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Abstract  2 

This study offers new insight and data in support of the “opportunist hypothesis”.  Five 3 

species of volatile isoprenoid-emitting plants (Eucalyptus globulus, Eucalyptus gunnii, 4 

Mucuna pruriens, Lycopersicon esculentum and Quercus ilex) were exposed to a wide 5 

range of imposed and natural stress conditions over a period of a few weeks in order to 6 

generate different levels of isoprenoid production potential. Volatile isoprenoid 7 

emissions and carotenoid concentrations were measured in all species and dimethylallyl 8 

diphosphate (DMAPP) concentrations were measured in E. globulus, E. gunnii, M. 9 

pruriens and L. esculentum.  Generally, instantaneously emitted isoprenoid emissions 10 

were positively correlated with carotenoid concentrations, and were negatively 11 

correlated with DMAPP concentrations. In contrast, stored monoterpene emission 12 

potentials were negatively correlated with carotenoid concentrations, and positively 13 

correlated with DMAPP concentrations. These results support the possibility of a direct 14 

or indirect control of volatile isoprenoid emission potential via carotenoid synthesis at 15 

time scales of days to weeks. 16 

 17 
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1. Introduction It is well known that vegetation emits a wide range of volatile 1 

isoprenoid compounds into the atmosphere, where they contribute to the chemistry 2 

associated with air quality e.g. ozone and particle formation (Fehsenfeld et al., 1992). 3 

Volatile isoprenoid compounds are a special group of metabolites which are not 4 

synthesised and emitted by all plant species, but for emitting species, they have 5 

important roles in plant function and ecophysiology, including protection in conditions 6 

of high temperature or light intensity stress, oxidative stress, and herbivore stress (e.g. 7 

Kesselmeier and Staudt, 1999; Loreto and Velikova, 2001; Peñuelas and Llusià, 2002; 8 

Llusià et al., 2005; Peñuelas and Munne-Bosch, 2005; Peñuelas et al., 2005a, Peñuelas 9 

et al., 2005b). Volatile isoprenoids share the same biochemical precursors as essential 10 

isoprenoids such as carotenoids, abscisic acid, and sterols which have vital roles in plant 11 

protection and development (Owen and Peñuelas, 2005; Figure 1).  12 

The magnitude and composition of volatile isoprenoid emissions from individual leaves, 13 

plants, species and canopies depend on emission potentials of each compound. The 14 

main abiotic controls which modify the potential for emission in the short-term (i.e., 24 15 

hours) are temperature (Tingey et al., 1980; Guenther et al., 1991), and for isoprene-16 

emitters and some monoterpene-emitting tropical and Mediteranean oak species, PAR 17 

(Guenther et al., 1995; Baker et al., 2005). Biotic controls such as insect herbivory can 18 

also significantly modify emission potential at the time-scale of 24 hours (e.g. Peñuelas 19 

et al., 2005a). In the longer term (> days), emission potentials (per se) of volatile 20 

isoprenoids from leaves, whole plants and canopies are affected by herbivory, pollution 21 

and other abiotic stresses, carbon dioxide concentration, phenology and season (e.g. 22 

Kesselmeier and Staudt, 1999; Litvak et al., 1999). It has been suggested that many of 23 

these longer term controls on volatile isoprenoid emissions potentials may in fact be a 24 

result of biochemical demands of essential carotenoid biosynthesis (the “Opportunist 25 

Hypothesis”, Owen and Peñuelas, 2005).  Owen and Peñuelas (2005) remind us that 26 

carotenoid production is ubiquitous and that plants can not survive in the absence of 27 

these compounds. They suggest that this group of compounds is therefore a more 28 

important product of the isoprenoid synthesis pathways than volatile isoprenoid 29 

production, and that volatile isoprenoid production is coincidental or “opportunistic”, 30 

perhaps taking advantage of a surplus of substrate. From the shared early biochemical 31 

pathway for the volatile and the essential isoprenoids (Figure 1), a stress that creates a 32 

demand for synthesis of essential carotenoid compounds might increase production of 33 

volatile isoprenoids if the demand produced excess biochemical precursor dimethylallyl 34 
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diphosphate (DMAPP) and the volatile isoprenoid synthase enzymes were active. On 1 

the other hand, a carotenoid production stress response might exhaust DMAPP supply, 2 

resulting in a substrate limited production of volatile isoprenoid. 3 

Owen, Hewitt and Rowland (2013)  review the different effects of different plant 4 

stresses on emissions of volatile isoprenoids. A modified summary of this is provided in 5 

Table 1, which also shows examples of the effects of stresses on photosynthesis. 6 

Clearly, the substrates for the volatile isoprenoid pathway depend upon the products of 7 

photosynthesis. In addition, the biotic and abiotic controls of isoprenoid production 8 

(including stresses) also affect photosythesis processes. The responses for volatile 9 

isoprenoids are not consistant across all plant taxa and across all types of stress, and 10 

combinations of stresses. Whatever the magnitude and direction of the response to 11 

stresses in different taxa, because of the shared early stages of the biosynthesis 12 

pathways, and because of the shared functionality of volatile isoprenoids and 13 

carotenoids, we propose that it might be possible to see a relationship between 14 

concentrations and emissions of these compounds within species subject to different 15 

levels of different stresses. 16 

The aim of the work described here was to investigate this hypothesis, in the 17 

context that essential isoprenoid biosynthesis might affect volatile isoprenoid synthesis 18 

and emission over a temporal scale of weeks to months. At this temporal scale, time 19 

itself can be considered as a source of stress to plants, as growth, development and 20 

senescence take place. We measured volatile isoprenoid emissions, total carotenoid 21 

concentrations and in some cases, DMAPP concetrations from different species in 22 

different stress conditions, at different phenological stages. We used the data to 23 

investigate correlations between essential and volatile isoprenoids in plants whose 24 

emissions were expected to vary either due to phenology, or to biotic or abiotic stress.  25 

Significant correlations were considered to provide support for the Opportunistic 26 

Hypothesis. 27 

 28 

 29 

30 
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2 Materials and methods 1 

The relationships between volatile isoprenoids and carotenoid concentrations 2 

were investigated in five different plant species (Quercus ilex, Eucalyptus globulus, 3 

Eucalyptus gunnii, Mucuna pruriens and Lycopersicon esculentum) experiencing 4 

different conditions of growth and stress. Two relatively fast-growing plant species (L. 5 

esculentum and M. pruriens) were grown to obtain samples at different stages of 6 

development over a period of weeks. L. esculentum emits stored monoterpenes (e.g. 7 

Winer et al., 1992) and M. pruriens emits isoprene (e.g. Harley et al., 1996a). In this 8 

study we refer to “emission potential”. This is the emission rate at standard 9 

environmental conditions, which can vary from study to study. Here we follow a widely 10 

accepted convention of 30 °C and 1000 mol m
-2

 s
-1

 photosynthetic active radiation 11 

(PAR) (Guenther et al. 1995). It is known that leaf age can affect emission potentials 12 

(Kuzma and Fall, 1993; Staudt et al., 2003), so we expected to see changes over the 13 

relatively short life cycle of these plants.  14 

Two further plant species were used (E. globulus and E. gunnii) which require a 15 

longer time to reach maturity. These species were subject to ozone and water stresses 16 

which are known to affect the magnitude of emission potentials (e.g. Llusià et al., 17 

2002). The fraction of Eucalyptus spp. that have been screened emit large amounts of 18 

volatile isoprenoids (He et al., 2000). E. globulus and E. gunnii emit both isoprene and 19 

stored monoterpenes.  20 

Q. ilex is widespread and common in Mediterranean Europe (Michaud et al., 21 

1995) and emits light-dependent (non-stored) monoterpenes (Staudt and Seufert, 1995; 22 

Peñuelas and Llusia, 1999b). Here, measurements were made on trees of Q. ilex 23 

growing naturally in field conditions, where different conditions of growth and stress 24 

were provided by sampling trees growing at different altitudes, affording different 25 

degrees of exposure and water stress, and different degrees of sun and shade. Young and 26 

old leaves were sampled to provide another dimension of variability. 27 

 28 

2.1 Plants and plant material 29 

   All plants except Q. ilex were grown in a greenhouse, either on open staging or 30 

within fumigation chambers constructed in the greenhouse, under artificial light at 31 

14/10 photoperiod at 500 µmol m
-2

 s
-1

 and with partial temperature control (to ensure 32 

sufficiently high minimum temperatures) with temperatures varying between 18 and 28 33 

ºC. Tomato plants (L. esculentum) were raised from seed (Chiltern seeds, UK) in John 34 



 6 

Innes seedling compost between January and March. When large enough to handle, they 1 

were transferred to 9 cm plastic pots containing Levington M3 Scott compost. Velvet 2 

bean seed (Mucuna pruriens), (B & T World Seeds, France) were also raised from seed 3 

during April 2005. They were soaked in warm water overnight, and germinated in 4 

individual pots containing vermiculite. When large enough to handle, they were 5 

transferred to Levington M3 Scott compost in 5 litre pots. During the experiment, plant 6 

pots stood on greenhouse mesh shelving, which allowed thorough watering and free 7 

draining of the compost in the pots. 8 

Plants of E. globulus were grown from seed (Chiltern seeds, UK) in February 9 

2005, in trays containing John Innes seedling compost. When large enough to handle, 10 

they were pricked out into individual pots (9 cm in diameter) filled with Levington M3 11 

Scott compost to grow into young plants ~ 50 cm tall. Just before measurements 12 

commenced, the E. globulus plants were diagnosed with an infestation of Aulacorthum 13 

solani. This did not preclude use of the data from these plants in this report, as the aim 14 

was to investigate relationships between isoprenoids in plants subject to a range of 15 

different stress conditions.  16 

E. gunnii plants were obtained from a commercial nursery (“Cath’s garden 17 

plants”, Cumbria, UK). Plants were placed in fumigation chambers for the ozone 18 

fumigation and drought treatments. Plant pots were placed on small inverted trays 19 

within the chambers to enable free draining of excess irrigation water from the compost 20 

in the pots. Except when undergoing drought treatment, all plants were watered to 21 

saturation daily, and twice daily in warm weather. E. globulus plants were sampled 22 

between April and June (~2-4 months old), and E. gunnii were sampled during July and 23 

August (4-6 months old). 24 

Full grown Q.  ilex trees were growing in natural conditions in the Collserola 25 

park around 5 km north west of Barcelona (central Catalonia, NE Spain, 41°27’N, 26 

2°7.7’E). The climate is Mediterranean, with cool winters and hot dry summers. Mean 27 

annual temperature is 14.5 °C and mean annual precipitation is 610 mm. Different 28 

conditions of growth and stress were provided by different altitudes which resulted in 29 

different degrees of drought stress and sun exposure, and different aged leaves. The 30 

trees growing at the highest altitude were more exposed to sunlight and drought stress, 31 

and were more stunted in growth than the trees growing at lower altitudes. 32 

2.2 Experimental conditions and sampling strategy 33 

2.2.1 L. esculentum and M. pruriens.  34 
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Emissions, carotenoids and DMAPP concentrations were measured when the plants 1 

were 4 and 6 weeks old for L. esculentum, and when plants were 6, 8 and 10 weeks old 2 

for M. pruriens. Leaves were selected of equivalent size and maturity, usually 3 

corresponding to node 4 for L. esculentum, and node 10 for M. pruriens, but this varied 4 

if leaves at those particular nodes were too small, or damaged in any way. At each 5 

sampling session, a leaf cuvette (ADC, UK) was installed on the leaf, allowed to 6 

equilibrate for one hour before three consecutive samples of volatile isoprenoid 7 

emissions were taken. Three replicate plants were measured in this way for each time 8 

period. Leaf samples were taken at the same time of day for each plant (between 11:00 9 

and 14:00) from the same node from three plants of the same age and in the same 10 

growth conditions, and flash frozen in liquid nitrogen for storage at -20 ºC prior to 11 

analyses for DMAPP and carotenoid concentrations. These analyses were carried out 12 

within a few days of the emissions samples. 13 

2.2.2 Eucalyptus spp.  14 

Six fumigation chambers were used (0.75m x 0.75m x 0.75m), constructed of 15 

plasticised chipboard. The chambers were ventilated with ambient air at a rate of 0.4 m
3
 16 

min
-1

. In all, there were 12 plants of each Eucalyptus spp. Two plants were placed in 17 

each of the six chambers, one of each pair as a drought control, and the other droughted 18 

(at a later time). Three chambers were control (i.e. non-ozone fumigated), and the 19 

inflow air to the other three chambers was supplemented with ozone generated from 20 

clean air with a Triogen  TOG B1 (1g h
-1

) to produce a concentration inside the 21 

chambers of between 70 and 90 ppb above ambient. Thus there were three replicate 22 

plants for each treatment. The chambers were located in a greenhouse and were 23 

therefore subject to the influence of ambient light and temperature fluctuations, 24 

typically ranging from 16 to 33 ºC. Artificial light from "Plantastar" 600W sodium 25 

lamps maintained a minimum PAR of 250 mol m
-2

 s
-1

 during the photoperiod of 14 26 

hours light (between 06:00 and 20:00 local time) and 10 hours dark. Leaves of 27 

equivalent maturity and size were used for each plant at each sampling time-point. 28 

Leaves positioned at nodes 3 to 5 from the apex of the Eucalyptus plants were used for 29 

measurement, because these were the best size with easiest accessibility for installing 30 

the leaf cuvette.  31 

Volatile isoprenoid emissions, carotenoid and DMAPP analyses were performed 32 

in triplicate before ozone fumigation started. The ozone-treatment plants were then 33 

fumigated for 4 weeks, and the chemical analyses were repeated. E. globulus plants 34 
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were then left for a further 15 weeks, and then water was withheld from the drought-1 

treatment plants (one in each chamber, both control and ozone fumigated). E. gunnii 2 

plants were left for a further 2 weeks before water was withheld from the drought-3 

treatment plants. In each case, the water deprivation lasted one week, after which 4 

volatile isoprenoid emissions, carotenoid and DMAPP sampling were carried out for the 5 

third time.  6 

At each sampling session, three consecutive samples of volatile isoprenoid 7 

emissions were taken from each plant. Plants were sampled in the same order at each 8 

session, to avoid confounding the results with a variable emission potential which some 9 

plant species exhibit throughout the course of a day (Dudavera et al., 2005). It was 10 

possible to sample only six plants each day, and so plants destined for drought-11 

treatment (in both ozone fumigated and non-ozone fumigated chambers) were sampled 12 

on day 1, and plants destined as drought controls were sampled on day 2. A leaf cuvette 13 

was installed on each plant in turn, beginning on day 1 at 08:30 with the installation in 14 

the cuvette of the plant for drought treatment in the first control chamber, followed by 15 

the plant for drought treatment in the first ozone-treatment chamber, then alternating 16 

between control and and ozone chamber plants for drought treatment, until each of the 17 

six plants had been sampled. On day 2, the sampling pattern was repeated with the 18 

plants destined as drought controls. After each emission sample, the leaf was harvested, 19 

along with the leaf growing opposite, and flash frozen in liquid nitrogen for storage at -20 

20 ºC prior to analyses for DMAPP and carotenoid concentrations. These were carried 21 

out within a few days of the emissions samples. 22 

2.2.3 Q. ilex 23 

Emission and leaf samples for carotenoid analyses were collected during a hot dry 24 

period of 6 days in July from trees growing at three altitudes (100 m, 350 m, 500 m). A 25 

leaf was sampled from a total of 24 different trees. Sampled leaves were growing in a 26 

wide range of conditions ranging from sun-exposed to shaded, from water stressed to 27 

well supplied with water, from exposed to sheltered, and from healthy to infected or 28 

herbivored. A leaf cuvette was installed on each leaf in turn, and the leaf was allowed to 29 

equilibrate for half an hour before emissions were sampled. After each emission sample, 30 

the leaf was harvested, along with the leaf growing opposite. These were flash frozen 31 

and stored in liquid nitrogen for transport to storage in a laboratory freezer (-20 ºC) 32 

prior to analysing carotenoid concentrations. These were carried out within a few days 33 

of harvesting the leaf. 34 
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2.3 Sampling volatile isoprenoid emissions 1 

2.3.1 L. esculentum, M. pruriens and Eucalyptus spp. 2 

For these species, the leaf cuvette was left to equilibrate for 45 min on the leaf to avoid 3 

abnormally high emissions resulting from installation of the cuvette (Owen et al., 1997), 4 

and then 3 consecutive emission samples were taken over a period of 0.5 h. The leaf 5 

cuvette was supplied with ambient air filtered through charcoal. For these species, 6 

inflow air was supplied at a constant rate of 350 mL min
-1

 to maintain a positive flow of 7 

air such that any gases sampled from the cuvette were solely from within the cuvette 8 

system and not from outside. Samples were collected onto preconditioned dual bed 9 

stainless steel sample tubes (Perkin Elmer, UK), packed with solid phase adsorbents 10 

Tenax TA (200 mg) and Carbotrap (100 mg) using a mass flow controlled sampling 11 

pump (SKC, UK), at a rate of 100 mL min
-1

 for 10 min (Owen et al., 1997). Sampled 12 

tubes were stored at 4 ºC prior to analysis with GC-MS.  13 

2.3.2 Q. ilex 14 

 For Q. ilex, the cuvette was installed for 30 min prior to sampling emissions. 15 

Flow through the cuvette was approx. 560 mL min
-1

 (the exact flow was recorded every 16 

minute). Two consecutive samples were taken at 500 mL min
-1 

for 4 min (total sample 17 

volume of 2 litres). Sampling was by means of a peristaltic pump (BUCK I.H. Pump™, 18 

Orlando, MI) drawing air from the cuvette through preconditioned triple bed glass 19 

sample tubes (8 cm long and 0.4 cm internal diameter), packed with solid phase 20 

adsorbents Carbotrap C (250 mg), Carbotrap B (180 mg) and Carbosieve S-III (100 mg) 21 

from Supelco (Bellefonte, PA, USA) separated by plugs of quartz wool. Prior to use, 22 

they were conditioned for 10 min at 350°C with a stream of purified helium. This 23 

sampling system has been checked for hydrophobicity and stability for the compounds 24 

of interest (Peñuelas and Llusia, 1999a). Sampled tubes were stored at 4 ºC in the field, 25 

and at -20 ºC in the lab prior to analysis with GC-MS.  26 

2.4 GC-MS analysis of volatile isoprenoids 27 

2.4.1 L. esculentum, M. pruriens and Eucalyptus spp. 28 

For these species, GC-MS analysis was performed using a Perkin-Elmer AutoSystem 29 

XL gas chromatograph, with helium carrier gas at 1 mL min
-1

, coupled to a TurboMass 30 

Gold quadrupole-type mass selective detector, with transfer line temperature 250 ºC, 31 

ionization potential 70 eV and a scan range of 40 to 250 amu. The sample tubes were 32 

desorbed using an automatic Perkin-Elmer Turbomatrix thermal desorption unit. 33 

Compounds were desorbed from the sample tube held at 280 ºC to the cold trap at -20 34 
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ºC for 6 min. Secondary desorption to the Ultra-2 GC column was by flash-heating of 1 

the cold trap to 300 ºC, which was sustained for 5 mins. The temperature profile for 2 

separating volatile isoprenoids was 40 ºC for 2 min, rising to 165 ºC at 4 ºC min
-1

, then 3 

to 300 ºC at 45 ºC min
-1

, which was held for 10 min. Ions 67 and 93 were used for 4 

quantification of isoprene and monoterpenes, respectively, which was carried out by 5 

comparison with commercial standard compounds (Sigma Aldrich, Linde UK), or by 6 

the contribution of ion 93 to total ion count for compounds where no standard was 7 

available. Identification was by comparison with commercial standard compounds, and 8 

by reference to the MS libraries (Wiley and NIST). Standards were analysed before 9 

every 6 samples for quality assurance and quantification. 10 

2.4.2 Q. ilex 11 

 For Q. ilex, monoterpene analyses were conducted using a GC-MS  12 

(Hewlett Packard HP59822B, Palo Alto, USA). Sampled monoterpenes were desorbed 13 

from the tubes using an OPTIC3 injector system (ATAS GL International). The injector 14 

program started at 45 ºC, rising to 300 ºC at 5 ºC sec
-1

. The transfer flow was 0.7 mL 15 

min
-1

, and the split flow after 60 s transfer time was 20 mL min
-1

. Desorbed samples 16 

were passed to a pre-column cold trap at -20 ºC held for 200 s before heating at 50 ºC 17 

min
-1

 to inject compounds into a 30 m x 0.25 mm x 0.25 mm film thickness capillary 18 

column (Supelco HP-5, Crosslinked 5% pH Me Silicone). After sample injection, the 19 

initial temperature of 45°C was increased to 60°C at 4°C min
-1

, and thereafter up to 20 

150°C at 10°C min
-1

, followed by a final increase to 270°C at 40 °C min
-1

; this 21 

temperature was maintained for 5 min. Helium flow (carrier gas) was 0.7 mL min
-1

. The 22 

identification of monoterpenes was confirmed by comparison with standards from Fluka 23 

(Chemie AG, Buchs, Switzerland) and literature spectra. Frequent calibration was 24 

performed with the most common terpene standards (-pinene, -pinene, limonene) for 25 

every three analyses, and the responses of the standards were used for quantification 26 

based on the abundance of ion fragments m/V 93 and 67. The efficacy of this analytical 27 

system has been determined previously (Peñuelas and Llusia, 1999a). Emission rate 28 

calculations were made on mass balance basis and by subtracting the control samples 29 

without leaves from the samples with twigs. Monoterpene emission rates were 30 

expressed on leaf dry matter basis (mg g
-1 

h
-1

). 31 

2.5 DMAPP analyses 32 

Analyses were performed in triplicate for each leaf sample using the method of Ficher et 33 

al. (2001). This method retrieves only 5% of total tissue DMAPP (Fisher et al., 2001; 34 
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Loreto et al., 2004), but it was used for all samples in the same way, and thus results 1 

were sufficient for correlations and comparing treatments as done  in this study. Further, 2 

the method has been used by several studies in recent years (e.g. Bruggemann and 3 

Schnitzler, 2002; Rosenstiel et al, 2002; Wolfertz et al, 2003; Loreto et al, 2004; 4 

Nogues et al, 2006; Rasulov et al, 2009). The frozen leaf was ground to a powder with 5 

liquid nitrogen using a pestle and mortar, and 65 mg aliquots were weighed into 5 mL 6 

glass vials, which were kept at <4 ºC in ice. To each aliquot of ground frozen leaf tissue, 7 

600 µL of distilled water was added followed by 600 µL of 8 M H2SO4. Each vial was 8 

then capped immediately with a screw top with a Teflon lined septum, and shaken. The 9 

vials were placed in an incubator at 30 ºC for one hour to allow hydrolysis of DMAPP 10 

to isoprene. After incubation, vials were removed from the incubator and placed 11 

immediately in a vial holder at 4 ºC in ice. A 1 mL headspace sample, containing the 12 

isoprene derived from the acid hydrolysis, was withdrawn and injected into a Perkin-13 

Elmer sample tube (described above) in a flow of helium at ~150 mL min
-1

. To quantify 14 

the DMAPP concentration in samples, standard DMAPP (prepared by J. Schnitzler, 15 

IMK-IFU, Garmisch-Partenkirchen), gave a response factor of 9.52 nmol isoprene from 16 

hydrolysis of 1 mol DMAPP. Headspace samples were stored refrigerated until GC-17 

MS analysis (described above).    18 

2.6 Carotenoid analyses 19 

The methods described by Lichtenthaler (1987) and Wellburn (1994) were used for the 20 

determination of carotenoid concentration. Work was carried out in low illumination to 21 

avoid photoreaction of the extracted pigments. About 40 mg frozen powdered leaf was 22 

weighed into glass centrifuge tubes, using a cold spatula. Ten mL 80% acetone was 23 

added, with vigorous shaking. The leaf material and solvent were then centrifuged for 24 

13 mins at 4600 rpm to extract carotenoids and chlorophylls. At the end of 25 

centrifugation, the supernatant was decanted into centrifuge tubes held at 4 ºC in ice, 26 

which were then capped to avoid evaporation of solvent. A further 10 mL 80% acetone 27 

was added to each pellet, mixed well, and centrifuged for 13 mins as before. Absorption 28 

measurements were made at 470, 646 and 663 nm (CEAL CE 1010 spectrophotometer), 29 

with blank measurements, using 80% acetone alone, for each wavelength. The 30 

measurements at each wavelength were used in the following equations to calculate 31 

concentration of total carotenoids (Ctot) in each sample: 32 

 33 

                         (Ctot) = (1000 × A470) – (1.82 × Ca) – (85.02 × Cb)                            (1) 34 
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                                                                198 1 

where A470 = absorbance reading at 470 nm, and 2 

Ca = 12.25 A663 – 2.79 A646          (2) 3 

 4 

Cb = 21.50 A545 – 5.20 A663          (3) 5 

 6 

Where A663 = absorbance reading at 663 nm, A545 = absorbance reading at 545 nm, and 7 

A646 = absorbance reading at 646 nm. 8 

 9 

2.7 Statistical analyses 10 

Statistical analyses were performed using Statistica 6 (StatSoft Inc). One-way analysis 11 

of variance was used to investigate the effect of ozone and drought treatments on 12 

volatile isoprenoid emission potentials, carotenoid and DMAPP concentrations for the 13 

Eucalyptus species. Pearson Product Moment Correlation was performed to investigate 14 

relationships between volatile isoprenoid emission potentials, carotenoid and DMAPP 15 

concentrations, and photosynthesis rates. Linear regression analysis was performed to 16 

determine trend lines between different variables.  17 

 18 

3. Results 19 

3.1 Isoprenoid compounds emitted by each species 20 

L. esculentum emitted up to 0.6 g g
-1

  h
-1 

of total monoterpenes, the major component 21 

being limonene.   M. pruriens emitted isoprene at rates between 0.1 and 20 g g
-1

 h
-1

. Q. 22 

ilex emitted light dependent monoterpenes, whose total ranged between 3 and 49 g g
-1

 23 

h
-1 

. The major emitted compounds from Q. ilex were -pinene, limonene and -pinene. 24 

The two species of Eucalyptus emitted isoprenoids, but at different rates, and with 25 

different emission compositions (Table II). The minimum and maximum isoprene 26 

emission potentials for E. globulus and E. gunnii were 4 and37 g g
-1

 h
-1

, and 20 and 41 27 

g g
-1

 h
-1 

respectively (Table II). E. globulus emitted total monoterpenes at minimum 28 

and maximum rates of 17 and 185 g g
-1

 h
-1 

, of which cineole was the major 29 

component. E. gunnii emitted total monoterpenes at mean rates between 0.04 and 1 g 30 

g
-1

 h
-1 

, the major component of which was cis-ocimene (Table II).  31 

3.2 The relationship between isoprenoids and photosynthesis rates 32 
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For Eucalyptus spp. and Q. ilex, the slope of the regressions between isoprene 1 

emission potentials, carotenoid concentrations and DMAPP concentrations, and 2 

photosynthesis rates were significantly greater than zero (E.globulus P<0.00001, Figure 3 

2A; E. gunnii P<0.02 Figure 2B; Q. ilex P<0.05, Figure 2C). The positive correlations 4 

between carotenoid concentrations and photosynthesis rates were also significant for the 5 

two Eucalyptus spp. and Q. ilex, as were the negative correlations between DMAPP 6 

concentrations and photosynthesis rates for these species. Data for M. pruriens showed 7 

similar trends but there was no significance, perhaps due to insufficient data (Figure 8 

2D). Emissions of stored monoterpenes were non-significantly negatively correlated 9 

with photosynthesis rates for E. globulus, E. gunnii and L. esculentum (data not shown). 10 

3.3 Effect of ozone treatment on isoprene emissions, carotenoids and DMAPP  11 

concentrations in Eucalyptus spp. 12 

Emissions of isoprene and monoterpenes declined for ozone fumigated and control 13 

plants as the experiment progressed for both species of Eucalyptus (Figure 3). After 14 

four weeks of fumigation with ozone at ~60 ppb above ambient, isoprene emissions 15 

from E. globulus were significantly higher than emissions from non-fumigated (control) 16 

plants (Figure 3A; 0.46±0.05 and 0.23±0.03 g m
-2

 s
-1

, respectively, P<0.001, n=6 17 

replicates x 3 sequential measurements), and total monoterpene emissions were 18 

significantly lower than those from control plants (Figures 3C; 4.11±0.38 and 9.86±1.19 19 

g m
-2

 s
-1

, respectively; P<0.001, n=6 replicates x 3 sequential measurements). 20 

However, there was no significant difference in isoprenoid emissions between treatment 21 

and control plants after four weeks of ozone fumigation of E. gunnii (Figures 3B, 3D). 22 

There was no significant difference in isoprenoid emissions between control and 23 

fumigated plants after 20 and seven weeks of ozone fumigation of E. globulus and E. 24 

gunnii, respectively (Figures 3A, 3B, 3C, 3D).  25 

 Concentrations of carotenoids in both species of Eucalyptus decreased 26 

significantly (P<0.01) from the pre-ozone sampling at week 0 to the final sampling after 27 

ozone fumigation at weeks 20 and 7, for E. globulus and E. gunnii, respectively, but 28 

there was no significant difference between ozone fumigated plants and controls 29 

(Figures 3E, 3F). DMAPP concentrations increased significantly (P<0.01) from week 0 30 

to the final sampling date, but again there was no significant difference between ozone 31 

fumigated plants and controls (Figures 3G, 3H). 32 

3.4 Effect of drought treatment on isoprenoid emissions, and on carotenoids and 33 

DMAPP  concentrations. 34 
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Water was withheld from treatment plants for 1 week until the mean soil water 1 

potential was 30% and 20% lower than control soil water content for E. globulus and E. 2 

gunnii, respectively. No significant differences were found for carotenoid and DMAPP 3 

concentrations between treated and control plants. Emission rates of total monoterpenes 4 

were also unaffected by drought, probably because the drought was not severe enough. 5 

However, isoprene emission rates from E. gunni were significantly lower in droughted 6 

plants (P<0.02, n=3 plant replicates x 3 sequential measurements), but were not affected 7 

by drought in E. globulus (data not shown). Isoprenoid emissions, carotenoid and 8 

DMAPP concentrations were not significantly afected by combined ozone and drought 9 

stress (data not shown).   10 

3.5 The relationship between isoprenoid emissions and carotenoids. 11 

There were positive correlations between isoprenoid emission potentials and 12 

carotenoid concentrations for isoprene emissions from M. Pruriens, E. globulus 13 

(P<0.05) and E. gunnii (P<0.05), and for light-dependent monoterpene emissions from 14 

Q. ilex (P<0.05; Figure 4)In contrast, the relationships between the stored monoterpene 15 

emission potentials and carotenoid concentrations were negative (data not shown), with 16 

non-significant regression coefficient for L. Esculentum, E. Globulus and E. gunnii. 17 

3.6 The relationship between isoprenoid emissions, carotenoid concentrations  and 18 

DMAPP concentrations. 19 

There was a negative correlation between isoprene emission potentials and DMAPP 20 

concentrations for both M. Pruriens (n.s.) and Eucalyptus spp. (P<0.05) (Figures 5A, 21 

5B, 5C). Carotenoid concentrations were also significantly negatively correlated with 22 

DMAPP concentrations for M. pruriens and the Eucalyptus spp. (P<0.05; Figures 5D, 23 

5E, 5F). Correlations between emission potentials of stored monoterpenes from L. 24 

esculentum and the Eucalyptus species were positive, but not significant (data not 25 

shown). 26 

27 
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4.  Discussion 1 

Generally, our results show a strong positive relationship between instantaneously 2 

emitted volatile isoprenoid emission potential and carotenoid concentration in the 3 

studied species. Instantaneously emitted isoprenoid emissions were negatively 4 

correlated with DMAPP concentrations. In contrast, stored monoterpene emission 5 

potentials were negatively correlated with carotenoid concentrations, and positively 6 

correlated with DMAPP concentrations. DMAPP concentrations were non-significantly 7 

negatively correlated with photosynthesis rates at this time scale. These results support 8 

the possibility of a direct or indirect control of volatile isoprenoid emission potential via 9 

carotenoid synthesis at time scales of days to weeks.  10 

Porcar-Castell et al. (2009) also showed a significant positive correlation 11 

between monoterpene emission potential and carotenoid content of Q. ilex subject to 12 

sun and shade treatments over a period of weeks. Examination of isoprene emission 13 

potentials and carotenoid concentration data from a study of the effect of ozone and 14 

elevated CO2 on isoprene emissions from Populus tremuloides (Calfapietra et al., 2008) 15 

showed a positive correlation at a time-scale of two weeks. In the data presented here, 16 

both carotenoid concentrations and isoprenoid emission potentials were positively 17 

correlated with photosynthesis rates, significantly so for E. globulus, E. gunnii and Q. 18 

ilex. This suggests that these isoprenoid compounds depend upon substrate supply over 19 

a time scale of a few weeks, and does not exclude the possibility of an indirect 20 

dependency on photosynthesis rate for volatile isoprenoids via the carotenoid demand. 21 

The slight but consistent negative correlation in all species between DMAPP 22 

concentrations and photosynthesis rates suggests that at time scales of weeks to months, 23 

there is higher turnover with higher demand on the DMAPP pools when photosynthesis 24 

rates are higher. 25 

 Concentrations of carotenoids were significantly negatively correlated with 26 

DMAPP concentrations for the two Eucalyptus spp. and M. pruriens. Isoprene emission 27 

potentials from the Eucalyptus species also showed significant negative relationships 28 

with DMAPP concentrations (P<0.005). This has also been shown for Populus alba and 29 

Q. ilex over time scales of weeks (Nogués et al., 2006), but Magel et al. (2006) found a 30 

non-significant positive correlation between isoprene emission rates and DMAPP 31 

content of Populus canescens over a shorter time scale of 24 hours. Rosenstiel et al. 32 

(2002) studied concentrations of DMAPP in dawn and midday leaf samples of Populus 33 

deltoides. They found that isoprene emitting species tended to have higher DMAPP 34 
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concentrations, which also showed diurnal variation similar to a typical diurnal isoprene 1 

emission trend. This suggests a positive relationship between DMAPP concentrations 2 

and isoprene emission rates. However, these authors did not measure isoprene emission 3 

rates, and did not compare magnitude of isoprene emission potential with DMAPP 4 

concentration within and between plant species. Loreto et al. (2004) studied 
13

C 5 

labelling of DMAPP and isoprene emissions in Phragmites australis and Populus nigra. 6 

Generally, the 
13

C label was taken up much more by isoprene than by DMAPP in both 7 

species, reflecting a chloroplastic and cytosolic pool for DMAPP. DMAPP 8 

concentrations and isoprene emissions were higher in old leaves than young leaves of P 9 

australis, suggesting a positive linear relationship between isoprene emissions and 10 

DMAPP concentrations. This is also contrary to the findings presented here. However, 11 

Loreto et al. (2004) did not follow the changing concentrations and emissions with time 12 

(as presented here), and in fact found a negative linear relationship between isoprene 13 

emissions and DMAPP concentrations in mature leaves of P. nigra untreated, and 14 

treated with fosmidomycin, 15 

 Carotenoids and isoprene are derived from the MEP pathway that operates in 16 

the chloroplasts, and their instantaneous production rate (assuming that all enzymes are 17 

in an activated state) should therefore be directly dependent on carbon dioxide fixation 18 

rate.  However, biotic and abiotic conditions existing at the time of reference will cause 19 

variations in isoprene synthase activity, and hence actual emission rate, within these 20 

constraints. We assume that (1) an increase in need for carotenoids in the leaf will 21 

increase carotenoid synthesis rate, which results in at least a corresponding increase in 22 

DMAPP synthesis rate, (2) DMAPP synthesis rate is greater than the sum of essential 23 

isoprenoid synthesis rates making demands on the DMAPP pool. There is little 24 

information on the relative availability of DMAPP for synthesising different isoprenoid 25 

compounds, but these assumptions seem reasonable, otherwise the plant would be in 26 

danger of not producing adequate DMAPP for essential needs.  A further assumption is 27 

that (3) the emission potential for isoprene at any time is often substrate limited (e.g. 28 

Magel et al., 2006), and this is supported by the very high Km for isoprene synthase (up 29 

to 9 mM; Datukishvili et al., 2001). These assumptions are supported by the results 30 

presented here, which show a direct relationship between carotenoid concentrations and 31 

instantaneously emitted volatile isoprenoid emission potential.  32 

Stored monoterpene emission potentials from Eucalyptus spp. and L. esculentum 33 

were inversely  correlated with carotenoids over a time scale of a few weeks (not 34 
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significant; data not shown). This could indicate competition for precursors (direct or 1 

indirect), or a common function in the plant tissue requiring either compound. At this 2 

stage of the isoprenoid biosynthesis pathway there are several routes to carotenoid 3 

production, and different controls operate to ensure maximum production rate of 4 

carotenoids when the need arises. Because monoterpenes and sesquiterpenes are usually 5 

stored in pools within leaf tissue, synthesis rates are not necessarily reflected by their 6 

rates of emissions and so the relationship between stored monoterpene and 7 

sesquiterpene emission rates and carotenoid pool sizes is difficult to predict.   8 

Isoprene emission potentials for E. globulus were similar in magnitude to 9 

isoprene emissions reported for other Eucalyptus spp. (He et al., 2000; Street et al., 10 

1997b). Monoterpene emission rates from E. globulus were very high, up to an order of 11 

magnitude greater than monoterpene emission rates reported by He et al. (2000) and 12 

Street et al. (1997b) for this species. There are no existing published reports of 13 

monoterpene emission rates from E. gunnii, but our results are similar to monoterpene 14 

emission rates reported for other Eucalyptus spp. (He et al., 2000). The reason for the 15 

extraordinarily high monoterpene emission rates observed from E. globulus might have 16 

been due to the infestation of A. solani.  17 

Emission potentials measured from the other study species were comparable to 18 

published values. Winer et al. (1992) found rather high emissions of monoterpenes from 19 

tomatoes (12 - 30 g g
-1

 h
-1 

), but it is possible these could have been caused by damage 20 

to the leaf during sampling. Emissions from M. pruriens were of the same order of 21 

magnitude as isoprene emissions reported from this species by Harley et al. (1996a) 22 

whose lower estimate is ~5 nmol m
-2

 s
-1

, equivalent to 22 g g
-1

 h
-1

. The range of 23 

emission potentials measured from Q. ilex agrees with the speciation and range of 24 

emission rates from this species reported by Owen et al., (1997), Kesselmeier et al. 25 

(1996), and Peñuelas and Llusia (1999b). 26 

The effect of the ozone and water stress conditions on emission potentials and 27 

carotenoid concentrations in the Eucalyptus spp. were not as great as the effect of time. 28 

It is possible that the stresses were not severe enough to result in large changes in these 29 

variables.   30 

 31 

5. Conclusions and final remarks 32 

Although literature shows that there can be a high intraspecific variability in enzyme 33 

activities and precursor concentrations in the isoprenoid pathway, with differences up to 34 
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a factor of 7 between different plants of the same species grown under the same 1 

conditions (Lehning et al., 1999), we show, remarkably, that instantaneously emitted 2 

volatile isoprenoid emission potentials were positively correlated with carotenoid pool 3 

size for different plant taxa subject to diverse biotic and abiotic stresses over a time 4 

period of weeks. Carotenoid pool size and instantaneously emitted volatile isoprenoid 5 

emission potentials decreased with time. Stored volatile isoprenoid emission potentials 6 

were negatively correlated with carotenoid pool size in three different plant taxa. In this 7 

case, carotenoid pool size decreased and stored volatile isoprenoid emission potentials 8 

increased over time. 9 

DMAPP pools increased with time over timescales of a few weeks, and were 10 

inversely correlated with carotenoid pool size and instantaneously emitted volatile 11 

isoprenoid emission potentials. Stored monoterpene emission potentials from L. 12 

esculentum and the two Eucalyptus spp. were related in a different way to carotenoid 13 

pools than instantaneously emitted monoterpene emissions from Q. ilex. We therefore 14 

suggest that a synthase with high Km similar to isoprene synthase might exist for 15 

production of instantaneously emitted monoterpenes. Indeed, Andres-Montaner (2008) 16 

found three different monoterpene synthases extracted from Q. ilex tissue, with Km 17 

values ranging from 138 – 270 mol, which are far higher values than previously found 18 

for monoterpene synthases. 19 

In a review of isoprenoid synthesis, accumulation and emissions, Lichtenthaler 20 

(2007) summarised that, “depending on the light and temperature conditions, enormous 21 

amounts of freshly fixed photosynthetic carbon flow into various volatile and non-22 

volatile isoprenoid compounds. Thus, the chloroplast isoprenoid biosynthesis via the 23 

IPP forming pathway appears to be a ‘metabolic valve’ for regulating photosynthetic 24 

carbon flow as well as a fine tuning for chloroplast and cell metabolism. This 25 

chloroplast isoprenoid pathway consumes large amounts of photosynthetically formed 26 

ATP and NADPH, and may also serve as a ‘safety valve’ in order to avoid 27 

overreduction and photoinhibition of the photosynthetic apparatus.”. Our data presented 28 

here  from laboratory and field experiments show that in this biochemical complexity, 29 

magnitude of light-dependent volatile isoprenoid emission potential is directly 30 

correlated with magnitude of carotenoid pool size at time scales of weeks to months. 31 

These findings go beyond supporting the metabolic safety valve theory, and support the 32 

opportunist hypothesis of volatile isoprenoid emissions (Owen and Peñuelas, 2005). It is 33 

worth extending these studies to other emitting species in different field and laboratory 34 
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conditions, especially to investigate the poperties of light-dependent monoterpene 1 

synthase enzymes. A rigorous modelling treatment would be enlightening, similar to 2 

that of Zimmer et al. (2000) which used process-based biochemistry and enzyme 3 

kinetics for modelling isoprene emissions alone.  The Opportunist Hypothesis also 4 

merits further physiological and biochemical investigations to evaluate its limitations, 5 

ramifications and scope. 6 

7 
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Figure legends 1 

Figure 1 The isoprenoid biosynthetic pathway 2 

 3 

Figure 2 The dependencies of instantaneous emission rates of isoprene and 4 

monoterpenes and essential isoprenoids on photosynthesis rate in 5 

experiments conducted over time scales of weeks in Eucalyptus globulus 6 

(A), Eucalyptus gunnii (B), Quercus ilex (C) and Mucuna pruriens (D). 7 

 8 

Figure 3 Changes in volatile isoprenoid emissions, carotenoid and DMAPP 9 

concentrations in Eucalyptus spp. with time; for all weeks, measurements 10 

were made for “control” plants and “treatment” plants; * significant 11 

difference (P<0.001) between control and ozone-treatment; different 12 

letters indicate significant difference between time points (control and 13 

ozone treatment considered together); n=6 for weeks 0 and 4, n=3 for 14 

weeks 7 and 20 15 

Figure 4 Relationship between instananeously emitted isoprene and monoterpene 16 

emission potentials, and carotenoid content in Eucalyptus globulus (A), 17 

Eucalyptus gunnii (B), Mucuna pruriens (C) and Quercus ilex (D).. 18 

Closed symbols in A, B and C are means of each sampling date. 19 

Figure 5 Relationship between instananeously emitted isoprene and  20 

monoterpene emission potentials, and DMAPP content in Eucalyptus 21 

globulus (A,D), Eucalyptus gunnii (B,E), and  Mucuna pruriens (C,F). 22 

Closed symbols are mean of each sampling date. 23 

 24 

 25 

 26 

 27 

 28 
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Table I  (Adapted from Owen, Hewitt and Rowland 2013)  1 

Some responses of bVOC emissions from vegetation in response to stresses 2 

Management 

practice/Stress 

Isoprene/instantaneously 

emitted terpenes 

Monoterpenes from 

stored tissue pools 

Sesquiterpenes Oxygenated 

compounds 

Photosynthesis 

Fertiliser  ↑4, 5  no change 6 ↓1 ↑2, 4 ↑3, 4 ↑ 13(soil) ↑50, 51 

Irrigation  ↑21 ↑ 21 ↑ 27; ↓ 

27(depends on 

plant species) 

↑25; no change 25 

(depends on compound) 

↑ 51, waterlogging ↓ 52  

Cropping, felling, 

pruning or mowing  

↑26 ↑9 ↑28 ↑7, 8 No effect-f(pre-pruning 

light regime) 53, 54; 

grazing ↓ 55 

Managed for young 

plant growth 

↓12 ↑10 No change 32; 

↓33 (depends on 

species) 

↑ 34; ↓34 (depends on 

compound and species) 

↑ 56 

Managed to 

encourage 

establishment of 

mature plants 

↑12 ↑10, 11 No change 32; 

↑33 (depends on 

species) 

↓ 34; ↑34 (depends on 

compound and species) 

↓ 56 

Drought/dessication 

stress 

No change 14;  ↓15, 16, 17, 

18, 19, 22;  

↓20, 23, 31; ↑ 31 (depends 

on severity of stress) 

↓24; no change 31 ↓ 25; no change 25 

(depends on compound) 

↓ 57 

Herbivory stress in 

plantations 

↑ short-term 35; ↓ long-term 

35 

↑29, 30 ↑29, 30 ↑29 ↓ 58 

Over-

crowding/shading 

↓ due to shading 37; ↓due to low light intensity 

38, 39; no change 39 

(depends on compound and 

whether from stored pools) 

↓due to low light 

intensity 40 

↓due to low light 

intensity 41 

↓ 46 

High light intensity ↑42 ↑ if light-dependent, up to a 

saturated max. 47 

↑ if light 

dependent 47 

No effect? 50 ↑ up to a saturated 

max. 46 ↓ beyond 

saturation  60 

High temperature ↑43 (up to a species specific 

max~35º), then ↓43 

↑46, 47 ↑47 ↑7 ↓ above optimum 61 

Exposure to ozone ↓44 due to degradation in 

atmosphere; ↑ in intersticial 

tissue spaces 44, ↑as induced 

response 59 

Variable, but overall ↑45; 

no effect or ↑ 62 

↑48 ↑49 Variable, but overall 

↑45 
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1 Blanch et al. 2007; 2 Blanch et al. (2012); 3 Rinnan et al. (2011); 4 Ormeno et al. (2009); 5 Possell et al. (2004); 6 Funk et al. (2006); 7 , Seco et al. (2007); 8 Davison et al, 2008; 9 Raisanen 1 
et al. (2008); 10 Kim et al. (2005); 11 Street et al. (1997a); 12 Street et al. (1997b); 13 Hörtnagl et al. (2011) ; 14 Steinbrecher et al. 1997; 15 Tingey et al.1981, 16 Sharkey and Loreto 1993, 2 
17 Fang et al. (1996),18 Lerdau et al. (1997); 19 Brilli et al. (2007); 20 Lavoir et al. (2009); 21 Peñuelas et al. (2009); 22 Pegoraro et al. (2004); 23 Bertin & Staudt.(1996); 24 Ormeno et al. 3 
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(2005); 40 Staudt and Lhoutellier (2011); 41 Folkers et al. (2008); 42 Behnke et al. (2010); 43 Singsaas et al. (2000); 44 Yuan et al. (2009); 45 Llusia et al. (2002);46 Guenther et al (1995); 47 6 
Vickers et al. (2009); 48 Bourtsoukidis et al. (2012); 49 Pellegrini et al. (2012); 50 Efthimiadou et al. (2010); 51 Murchie et al. (2009); 52 Dreyer et al. (1991); 53 Forrester et al. (2012); 54 Li 7 
et al. (2004); 55 Smetham (1995); 56 Bond (2000); 57 Chaves et al. (2003); 58 Zangerl et al. (2002); 59 Pinto et al.(2010); 60 Demmig-Adams et al. (2012); 61 Haldimann & Feller (2004); 62 8 
Penuelas et al. (1999) 9 
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Table II   Range of isoprenoid emission rates from the studied species 

 Emission potential (g g
-1

 h
-1

) 

 E. globulus E. gunnii L. esculentum M. pruriens Q. ilex 
number of samples 12 12 8 8 24 

 max min max min max min max min max min 

isoprene 37.02 3.84 40.84 19.70     20.25 0.11     

unknown 1 0.17 0.01 0.00 0.00       

-pinene 27.31 2.49 0.14 0.00 0.13 0.00   20.56 0.15 

sabinene 0.20 0.01 0.00 0.00     6.17 0.00 

-pinene 1.18 0.10 0.00 0.00     14.78 0.69 

myrcene 3.10 0.26 0.04 0.00     1.26 -0.02 

a-phellandrene 0.36 0.03 0.00 0.00       

-terpinene 0.22 0.00 0.00 0.00       

-3-carene         0.69 -0.01 

limonene 22.91 1.62 0.20 0.00 0.43 0.00   16.20 -0.03 

cineole 133.41 11.47 0.36 0.00       

cis-ocimene  13.88 0.00 0.84 0.00       

-terpinene 2.15 0.07 0.00 0.00       

-terpinolene 0.73 0.03 0.45 0.00       

-terpineol 1.52 0.03 0.00 0.00       

-longipene 0.86 0.26         

junipene 11.00 7.20 - - - - - - - - 

trans-caryophyllene 2.73 1.43 - - - - - - - - 

aromadendrene 0.77 0.14 - - - - - - - - 

alpha humulene 1.69 0.68 - - - - - - - - 

unknown 2 6.40 0.00 - - - - - - - - 

TOTAL 

monoterpenes  184.72 17.07 0.97 0.04 0.56 0.00 0.00 0.00 49.31 3.01 
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Cytosol and endoplasmic reticulum 
(C15, C30 and polyterpenes)

Pyruvate

Mevalonic acid

Plastids (eg chloroplasts) (C5, C10, 
C20, C40 isoprenoids)

Pyruvate

1-Deoxy-D-xylulose-5-phosphate

 

Dimethyl allyl 
diphosphate (DMAPP)

Geranyl diphosphate

Farnesyl diphosphate

Geranylgeranyl 
diphosphate

Squalene

Phytoene

C5 Hemiterpenes eg isoprene

C10 Monoterpenes

C15 Sesquiterpenes eg 
caryophyllene

C20 Diterpenes eg gibberellin

C30 Triterpenes eg sterol

C40 Tetraterpenes eg carotenoids

Figure 1 The isoprenoid biosynthetic pathway 
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Figure 2 The dependencies of instantaneous emission rates of isoprene and monoterpenes and essential 

isoprenoids on photosynthesis rate in experiments conducted over time scales of weeks. 
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Figure 3 Changes in volatile isoprenoid emissions, carotenoid and DMAPP 

concentrations in Eucalyptus spp. with time; for all weeks, measurements 

were made for “control” plants and “treatment” plants; * significant 
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Figure 4 Relationship between instananeously emitted isoprene and monoterpene emission potentials, 

and carotenoid content. Closed symbols in A, B and C are means of each sampling date. 
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Figure 5 The Relationship between instananeously emitted isoprene and monoterpene emission potentials, and  

DMAPP content. Closed symbols are mean of each sampling date. 
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