659 290 721 2900 1552 5103 2323 3201 839 18050

  Prei quad 7 39 114 142 144 74 132 466 205 1135 565 768 295 4079

  Bazz tric 9 4 14 10 46 91 59 180 726 883 1350 2613 763 6739

  Moer blyt 10 2 3 4 32 21 20 50 121 313 99 549 863 2077

  Plag punc 8 11 82 46 104 57 719 442 724 748 3080 2244 133 8390

Total 3197 4433 7988 11365 4674 8921 14979 9185 18785 13808 15462 4176 116973
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Figure S5(a).  Bicluster totals and individual cell concentrations for Liverwort dataset, PSKM W1 analysis.  Rows represent species clusters, which are 

named by their key species.  Columns represent sample clusters, named by their key hectads, using standard naming conventions of the British and Irish 

National Grids.  The locations of the key hectads are specified by a short phrase. 
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(b) cell concentrations (observed/expected)
Spclus 1 2 3 4 7 5 6 9 8 10 11 12 N2

  Loph hete 1 5.011 2.069 2.632 1.73 1.164 1.114 1.068 0.218 0.605 0.241 0.155 0.147 6.0

  Metz furc 2 2.239 3.006 1.846 1.291 0.997 1.162 1.04 0.619 0.724 0.607 0.48 0.328 8.5

  Micr ulic 3 0.578 1.437 1.026 0.973 0.973 3.709 0.865 0.553 0.484 1.097 0.599 0.081 7.0

  Dipl albi 4 0.429 0.567 1.092 1.482 1.085 1.073 1.237 1.246 1.003 0.765 0.708 0.613 10.8

  Odon spha 5 0.137 0.283 0.256 0.666 4.813 0.577 0.639 1.871 1.003 1.013 0.976 0.801 5.4

  Mars emar 6 0.12 0.151 0.243 0.376 0.402 0.524 1.255 1.095 1.76 1.09 1.342 1.302 8.3

  Prei quad 7 0.35 0.737 0.51 0.363 0.454 0.424 0.892 0.64 1.733 1.173 1.424 2.026 8.7

  Bazz tric 9 0.022 0.055 0.022 0.07 0.338 0.115 0.209 1.372 0.816 1.697 2.933 3.171 4.8

  Moer blyt 10 0.035 0.038 0.028 0.159 0.253 0.126 0.188 0.742 0.938 0.404 2 11.64 1.9

  Plag punc 8 0.048 0.258 0.08 0.128 0.17 1.124 0.411 1.099 0.555 3.11 2.023 0.444 5.2

N= 327 396 377 439 184 243 362 260 357 248 192 74
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Figure S5(b).  Individual cell concentrations for Liverwort dataset, PSKM W1 analysis.  Note the high concentration of records in Scotland and northern 

England (sample clusters 8-12).  This is seen in the large mass of little-occupied dark cells in the bottom left of the diagram.  This is much larger than the 

corresponding group of dark cells at the top right.  Although the Scottish hectad NT37 is the key sample for cluster 1, this is a lowland cluster, with the large 

majority of its members in England.  Three English hectads had the same mean square cosine 0.9971; in these and NT37, only two or three out of seven 

species in each hectad were leafy liverworts. 
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Figure S6 (on next page).  Individual cell concentrations (observed/expected) for Native Vascular Plant dataset, PSKM W1 analysis.  Rows represent species 

clusters, named by their key species.  Columns represent hectad clusters.  Hectad clusters that are predominantly Irish are marked in green at the top and 

bottom of the figure. 

Note that the clusters with key species Acer campestre and Chaerophyllum temulum are largely absent in Ireland.  In this example there are three near-

ubiquitous clusters.  The Ranunculus repens cluster is genuinely ubiquitous.  The Crataegus monogyna cluster is largely missing from Shetland and the more 

mountainous parts of the Scottish Highlands.  The Conopodium majus cluster is largely missing from the agricultural fenlands of eastern England and from 

NW Scotland and NW Ireland. 

At this scale, some groups are geographically defined and others are ecological.  The Potamogeton crispus cluster consists mainly of water plants with some 

swamp and water-margin species.  The Sagittaria sagittifolia cluster has a similar mix of species, but with a markedly more southern distribution. 
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Bicluster cell concentration matrix R84 N56 X39 N90 M07 L67

Samples Irish Irish Irish Irish Irish Irish

Specclus1 4 3 5 8 2 6 7 9 10 12 16 11 14 13 15 19 20 17 18 21 22 23 24

Cirsium acaule 1 5.58 2.6 2.19 1.1 1.11 1.56 1.1 0.59 0.99 0.19 0.35 0.25 0.24 0.25 0.17 0.06 0.03 0.05 0.09 0.09 0.13 0.08 0.03 0.05

Clematis vitalba 2 2.66 2.93 2.31 0.77 1.25 2.69 2.71 3.02 0.32 0.95 0.47 0.06 0.24 0.21 0.55 0.12 0.07 0.01 0.06 0.1 0.01 0 0 0

Sagittaria sagittifolia 4 1.5 2.66 3.11 2.2 1.83 2.13 0.74 0.35 0.62 0.18 0.47 0.26 0.76 1.62 0.24 0.31 0.06 0.06 0.1 0.05 0.05 0.01 0.01 0.02

Acer campestre 5 2.28 2.05 2.44 2.03 1.97 1.89 1.45 0.97 1.15 0.97 0.57 0.32 0.38 0.38 0.32 0.14 0.05 0.08 0.09 0.05 0.01 0.02 0.01 0.01

Erodium cicutarium agg. 7 1.45 1.83 1.54 1.16 1.34 1.86 1.64 2.05 0.92 0.79 1.81 0.8 0.24 0.33 1.14 0.19 0.16 0.48 0.89 0.71 0.23 0.35 0.26 0.23

Chaerophyllum temulum 8 1.62 1.47 1.51 1.41 1.59 1.08 1.15 0.65 1.74 1.28 1.22 1.46 0.32 0.49 0.41 0.21 0.17 0.87 0.58 0.16 0.14 0.31 0.26 0.3

Epilobium hirsutum 9 1.25 1.13 1.29 1.34 1.23 1.15 1.11 1.09 1.14 1.21 1.06 0.87 1.58 1.27 1.18 1.04 0.45 0.48 0.73 0.59 0.14 0.34 0.12 0.11

Potamogeton crispus 10 1.16 1.38 1.58 1.45 1.35 1.2 0.86 0.45 1.01 0.44 1.14 0.9 1.33 1.96 0.76 0.96 0.47 0.49 0.67 0.74 0.58 0.34 0.24 0.15

Parapholis strigosa 3 0.28 0.87 0.57 0.84 0.24 8.91 3.69 2.78 0.11 0.17 2.51 0.06 0.13 0.18 2.3 0.09 0.08 0.01 0.78 0.76 0.54 0.22 0 0.01

Crithmum maritimum 6 0.25 0.65 0.19 0.33 0.2 2.79 5.27 11.4 0.13 0.8 2.32 0.11 0.25 0.28 3.73 0.24 0.31 0.03 1.07 1.9 0.36 0.2 0.02 0.05

Glaux maritima 15 0.15 0.32 0.24 0.54 0.2 2.14 1.98 2.52 0.26 0.31 2.64 0.25 0.17 0.33 3.08 0.25 0.44 0.2 2.81 3.51 3.68 2.51 0.48 0.43

Crataegus monogyna 11 0.93 0.83 0.99 1.15 0.96 0.91 0.83 0.92 0.99 1.05 0.95 1.06 1.44 1.15 1.16 1.32 1.08 1.1 1.06 0.91 0.44 0.94 0.71 0.52

Oenanthe crocata 12 0.46 1.06 0.33 0.24 0.98 0.54 1.65 1.66 0.85 2.17 1.21 0.72 0.96 1.23 1.53 1.52 1.66 0.66 1.42 1.7 0.74 0.92 0.25 0.18

Conopodium majus 13 0.89 0.94 0.82 0.83 1.05 0.64 0.86 0.54 1.13 1.2 0.99 1.26 0.74 1.09 0.73 1.05 1.1 1.41 1.2 0.67 0.6 1.28 1.41 1.27

Ranunculus repens 14 0.78 0.72 0.82 0.97 0.83 0.75 0.74 0.89 0.88 0.95 0.86 0.98 1.27 1.04 1.13 1.3 1.46 1.16 1.02 1.34 1.59 1.13 1.34 1.16

Molinia caerulea 16 0.36 0.72 0.25 0.3 0.77 0.28 0.75 0.51 1.03 1.22 0.92 1.25 0.87 1.17 0.76 1.45 1.85 1.53 1.31 1.49 2.19 1.52 1.93 1.78

Littorella uniflora 18 0.1 0.59 0.21 0.19 0.4 0.19 0.7 0.48 0.41 0.71 0.79 0.84 0.69 1.73 0.62 1.26 2.46 1.27 1.79 2.59 2.97 3.14 2.69 2.53

Empetrum nigrum 19 0.18 0.27 0.08 0.12 0.33 0.08 0.36 0.16 1.09 0.78 0.88 1.79 0.37 0.79 0.42 0.69 1.34 2.37 1.86 1.31 2.92 3.06 3.52 3.97

Alchemilla glabra 17 0.09 0.25 0.1 0.32 0.62 0.07 0.18 0.02 2.23 0.77 1.25 3.03 0.25 0.96 0.25 0.74 1 3.01 1.43 0.35 0.67 1.71 2.53 3.06

Gnaphalium supinum 20 0.01 0.03 0 0.01 0.02 0.03 0.04 0.02 0.3 0.12 0.1 1.12 0.01 0.09 0.06 0.14 0.6 2.46 0.79 0.35 1.77 4.26 7.03 18.6
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