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ABSTRACT
Constraining past fluctuations in global temperatures is cen-

tral to our understanding of the Earth’s climatic evolution. Marine 
proxies dominate records of past temperature reconstructions, 
whereas our understanding of continental climate is relatively poor, 
particularly in high-latitude areas such as Antarctica. The recently 
developed  MBT/CBT (methylation index of branched tetraethers/
cyclization ratio of branched tetraethers) paleothermometer offers 
an opportunity to quantify ancient continental climates at temporal 
resolutions typically not afforded by terrestrial macrofloral prox-
ies. Here, we have extended the application of the MBT/CBT proxy 
into the Cretaceous by presenting paleotemperatures through an 
expanded sedimentary succession from Seymour Island, Antarctica, 
spanning the latest Maastrichtian and Paleocene. Our data indicate 
the existence of a relatively stable, persistently cool temperate cli-
mate on the Antarctic Peninsula across the Cretaceous-Paleogene 
boundary. These new data help elucidate the climatic evolution of 
Antarctica across one of the Earth’s most pronounced biotic reorga-
nizations at the Cretaceous-Paleogene boundary, prior to major ice-
sheet development in the late Paleogene. Our work emphasizes the 
likely existence of temporal and/or spatial heterogeneities in climate 
of the southern high latitudes during the early Paleogene.

INTRODUCTION
The latest Cretaceous to early Paleogene (70–41 Ma) was an inter-

val of significant climatic and biotic reorganization. Central to our under-
standing of climatic evolution through this interval is the quantification 
of global temperatures. The temperature record of the Late Cretaceous 
and early Paleogene is now reasonably well constrained for oceanic bot-
tom waters (e.g., Cramer et al., 2009), whereas current knowledge of 
continental temperatures is substantially poorer. Notably, the true nature 
of terrestrial climate changes that may have influenced the major biotic 
reorganizations associated with the end-Cretaceous mass extinction is 
debated (e.g., Wilf et al., 2003). Moreover, the Cretaceous–Paleogene 
climate evolution of high-latitude areas such as Antarctica is highly un-
certain owing to a paucity of accessible study sites and inadequate dat-
ing of existing data. Accurately quantifying past Antarctic temperatures 
is important, however, for assessing the veracity of paleoclimate models, 
and because of the key role that the continent played, and continues to 
play, in modulating global climate.

The Antarctic Peninsula is an area of specific interest to modern 
and past climatic studies, as it seems particularly sensitive to change 
(e.g., Bowman et al., 2013). Continental paleotemperature estimates for 
the Cretaceous–early Paleogene interval are reliant on relatively sparse 
and isolated paleofloral-derived data (Greenwood and Wing, 1995; 
Francis and Poole, 2002; Poole et al., 2005). These data suggest that 
the Antarctic Peninsula experienced cool temperate climates at vari-

ous times from the Maastrichtian to Eocene, although the stratigraphic 
resolution of these data is coarse, so the absence of climatic variability 
could be an artifact. A complementary approach for reconstructing past 
continental climates is based on the methylation index and cyclization 
ratio of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in 
bacterial membrane lipids (Weijers et al., 2007), known as the MBT/
CBT paleothermometer. It has the advantage over macrofloral proxies in 
that the analyses can be carried out on relatively small quantities of bulk 
sediment sampled at high temporal resolutions, and it is, therefore, not 
reliant on the presence and discovery of well-preserved flora.

To further our understanding of Late Cretaceous to early Paleogene 
climate evolution on Antarctica, we present here MBT/CBT–derived 
continental paleotemperature estimates through the latest Cretaceous to 
Paleocene of Seymour Island (paleolatitude ~65°S; Fig. 1). We com-
pare these new continental paleotemperature estimates with estimates 
derived from existing paleofloral proxies and sea-surface temperature 
(SST) data, and discuss our findings in the context of circum-Antarctic 
climate evolution through the Late Cretaceous and early Paleogene.

MATERIALS AND METHODS
Seymour Island contains one of the most expanded Cretaceous–

Paleogene (K-Pg) successions known. Our studied interval comprises 
~700 m of predominantly shallow-marine deltaic to estuarine sediments 
deposited in a large backarc basin fed from the Antarctic Peninsula mag-
matic arc (Crame et al., 1991). The K-Pg boundary occurs in the up-
permost part of the López de Bertodano Formation, where it is marked 
by a minor iridium anomaly (Elliot et al., 1994; Fig. 2). An unconfor-
mity separates the López de Bertodano Formation from the overlying 
Sobral Formation, which is early Paleocene in age (Bowman et al., 2012, 
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Figure 1. Paleogeographic and present-day maps showing loca-
tion of Seymour Island, Antarctic Peninsula, and other localities 
discussed in text. Paleogeographic map is redrawn after Bijl et al. 
(2009). 1172 and U1356 are ocean drilling sites discussed in the text.
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and references therein; Fig. 2; see also the GSA Data Repository1). The 
Cross Valley Formation unconformably overlies the Sobral Formation, 
infilling a deeply incised valley. Marine palynological data indicate that 
the Cross Valley Formation is late Paleocene in age (Wrenn and Hart, 
1988; Fig. 2; see the Data Repository).

MBT/CBT paleotemperatures were determined on 41 samples. For 
glycerol dialkyl glycerol tetraethers (GDGT) analysis, 8–20 g of sediment 
was solvent extracted ultrasonically following the methods outlined by 
Schouten et al. (2007). Extracts were analyzed for GDGT abundance us-
ing an Agilent 1200 HP-LC-MS online to a G6130A single quadrupole 
mass spectrometer. Soil pH and mean annual air temperature (MAT) were 
calculated from analysis of MBT and CBT abundances using the calibra-
tion equations of Peterse et al. (2012) (see the Data Repository). This latest 
calibration uses an MBT quantification distinct from that originally pre-
sented in Weijers et al. (2007), hereafter referred to as MBT′ (see Peterse 
et al., 2012, for details). Repeat analysis of standards and samples yielded 
MBT′ and CBT uncertainties that equated to absolute temperature errors 
of <0.5 °C. This analytical uncertainty is well within the calibration error 
of ±5 °C (Peterse et al., 2012). The organic matter within our samples was 
also characterized through organic carbon isotope analysis (d13Corg) and 
calculation of the branched and isoprenoid tetraether (BIT) index, which 
is a measure of the terrestrial (branched) versus marine-derived GDGT 
content (Fig. 2; Hopmans et al., 2004).

RESULTS
The relatively high BIT indices, coupled with abundant fossil wood 

observed in the field, indicate a predominantly terrestrial origin for the or-
ganic matter within the analyzed samples (Fig. 2). The calculated BIT in-

dex values (mean of 0.56) preclude the use of the TEX86 proxy for marine 
paleotemperature determination owing to the risk of terrestrially derived 
isoprenoid GDGTs biasing calculated TEX86 values (Weijers et al., 2006). 
BIT index, d13Corg, MBT′, CBT, soil pH, and calculated temperature are 
plotted in Figure 2 against a composite log of the studied interval.

Our data demonstrate that MATs from the López de Bertodano and 
Sobral Formations average 12.4 ± 5 °C (Fig. 2). Within the Cross Valley 
Formation this average decreases to 8.7 ± 5 °C, which includes one mark-
edly lower value of 3.6 °C (Fig. 2). This value and four other relatively 
low temperatures (7–10 °C) calculated from the Cross Valley Formation 
are associated with organic matter with markedly higher d13Corg values 
than determined from samples elsewhere in the succession (>2‰ differ-
ence; Fig. 2). It is thus possible that the organic matter in these samples 
was at least partly derived from soils formed in a region distinct from 
that of the rest of the succession. However, d13Corg does not correlate with 
temperature or any other measured index in the succession, and samples 
associated with these relatively low temperatures are not associated with 
consistently different BIT indices or pH, MBT′, or CBT values.

DISCUSSION
Our results indicate the existence of a predominantly cool temperate 

climate during the latest Cretaceous and Paleocene of Seymour Island, 
with possible subantarctic and warm temperate interludes (Figs. 2 and 3). 
Although high-latitude MBT′/CBT paleotemperature estimates may be 
biased toward summer-month temperatures (e.g., Pross et al., 2012), the 
veracity of our record is supported by sparse paleofloral temperature prox-
ies from Seymour Island and the Antarctic Peninsula region (e.g., Francis 
and Poole, 2002; Poole et al., 2005; Fig. 3). Our findings are also in broad 
agreement with recent SST estimates of surrounding shelf seas from d18O 
analysis of fossil shells from the López de Bertodano Formation by Tobin 
et al. (2012) (Fig. 3). These authors concluded that SSTs were close to 
~8 °C through the latest Maastrichtian, with pronounced warming epi-
sodes occurring just prior to and across the K-Pg boundary that they dated 
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1GSA Data Repository item 2014205, Table DR1 (all data), and Figure DR1 
(available age control for the studied succession), is available online at www.
geosociety.org/pubs/ft2014.htm, or on request from editing@geosociety.org or 
Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.

Figure 2. Organic geochemistry and paleotemperature data from Seymour Island, Antarctica. Methylation index of branched tetraeth-
ers (MBT′), cyclization ratio of branched tetraethers (CBT), soil pH, and mean annual air temperature (MAT) are calculated using equa-
tions of Peterse et al. (2012). Error bars equate to the ±5 °C uncertainty inherent in MBT′/CBT calibration data set (Peterse et al., 2012). 
BIT—branched and isoprenoid tetraether; MAAST.—Maastrichtian; UP.—Upper; PALEO.—Paleogene; cl.—clay; s—silt; vf—very fine 
sand; f—fine sand; m—medium sand; c—coarse sand; vc—very coarse sand.
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as contemporaneous with episodes of enhanced Deccan Trap volcanism 
(Tobin et al., 2012; Fig. 3). Coeval terrestrial palynomorph data from Sey-
mour Island similarly support a short interval of warming immediately 
prior to the K-Pg boundary (Bowman et al., 2013). This warming was 
likely a global phenomenon based on evidence from other widely dis-
tributed terrestrial and marine records (Wilf et al., 2003, and references 
therein). Within our Seymour Island MBT′/CBT data we note an increase 
in paleotemperatures leading up to the Cretaceous-Paleogene boundary 
broadly coeval with the warming recognized by Tobin et al. (2012) and 
Bowman et al. (2013) (Fig. 2). However, the resolution afforded by the 
data, limited primarily by the calibration uncertainty of the MBT′/CBT–
derived estimates, does not allow us to unambiguously reconcile our data 
with these other records. Indeed, the precise magnitude of the temperature 
change noted by Wilf et al. (2003) and Tobin et al. (2012) is likely to be 
between 3 °C and 7 °C; i.e., potentially within the calibration uncertainty 
of the MBT′/CBT method (Peterse et al., 2012). Regardless of the pre-
cise pattern of continental climate change through the K-Pg of Seymour 
Island, our data support the suggestion that climate was relatively stable, 
and, in line with the findings of Wilf et al. (2003), refutes previous asser-
tions that the earliest Paleocene was marked by major warming of ~10 °C 
(Wolf, 1990).

Our new data add important detail to an emerging picture of cli-
matic evolution through the Late Cretaceous and early Paleogene of the 
circum-Antarctic region, summarized in Figure 3. Within this broader 
context, we note that the cool temperate paleotemperatures we deduce 
for the Antarctic Peninsula region in the Paleocene are consistent with 
paleofloral and MBT′/CBT–derived estimates from New Zealand (Ken-
nedy, 2003; Pancost et al., 2013; Fig. 3). These continental paleotem-
peratures are also largely within error of coeval SST estimates from 
the surrounding southwest Pacific (Bijl et al., 2009; Hollis et al., 2012; 
Fig. 3). A pronounced warming in the southwest Pacific occurs through 
the latest Paleocene and early Eocene, culminating in the Early Eocene 
Climatic Optimum (EECO) (Bijl et al., 2009; Hollis et al., 2012; Fig. 3). 
This climatic optimum is also ostensibly apparent in continental paleo-
temperature proxies from the surrounding region, specifically southern 
Australia (Greenwood et al., 2003; Carpenter et al., 2012), New Zealand 
(Pancost et al., 2013), and East Antarctica (Integrated Ocean Drilling 
Program Site U1356; Pross et al., 2012; Fig. 1) (Fig. 3). The large un-
certainties in paleotemperature estimates derived from these continental 
proxies undoubtedly temper the clarity of this observation, but the pat-
tern of a relatively cool Maastrichtian–Paleocene followed by a warmer 
early Eocene would be reasonably predicted for Antarctica based on a 
benthic d18O compilation (Cramer et al., 2009; Hollis et al., 2012; Fig. 3). 
It is conspicuous that paleotemperatures determined from the Eocene La 
Meseta Formation of Seymour Island do not appear to show the same 
trend and are indistinguishable from the paleotemperatures proposed 
for the Maastrichtian–Paleocene (Greenwood and Wing, 1995; Poole et 
al., 2005; Ivany et al., 2008; Fig. 3). In part, this observation may stem 
from uncertainties in the choice of the correct d18Oseawater value in the 
calibration of molluscan d18O SST data (Ivany et al., 2008). Equally, 
there is debate regarding the exact Eocene age of the La Meseta Forma-
tion (Ivany et al., 2008; Pross et al., 2012). Nevertheless, in line with 
the observations of Carpenter et al. (2012), the reconstructed SSTs for 
the La Meseta Formation are ~10 °C cooler than coeval SSTs from any 
portion of the early or middle Eocene at Ocean Drilling Program (ODP) 
Site 1172—positioned at the same paleolatitude as Seymour Island in 
the southwest Pacific (~65°S; Bijl et al., 2009; Fig. 3). The Maastrich-
tian–Eocene paleotemperature record from Seymour Island thus empha-
sizes that long-term climate variability in the Antarctic Peninsula region 
was muted relative to other parts of the circum-Antarctic, which has 
been ascribed to the effects of the proto-Leeuwin and proto–east Aus-
tralian currents delivering relatively warmer surface flow to the southern 
Australian–East Antarctic and southwest Pacific regions respectively 
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Figure 3. Compilation of multi-proxy paleotemperature data through 
Late Cretaceous to middle Eocene in circum-Antarctic region. Our 
methylation of branched tetraethers/cyclization of branched tetra-
ethers (MBT′/CBT) paleotemperatures are plotted as formation av-
erages from 41 samples analyzed in this study. Note that precise 
ages and durations of Seymour Island formations are uncertain (see 
main text and Data Repository [see footnote 1] for details of avail-
able age control). Age model displayed and age errors for our data 
thus show maximum likely age span for each formation. Error bars 
shown for plant proxy paleotemperature data are taken directly from 
original references and equate to maximum range of uncertainty 
in age and temperature (including calibration errors if provided). 
Shaded regions of MBT′/CBT and TEX86 data correspond to calibra-
tion error of these estimates. All MBT′/CBT paleotemperatures are 
calculated using calibration equations of Peterse et al. (2012). All 
data have been compiled based on stratigraphic ages provided in 
original references, tied here to time scale of Gradstein et al. (2012). 
La Meseta Formation “TELM” ages are from Ivany et al. (2008). 
Precise age of La Meseta Formation is debated (see main text for 
discussion). Paleotemperature data of Kennedy (2003) from three 
separate study sites have been averaged to a single point owing to 
high uncertainties in age. EECO—Early Eocene Climatic Optimum; 
PETM—Paleocene–Eocene Thermal Maximum; K-Pg—Cretaceous-
Paleogene; temp.—temperate; foram.—foraminifera; Austr. —Aus-
tralia; L.—Late; E.—Early; M.—Middle; Cretac.—Cretaceous; Pal./
Paleo.—Paleogene; Maastricht.—Maastrichtian; Selan.—Selandian; 
Thanet.—Thanetian; IODP—Integrated Ocean Drilling Program. Cli-
mate subdivisions from Hollis et al. (2012).
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(see for example Huber et al., 2004; Carpenter et al., 2012; Hollis et al., 
2012; Pross et al., 2012; Fig. 1).

CONCLUSIONS
Our data provide the first geochemically quantified, high-resolution 

estimates of Antarctic continental temperatures during the Maastrich-
tian and Paleocene. As such, they help elucidate the climatic history of 
the continent and place into context the regional and temporal changes 
in climate that occurred through this key interval of Earth history. Our 
brGDGT-based paleotemperature estimates indicate that a predominantly 
cool temperate climate prevailed during the late Maastrichtian and Paleo-
cene on the Antarctic Peninsula. This finding is in close agreement with 
sparse paleofloral constraints on Antarctic climate for this interval. Our 
work also exemplifies the potentially dynamic nature of early Paleogene 
climate evolution in the southern high latitudes.
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