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Introduction 

 

During the last decades, forests have been experiencing fast changes in the environmental 

conditions, to which forest management must adapt. Process-based models (PBMs), based on eco-

physiological principles, are invaluable tools for sustainable and adaptive forest management (Fontes et 

al., 2010). PBMs allow for the estimation of site productivity and can simulate the effects of 

management and environmental constraints on stand growth and the probable influence of climate 

change on forest productivity. Furthermore PBMs enable analyses at different spatial and temporal 

scales (Fontes et al., 2010). However, calibration of PBMs is often difficult because they tend to have 

many parameters and outputs for which only few data are available. Moreover, because models are 

simplifications of reality, we need to assess carefully how well their structure allows for simulation of 

the phenomena of interest.  Bayesian statistics, based on probability theory, offers an alternative to the 

calibration problem and can provide parameter estimates with estimates of their uncertainty (van Oijen 

et al., 2005). The Bayesian approach also allows for the evaluation of model structure by quantifying 

the extent to which data support different models (Kass & Raftery, 1995; van Oijen et al., 2011). In 

addition, the increasing availability of eddy-covariance measurements with high temporal resolution 

(Pereira et al., 2007) provided by the Fluxnet and other regional networks, allows for calibration as 

well as for model validation. 

In this work a Bayesian framework and a global sensitivity analysis were used in combination to 

test an improvement of a process-based model (3PGN (Xenakis et al., 2008)) and to study model 

behaviour. Two versions of 3PGN that differ in their representation of autotrophic respiration (Raut) 

were calibrated and evaluated. 3PGN is based on a constant value of carbon–use efficiency (CUE), 

defined as the ratio between net primary production (PN) and gross primary production (PG) (Gifford, 

2003); therefore, Raut is modeled as a fixed proportion of PG. The understanding of the factors 

regulating Raut is one of the most challenging questions in ecological forest research. Many studies 

argue that PN : PG is constant (Dewar et al., 1998; Gifford, 1994, 2003). Waring et al. (1998) proposed 

a universal value of 0.47 for most forests. More recently, van Oijen et al. (2010), using a mathematical 

approach based on the law of conservation of mass, showed that PN : PG is narrowly constrained. 

However, owing to the difficulty in measuring carbon-use efficiency and in particular the PG 
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component, methodological problems can mask variation in PN : PG (Medlyn & Dewar, 1999), casting 

doubts about the existence of fixed values of the ratio between net and gross primary production. 

DeLucia et al. (2007), conducting a literature review, found that CUE varied between 0.23 and 0.83 

across 60 different forests, with an average of 0.53. 

A different approach is to model Raut as the sum of two components: maintenance (Rmaint) and 

growth (Rgrowth) respiration, the first being proportional to the live biomass and its temperature, the 

second being proportional to PN. This theory was developed in the 1970s by McCree (1974), and many 

authors followed this approach (e.g., Penning de Vries, 1974, 1975; Ryan & Waring, 1992). A detailed 

review of the progress achieved in respiration modeling over the last decades can be found in Amthor 

(2000). Warmer climates should have higher respiration costs, because the maintenance respiration 

increases exponentially with temperature (Ryan, 1991). This kind of Raut modeling ( Rmaint + Rgrowth) 

has been used in many process-based models (e.g. CABALA (Battaglia et al., 2004); PIXGRO (Adiku 

et al., 2006); MAESTRO (Wang & Jarvis, 1990)). 

In the present work the original version of 3PGN, based on a constant PN : PG ratio, and a new 

version (3PGN*), in which Raut is modeled as the sum of maintenance and growth plant respiration, 

were calibrated and evaluated under a Bayesian framework. As proposed by van Oijen et al. (2011), the 

Bayesian framework consisted of model calibration, model comparison and analysis of model-data 

mismatch. Sensitivity analyses of the two model versions were also carried out to have a better insight 

of model behavior (Campolongo et al., 2007). For the first time a Bayesian framework and a global 

sensitivity analysis, Morris method (Morris, 1991), were used in combination to highlight the strengths 

and weaknesses of the two model versions and to evaluate their performances. 

 

Materials and methods 

Overview of the methodology 

Our study used eddy-covariance data and forest measurements collected at two different sites: a 

CarboEurope-IP site (Espirra forest) and a field experiment (Furadouro experiment). At a first stage 

both models were calibrated using the full dataset (i.e., Espirra forest and Furadouro experiment). The 

Bayesian framework proposed by van Oijen et al. (2011) and the Morris method were used in 

combination to better understand the behaviour of the models. 

Subsequently, two Bayesian model comparisons were performed to evaluate the models. The 

first BMC was carried out in light of the prior knowledge of the two models (prior BMC). Meanwhile, 

for the second BMC part of the dataset was used for model calibration and the rest of the data were 

used for model evaluation (post BMC). For the prior BMC 1000 parameter vectors were sampled from 

the prior distributions of the two model versions. The models were run with the sampled parameter sets 

and the distributions of model outputs were used in a Bayesian model comparison. For the prior BMC 

the models were compared in light of the full dataset (i.e., Espirra forest and Furadouro experiment). 

For the second Bayesian model comparison, the models were calibrated with the Furadouro experiment 

data and then compared using the Espirra forest dataset.  

 

 

3PGN Structure 
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3PGN was developed by Xenakis et al. (2008) coupling two models, 3-PG (Physiological 

Principles in Predicting Growth) and ICBM (Introductory Carbon Balance Model). The resulting model 

structure was comprehensively described by Xenakis et al. (2008) – only a brief outline is given here. 

A detailed description of 3-PG was provided by Landsberg and Waring (1997) and by Sands 

and Landsberg (2002). 3-PG is composed of five sub-models. One is used to calculate the productivity 

of the stand and another is used for partitioning biomass between different organs (foliage, roots and 

stem). The other three sub-models are used to determine the changes in stem number, soil water 

balance and variables of interest to forest managers, such as stand timber volume (V, m
3 

ha
-1

), mean 

diameter at breast height (D, cm) and stand basal area. 

3-PG is based on the principle that the net primary production of a stand is primarily determined 

by radiation interception. PG is calculated by multiplying the fraction of the photosynthetically active 

radiation absorbed by the stand (ΦaPAR) with canopy quantum efficiency (αc). ΦaPAR is calculated using 

Beer’s law. The canopy quantum efficiency is calculated by multiplying a theoretical maximum canopy 

quantum efficiency (alpha) with an array of site and physiological modifiers that vary between 0 and 1 

(functions of atmospheric vapor pressure deficit, air temperature, frost, water balance, age and fertility 

rating (FR)). PN is calculated as a constant fraction (Y) of PG (Law et al., 2000; Waring et al., 1998). 

The carbon allocation routine sub model is based on allometric equations, on a single-tree basis. A 

fraction of PN is allocated below-ground by a root allocation coefficient that is affected by soil fertility. 

The remaining biomass is partitioned between the aboveground organs as a function of diameter at 

breast height and foliage: stem ratio. 

The 3-PG model has been applied to many different species and sites and it is widely used in 

research as well as by companies to assess forest growth and site productivity. Fontes et al. (2006) 

parameterized 3-PG for Portuguese plantations of Eucalyptus globulus, Labill., demonstrating that 

carbon allocation of E. globulus in Portugal differs strongly from allocation patterns in Australian 

plantations. 

A complete description of ICBM is provided by Andrén and Kätterer (1997) and Kätterer and 

Andrén (Kätterer & Andrén, 1999, 2001). ICBM/2N considers three pools of C and three pools of N in 

the soil, consisting of different forms of organic matter: the “young labile” pool, that includes small 

tree detritus (such as litterfall and root turnover), a “young refractory” pool, that includes coarse woody 

detritus (coarse root, branches and stems) and an “old” pool, that includes the recalcitrant organic 

matter. Each pool has a different decomposition rate that varies along the year with environmental 

conditions (i.e., temperature and soil water content), but does not change during stand development 

(Mäkelä & Vanninen, 2000; Titus & Malcolm, 1999). Carbon decomposed from the young pools enters 

the old pool at a constant relative rate of humification. The fraction from each young poolthat is 

decomposed but not humified is considered as respiratory loss. Similarly, decomposition losses take 

place from the “old” pool. The sum of all the out-fluxes from the three pools gives the heterotrophic 

respiration. The nitrogen balance is based on fixed C:N ratios and the size of the C fluxes and pools. 

In 3PGN, the biomass losses of the stand (litterfall, root turnover, death of trees, but excluding 

tree harvesting), calculated by 3-PG, are the inputs for ICBM/2N. The latter model is used to calculate 

the heterotrophic respiration, but not the site fertility parameter (FR) of 3-PG. As in the original version 

of 3-PG (Landsberg and Waring, 1997), the FR parameter was site specific. In this work, five different 

FRs were parameterised for each site by means of Bayesian calibration. 

 

The two versions of 3PGN  
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  In the two 3PGN versions used in this work, tree diameter D was calculated as a function of 

total aboveground dry biomass (i.e., leaves included). 

 

D = StCn * Wabv 
StPw

              (1) 

 

where Wabv is the aboveground biomass (kg per tree) and StCn and StPw are regression coefficients. 

Because average stand height (H) is an important stand variable, a new equation for the calculation of 

H was introduced. 

 

H = aH * Wabv
bW 

               (2) 

 

where aH and bW are regression coefficients. 

 

The two model versions used in this work calculate autotrophic respiration (Raut) in different 

ways. In the old version (3PGN), Raut is proportional to photosynthesis. In the new version (3PGN*), 

Raut is the sum of respiration for maintenance (Rmaint) and for growth (Rgrowth): 

 

 Raut = Rgrowth + Rmaint         (3) 

 

Maintenance respiration is assumed to be a function of biomass and average temperature (Tav) 

and it follows different specific rates for the woody (rw) and foliage (rf) tissues. In the woody pool the 

branches, stem and the root biomass were included. 

 

 Rmaint = ∑ Wi ri Q10
(Tav-20)/10

       (4) 

 

where Wi and ri are dry weight and specific respiration rate, respectively, of the ith plant pool (woody 

or foliage); Q10 determines the temperature responsiveness of respiration. 

 Growth respiration is calculated as: 

 

 Rgrowth = rg * (PG - Rmaint)       (5) 
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where rg  is the fraction of growth discarded as respiration (Penning de Vries 1975). 

 Finally, PN is calculated as: 

 

  PN  = PG – Raut         (6)  

 

When the calculated Rmaint + Rgrowth exceed PG total Raut is set equal to PG. 

The equations 4 and 5 were chosen because they required fewer parameters than other Rmaint and 

Rgrowth modeling approaches (Amthor, 2000; Ryan et al., 1996). With the insertion of the new 

equations, just three additional parameters were entered into the model, maintaining model simplicity, 

in agreement with the idea on which 3-PG was developed (Landsberg, 2003; Landsberg & Waring, 

1997). 

 

Experimental sites and data acquisition 

The data used for model calibration and evaluation were collected at two sites: Espirra and 

Furadouro. The Espirra forest dataset consisted of measurements of net ecosystem production (PE, Mg 

C ha⁻¹ y-1
), mean stand height (H, m) and mean stand diameter at breast height (D, cm). The dataset 

from the Furadouro experiment consisted of measurements of foliage (WF, Mg of dry mass (DM) 

ha⁻¹), stems (WS, Mg DM ha⁻¹) and roots (WR, Mg DM ha⁻¹), stand volume, mean stand height and 

mean diameter at breast height. The whole dataset consisted of 305 data points between the seven 

output variables considered (i.e., PE, D, H, V, WF, WR and WS). 

 

Espirra forest 

The carbon fluxes, from which PE was derived, were measured by eddy covariance (Aubinet et 

al., 1999; Baldocchi, 2003) in Espirra (Pereira et al. 2007). This CarboEurope-IP site is a 300 ha 

Eucalyptus globulus plantation (38º38`N, 8º36`W) tended as a coppice. Originally planted in 1986 at 3 

x 3 m spacing, ca. 1100 trees ha
-1

, was 11 years old (2nd rotation) in the end of the period analyzed, 

and ca. 20 m height. The mean annual temperature for the site is 16ºC whereas the mean annual 

precipitation is 709 mm, more than 80% of which occurs from October to April. 

The flux data were collected between October 2002 and December 2005 at the half hourly 

scale. Net ecosystem production data were aggregated at monthly time step and used for model 

calibration and validation. Flux data quality control followed the CarboEurope-IP recommendations; 

gap filling was performed according to Reichstein et al. (2005).  

 

Furadouro experiment 

 The mensurational data used for model calibrations were collected in a field experiment 

installed from 1986 to 1992 at Quinta do Furadouro (Óbidos, Portugal, 39º29`N, 9º13`W, 30 m a.s.l.). 

The mean annual temperature is 15.2 ºC and the mean annual precipitation is 607 mm, but less than 
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10% occurs between May and September. Three months old E. globulus seedlings were planted at 3 x 3 

m spacing; each seedling was supplied at planting with 200g of a commercial fertilizer containing 

14.0g of N, 18.3g of K and 11.6g of P. Before planting, the soil was ploughed at 80 cm depth and 1.5 

Mg ha
-1

 of dolomitic limestone (66.5% of CaCO3, 32.5% of MgCO3) was applied. 

The experimental design consisted of three treatments and a control. The treatments were daily 

irrigation from April to October (I), application of a pelleted fertilizer in March and October of each 

year (F) and daily irrigation as in I, combined with a liquid fertilizer solution once a week (IF). No 

fertilization (except the initial amount at plantation) and irrigation were supplied to the control (C). 

The differences in soil nitrogen concentration between C and I were due to some amount of N 

contained into the irrigation water; while the different amounts of nutrient in F and IF resulted both 

from the influence of irrigation water and from different application rates. For these reasons, the 

fertility rate parameter of 3-PG was calibrated independently for each treatment. Different prior were 

assigned to the FR of C, F, IF; Table 1b shows the minimum and maximum values and the distributions 

of these parameters. 

 

Sensitivity analyses 

Sensitivity analyses can vary from the simplest class of the One Factor At the Time (OAT) to 

global sensitivity. While OAT quantifies  model output variation in relation to changes of one factor at 

a time, global sensitivity analyses evaluate model's output sensitivity to simultaneous changes in 

several factors. In this work the global sensitivity method proposed by Morris (1991) was adopted. This 

method is a good compromise between efficiency and accuracy and it is particularly well-suited when a 

high number of factors are considered and/or the model is costly to compute (Campolongo et al. 2007). 

The method consists of computing basic statistics, i.e., mean (μ) and standard deviation (σ), 

from the distribution of a number of incremental ratios, called Elementary Effects. μ gives the overall 

importance of an input factor, while σ describes non-linear effects and interactions between factors. For 

a more detailed analysis of this methodology see Campolongo et al. (2007) and Morris (1991). 

Campolongo et al. (2007) enhanced the Morris method improving the sampling strategy and 

proposed to calculate the mean of the distribution of the absolute values of the elementary effects (μ*). 

μ* is calculated to solve the problem of non-monotonic models, where the effects of opposite signs 

could mask the importance of a factor. 

For the sensitivity analyses of 3PGN and 3PGN* we considered the following output: stem, 

foliage and root biomasses, average stand diameter at breast height, average stand height, stand volume 

and annual net ecosystem productivity (aPE ). Because output sensitivity to the factors could vary 

across stand development, the sensitivity was computed at different stand ages (i.e., at four, eight and 

twelve years). For the sensitivity analysis the environmental data (weather, soil, management) of the 

Espirra forest were used as drivers for the models. The factors involved in the analysis consisted in the 

parameters and the site variables reported in Table 1a-b. Factors ranged between the minimum and 

maximum values used for the BC (Table 1). 

 

Bayesian framework 
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Model calibration and comparison were carried out using a Bayesian approach. Bayesian 

statistics is part of probability theory and it requires that beliefs about parameter values and models be 

expressed as probability distributions. Our initial information about plausible parameter values, and 

about which model is correct, is expressed in the prior distribution P(θ). Observed data (O) that are 

used to update the prior distribution enter the analysis through the so-called likelihood function L(θ) = 

P(O|θ). An updated, posterior distribution is then found by application of Bayes’ Theorem:  

 

P(θ|O) = c P(O|θ) P(θ)       (7) 

 

where, c = p(O)
–1

. The value c is fixed, and usually it is not necessary to compute it explicitly. 

 

 Likelihood function 

The likelihood function (L) used was proposed by Sivia (2006) and it is described by the 

equations (8) and (9): 

 

  ( | )  ∏
 

  √  

      (   
  ⁄ )

  
 

 
         (8) 

 

R = (sim(θ) - O)/σ          (9) 

 

where, sim(θ) is the output from the model for parameter values θ, N is the number of data points and σ 

is the uncertainty about the random error of the ith data point. 

This likelihood was chosen because it is heavy-tailed, so it puts less weight on the outliers that 

can occur in eddy covariance measurements (Sivia 2006, Van Oijen et al. 2011). 

 

 Prior distribution for the parameters 

Table 1 shows the types of distribution and their bounds that were used for the prior marginal 

distributions of the parameters. The prior was assigned using different sources of information: 

literature, measurements and posteriors from previous Bayesian calibrations. 

For parameters for which knowledge is scarce the uniform distribution was chosen.  The 

truncated Gaussian distribution was assigned to many of the other parameters, using information 

derived from literature. Those distributions were also quite uninformative (not too peaked). 

The prior distributions of the woody and foliage specific respiration rates (rw and rf, 

respectively) of eq. 5 were fitted with gamma distributions, on the basis of spot gas exchange 

measurements collected at the Nicolaus site, close to the Espirra forest (Cerasoli et al., 2009). 
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Since data were available to calibrate the allometric equations (eq. 1 and 2) and the 3PGN 

equation to calculate the specific leaf area (SLA) as time function (eq. 10), Bayesian calibrations were 

carried out independently for those equations. 

 

 SLA(t) = SLA1 + (SLA0 - SLA1) * e
-(ln 2)(t / tSLA)²

    (10) 

 

where t is the stand age, SLA0 is the specific leaf area at age 0, SLA1 is the specific leaf area for mature 

leaves, tSLA is the age at which SLA = (SLA0 + SLA1)/2. 

After Bayesian calibration (BC), the posterior distributions of the parameters of eq. 1, 2 and 10 

were fitted with Weibull, normal and gamma distributions and then used as prior for the BCs of the 

whole models. 

 

Bayesian calibration (BC) 

Bayesian calibration revises the state of knowledge about parameter values using new data. 

Process based models are not analytically solvable and they need to be run to quantify the likelihood. 

Therefore, to summarize the posterior distribution as a sample, from which we can calculate summary 

statistics like the posterior mean, we used the version of Markov Chain Monte Carlo (MCMC), known 

as the Metropolis-Hastings random walk (Robert & Casella, 2004). The MCMC method aims to 

converge the sampling on the region of the parameter space with highest probability density. A 

complete description of the Metropolis-Hastings algorithm is given in van Oijen et al. (2005). 

To optimise the MCMC-algorithm, some preliminary calibrations were carried out, varying the 

chain length and the scale of the proposal distribution, in order to achieve efficient convergence of the 

Markov chain.  BCs were carried out with a chain length of 100,000 and 500,000 and the burn-in was 

40% of the chain length. To assess convergence of iterative simulations, the Gelman-Rubin criterion 

(Gelman & Rubin, 1992) was used. This method consists in comparing at least two independent 

simulated sequences, checking if the variance within the chains is comparable with the variance 

between the chains. To monitor convergence, the potential scale reduction (Ř) is estimated; Ř tends to 1 

when we have a good inference about the target distribution. Gelman et al. (2004) stated that for the 

majority of the cases a value of 1.1 for Ř is acceptable, but in some cases a higher level of precision 

may be more appropriate. Three chains were considered to evaluate convergence; after the BCs, all 

chains, discarding the burn in, were joined and treated as a unique sample from the target distribution. 

 

 Bayesian model comparison (BMC) 

 Bayesian model comparison is a powerful extension of BC that allows for the evaluation of 

different model structures on the basis of their relative likelihoods (Kass & Raftery 1995; van Oijen et 

al. 2011). In this case the Bayesian theorem is not applied over the parameter space of a single model 

but over a set of models (M) (van Oijen et al. 2005). 

 

P(Mk|O) = P(O |Mk) P(Mk) / ∑ P(O |M) P(M)    (11) 
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where k varies between 1 and n models. In our application, with just two model versions being 

compared, n=2. 

 Assuming no initial preference for either of the models (P(M1) = … = P(Mn)), equation 11 

becomes: 

 

 P(Mk|O) = P(O|Mk) / ∑ P(O|M)      (12) 

 

 P(O|M) is the “integrated likelihood” (IL) which is defined over the whole parameter space of 

M, i.e., P(O|M) = ∫P(O|θ)P(θ)dθ. 

 

 Analysis of model-data mismatch 

The Bayesian model comparison treats models as black boxes, giving just indication about 

which model is more plausible (van Oijen et al. 2011). The mismatch of simulated vs. observed data 

can also be evaluated using more classical methods that allow identifying model weakness. For each of 

the seven outputs considered, normalised root mean squared error (NRMSE) and squared correlation 

coefficient (r²) were calculated across the range of prior and posterior distributions. 

Moreover, for the modes of the prior and posterior distributions we calculated the mean squared 

error (MSE) of each output. MSE was decomposed in three components as suggested by Kobayashi and 

Salam (2000): 

 

     (   ) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ( ̅   ̅)  (     )
   (    )(   )  (13) 

 

where S are model predictions and O are the observed data,    and    are their respective 

standard deviations, and r is the correlation between simulated and observed data. 

The first component of MSE is a measure of the average deviation of the simulations from the 

data (i.e., bias error), the second element indicates if the model is able to catch the variability of the 

data (i.e., variance error) and the third element expresses the ability of the model to reproduce the 

pattern of the fluctuations among the data (i.e., phase shift error) (Kobayashi & Salam, 2000). 

 

Results 

Sensitivity analyses 

The Morris method allowed for the identification of the key parameters for each of the model 

output across the stand development. Note that the sensitivity analysis was contingent on the parameter 

space considered for the Bayesian calibration, because parameters varied between the minimum and 
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maximum values used in the BC. Part of the results about sensitivity analysis are reported in Figure 1a-

b, where μ* and σ of the five factors at which model outputs are most sensitive (highest μ*) are plotted 

for each year considered (i.e., 4, 8, 12). More comprehensive results were difficult to report in graphs 

and tables because of the high number of parameters, therefore general results were only discussed in 

the text. 

Below a general overview of the sensitivity analysis results is given. The fertility rate parameter 

(FR) had a strong impact on all the outputs of both models. The parameters related to the autotrophic 

respiration were also key factors; in particular, the PN : PG ratio (Y) for 3PGN and the woody biomass 

respiration rate for 3PGN* had a high influence on all the output variables. 3PGN* outputs resulted 

also quite sensitive to Q10 and rg, while less sensitive to rf. Both models were highly sensitive to the 

light use efficiency parameter (i.e., alpha), the optimum temperature for growth (i.e., Topt) and the 

minimum available soil water (minASW). In the first part of stand development model outputs were 

highly influenced by the age at which canopy close (i.e., fullCanAge) To a lesser extent, model outputs 

were sensitive to parameters related to fertility (i.e., fN0), allometric parameters (i.e., StemPower and 

StemConst), allocation parameters (i.e., pRx, pRn, pFS2, pFS20),  parameters related to temperature 

stress (i.e., Tmin, Tmax), parameters and variables related to water stress (i.e., maxAWS, MaxCond, 

CoeffCond), soil parameters (i.e., klmax) and other parameters like the litterfall rate at maturity 

(gammaF1).  Low impact on model outputs was given by factors related to age stress (i.e., nAge, 

MaxAge, rAge), root turnover, soil parameters and variables (i.e., hc, komax, krmax, O_C_i, Yl_C_i), 

the initial biomass of stem and root (i.e., WS, WR), frost days. 

Bayesian calibration 

Bayesian calibration allowed for the updating of the joint probability distribution for the model 

parameters in light of the data used (i.e., Furadouro experiment, Espirra forest). Using MCMC-

algorithms, convergence must be reached by all the parameters to obtain an accurate sample for the 

posterior distribution. For BCs of 100,000 chain length, the Ř factor, calculated over three chains, 

assumed values lower than 1.1 for all the parameters (data not showed). However, almost 20% of the 

parameters did not assume the same marginal posterior distribution over the three chains. Ř was lower 

or close to 1.03 for the BCs of 500,000 chain length. In this case all parameter marginal posterior 

distributions were similar over the three chains (data not showed). The BCs with different chain lengths 

showed that 500,000 chain length and Ř factors lower than 1.03 were proper to reach a good 

convergence for parameter rich process-based models.  

The likelihood distributions of the two model versions, for each output, before and after BC, are 

presented in Figure 2. Higher values of the likelihood correspond to better model performances, while 

the variance of the likelihood distribution is a measure of model accuracy. 

BC significantly shifted the likelihood towards higher values for D, H, WS and V. This means 

that, after calibration, the models better simulated those variables. Posterior likelihoods of 3PGN and 

3PGN* were also higher for PE, even though, for this output the likelihood improvements were less 

pronounced.  On the contrary, WF and WR likelihoods decreased after BC. 

Figure 3 shows prior and posterior marginal distributions of all the parameters.  

For the two model versions, in most of the cases, parameter posterior distributions were very 

similar (Figure 3). There were differences between the posterior distributions of parameters linked with 

water balance and water stress (i.e., LAIgcx, Blcond, MaxIntcpntn, MinASW) (Figure 3a), temperature 

and frost stress (i.e., Topt, kF) (Figure 3a), soil parameters (i.e., klmax) (Figure 3b), fertility parameters 
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(i.e., FR and fN0) (Figure 3b). Posterior distributions were also different for alpha, tSLA and 

fullCanAge (Figure 3a). 

From marginal posterior distribution it is possible to understand parameter uncertainty in  light 

of the data used for BC; if the posterior variance is lower than the prior variance the data were 

informative for the parameter. The data used for BCs allowed for the reduction in the uncertainty of 

about 70% of the parameters (Figure 3). The data were not informative for some parameters related to 

temperature stress (i.e., Tmax) (Figure 3a), water stress (i.e., SWpower, Blcond, LAImaxIntcptn) (Figure 

3a), age effect on forest growth (i.e., MaxAge, rAge, nAge) (Figure 3b), litterfall parameters (i.e., 

gammaF0, tgammaF) (Figure 3a), stand volume (i.e., fracBB1, tBB) (Figure 3b), stand attributes (i.e., 

the initial root biomass (WR_i) and tree density at plantation (StemNo)) (Figure 3b). Uncertainty also 

underpinned many parameters of the soil decomposition model (ICBM/2N): the decomposition rates of 

the different soil pools (i.e., krmax, komax, hc) and the initial soil carbon contents (i.e., Yr_C_i, Yl_C_i, 

O_C_i) (Figure 3b). The data were extremely informative for the allocation and allometric parameters 

(i.e., pFS2, pFS20, StCn, StPw, pRx, pRn, aH and cD) (Figure 3a), temperature parameters (i.e., Tmin, 

Topt) (Figure 3a), fertility parameters (i.e., m0, FR) (Figure 3b), the litterfall rate at maturity 

(gammaFx) (Figure 3a), water stress parameters (i.e., MaxCond, CoeffCond) (Figure 3a), light use 

efficiency and light interception parameters (i.e., alpha, k, SLA0) (Figure 3a), the age at which canopy 

close (fullCanAge) (Figure 3a) and initial biomass (i.e., WF_i, WS_i) (Figure 3b). 

Upon examination of the posterior distribution of the parameters related to the autotrophic 

respiration, it is shown that the data were highly informative to Y (in 3PGN) and rw (in 3PGN*), 

moderately informative to Q10 and rf and  uninformative to rg (Figure 3a). 

 

Analysis of model-data mismatch 

For each output, MSE were calculated using the mode of the prior and posterior distributions 

(Figure 4). BC allowed for the reduction, to a varying  extent, of the phase, variance and bias error of 

D, V and WS. Bias error for H was also strongly reduced, while phase and variance error slightly 

increased. WF MSEs increased after calibration, especially for 3PGN*; the highest component of WF 

MSE was the phase error. WR MSE slightly decreased for 3PGN, because BC reduced the variance 

error but increased the phase error. Instead, after BC, all WR MSE components significantly increased 

in 3PGN*. BC decreased the MSE of net ecosystem production, but the phase error remained quite 

high. 

For each model, 1000 parameter vectors were sampled from the prior and posterior distributions 

to calculate the coefficient of correlation, the slopes and the normalized root mean squared error for the 

comparisons between the predicted and the observed data. Table 3 shows the mean r², slopes and 

NRMSE for both prior and posterior of the seven outputs. 

The coefficient of correlation was high for all the output apart for PE. Even if r
2
, the slope and 

NRMSE of PE improved after the calibration, the models were not able to reproduce the net ecosystem 

productivity pattern over the months. BC significantly improved all the statistics (i.e., r
2
, slopes and 

NRMSE) for D, WS and V. This being said, model performances worsened  for WF and WR. 

 

Bayesian model comparison 
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Results regarding the Bayesian model comparison are summarised in Table 2 where the log-

transformed integrated likelihood values are presented for the prior BMC and post BMC. The highest 

integrated likelihood indicates the most plausible model. The percentage probability of a model of 

being correct is obtained dividing the integrated likelihood of each model by the sum of the integrated 

likelihoods. In the prior BMC the integrated likelihood showed that the 3PGN* model had a probability 

of 84% of being the superior model. Also results from the post BMC supported the new model version, 

in this case 3PGN* had a 99% probability of being the superior model. 

 

Discussion 

For the first time in this work we showed how the Bayesian framework proposed by van Oijen 

et al. (2011) can be used to improve the structure of a process-based model. Furthermore the 

framework was strengthened with a global sensitivity analysis, to better explore strengths and 

weaknesses of the model. These techniques can be applied to any kind of model, simpler or more 

complicated than 3PGN. However, the use of the Bayesian framework for model of higher complexity 

can be hampered by computational limitations. In particular future works should search to increase the 

efficiency of the Bayesian calibration to reduce the computational costs. The BC efficiency can be 

increased reducing the number of parameters involved in the calibration by means of parameter 

screening or using more effective MCMC algorithms such as the delayed rejection adaptive Metropolis 

(Haario et al., 2006) and the differential evolution Markov chain (ter Braak & Vrugt, 2008). 

 

Uncertainty and sensitivity. 

Uncertainty and sensitivity analyses are fundamental processes that help to understand model 

behavior. Even though previous works (Esprey et al. 2004; Xenakis et al., 2008) already performed 

sensitivity analyses of 3-PG and 3PGN, using the simplest method of the One Factor At a Time (OAT) 

screening techniques, this was the first attempt to study 3PGN sensitivity using a global method. In this 

work the Morris sensitivity analysis was performed within the parameter space defined by the prior, 

instead of varying the parameters values of a certain fix percentage (Esprey et al. 2004; Xenakis et al. 

2008). The minimum and the maximum values of the prior are ranges within which the parameters are 

meaningful. The prior represents the state of knowledge about the parameters before the calibration and 

it contains information coming from different sources such as literature, experimental data or previous 

Bayesian calibrations. In this way sensitivity analysis permits to focus the attention of the modelers on 

the parameter space that is meaningful and supported by previous evidence. 

The sensitivity-analysis carried out at different ages helped to understand how the impact of the 

factors on model outputs varies across the rotation. Some of the parameters are more influential on the 

outputs at the beginning of the rotation (i.e., fullCan Age, Topt), while others, like the parameters 

related to water stress (i.e., minASW, MaxCond, Swconst), had a higher impact on the outputs at the end 

of the rotation. These results imply that having a dataset that spans across the stand development is 

crucial to achieving a good calibration of the models. For all 3PGN* output variables, the sensitivity to 

the wood respiration rate increased at the end of the rotation and this parameter became the most 

influential one, because rw is related to the biomass that increases with age. For this reason, particular 

attention must be given to the parameterization of rw. Furthermore, we are not considering in the 

autotrophic respiration model the percentage of the wood that do not contribute to Raut (i.e., 

heartwood), because E. globulus plantations are usually managed with a 13 year rotation and the trees 

do not present heartwood at this stage or it is negligible. If the new version of 3PGN is applied to 
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different species and to different Eucalyptus management, the percentage of heartwood must be taken 

into account. 

The uncertainty in both parameters and model predictions was significantly reduced by the 

calibration. The degree of parameter uncertainty varied across the parameters but was similar between 

the two models. PE measurements were particularly useful for model calibration because they reflected 

the seasonal variability of stand growth and for this reason they were more informative for the 

physiological parameters. Eddy-covariance data reduced the uncertainty of parameters related to the 

photosynthetic activity like water stress, light use efficiency and temperature stress parameters, while 

the biometric data (i.e., D, H, V, WF, WR, and WS) were mainly informative for parameters related to 

the allometry and the carbon allocation routine. 

In the future, to reduce the uncertainty of parameters that remained less certain, modelers can 

work on the prior of those parameters or can use, in a future calibration, output variables that are highly 

sensitive to the uncertain parameters. Model simplification can also be considered if the parameters do 

not affect any of the output variables of interest. 

The 3PGN and 3PGN* outputs characterized by the highest uncertainty a posteriori were 

foliage and root biomasses. These were the variables with fewest measurements, so the biomass 

datasets should be enriched correspondingly to decrease the degree of uncertainty. 

 

Bayesian calibration and model-data mismatch: 

In BC the bottom-up and the top-down approaches can be used in combination to improve the 

knowledge about parameters (Hartig et al., 2012). The bottom-up approach can be used in determining 

the prior, as we did for the respiration rates (i.e., rw and rf) and the parameters of the allometric 

equations. This approach allows for the integration of different data sources in the calibration process 

and it has the merit of redressing the parameters towards realistic values. In contrast, using a top-down 

approach, stand variables like D, H or V can be used, by means of the likelihood, to inform parameters 

that are highly variable or difficult to measure. 

Bayesian calibration of the two model versions significantly reduced uncertainty in the outputs 

and parameters. Calibration improved the probability distributions of PE, D, H, V and WS, i.e. the 

posterior likelihood distribution means were shifted towards higher values and the standard deviations 

were strongly reduced (Figure 2). The analyses on MSE confirmed the effectiveness of the calibration, 

with the posterior MSE being much lower than the prior MSE, for the majority of outputs. On the one 

hand, the highest reductions in MSE were achieved for the data that were more certain (i.e., D, H, stand 

volume and stem biomass) and with a high number of measurements. On the other hand, MSE just 

slightly decreased for the net ecosystem productivity and increased for foliage and root biomasses. 

Other works already demonstrated the weakness of 3-PG in predicting foliage biomass and LAI (Sands 

& Landsberg 2002). In our case, model failure could be explained by the fact that WR and WF were the 

data characterised by the highest uncertainty and the lowest number of measurements, therefore WF 

and WR had smaller weight on the likelihood than the other data. BC results suggested that foliage and 

root biomass dataset should be improved to better test if the models are able to reliably reproduce those 

data, otherwise model structure should be improved. 

 The decomposition of MSE provided additional useful information about model performances 

and structure in light of the data used. The models were not able to reliably reproduce PE 

measurements. In fact, even if the models had really low bias and variance error, i.e. the models were 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

able to capture the mean and the magnitude of the fluctuation among the measurements, they failed to 

simulate the pattern of the fluctuation (phase shift error), because r was low. In other words, the models 

are not able to reproduce the seasonal pattern of net ecosystem production. Model failure in predicting 

PE can be explained by systematic and/or random errors in the measurements, a problem in the model 

structure or wrong settings of some parameter bounds in the prior. We expect the error to be mainly in 

model structure, as 3PGN was probably too simple to respond to all environmental changes that affect 

net ecosystem production, as shown by Minunno et al. (2010). Furthermore, the PE dataset was 

characterized by one year of intensive drought (year 2005-2006) and simple models like 3PGN and 

3PGN* are ill designed to capture forest responses to extreme events. 

 

Bayesian model comparison 

In ecological modelling there is a lively discussion about model complexity. Simple models are 

not able to reproduce the intricacies of the ecological mechanisms, while complicated models are 

theoretically closer to real processes. Nevertheless, it is difficult to calibrate parameter rich models, 

because of lack of data or the difficulty in measuring variables related to the parameters. This is not a 

negligible aspect as simple models with well-known parameters might perform better than complicated 

ones. There is a need to find a compromise between model complexity and parameter uncertainty, in 

accordance with the amount of data that are available. Therefore, model implementation should always 

take into account these two aspects. BMC is such a method that allows for the evaluation of model 

performances across their whole parameter distribution, in light of the data used. Even if this method 

has already been applied in ecological sciences, this application to parameter rich forest process-based 

models is still a novelty. As far as we are aware, only van Oijen et al. (2011) already implemented 

BMC for the evaluation of four biogeochemical models in a Norway spruce forest, while this work 

uses, for the first time, Bayesian model comparison to evaluate improvements in model structure. 

The Bayesian model comparison of 3PGN and 3PGN* showed that the new version of the 

model performed better, even though it increased model complexity, adding three new parameters. 

Although 3PGN* autotrophic respiration model is slightly more complicated than the PN : PG ratio used 

in 3PGN, 3PGN* parameter uncertainty is not necessarily higher. In fact, wood and foliage respiration 

rates might be easier to measure than the PN : PG ratio, because of the difficulty to reliably measure PG. 

The marginal posterior distributions of the parameters that are common to the two models gave 

additional information about model structure. Posterior distributions (Figure 3) are not significantly 

different for the majority of the parameters, however the parameters that assumed significantly 

different marginal posterior distribution between the two model versions were the parameters at which 

the output variables are most sensitive (i.e.,  alpha, MinASW, Topt, fullCanAge and FR). Therefore, the 

new autotrophic model produced strong changes to the 3PGN structure, because the autotrophic 

respiration parameters, in particular Y for 3PGN and rw for 3PGN*, have strong influence on the model 

output variables.  

In conclusion, our results supported the new version of 3PGN. It should be noted, however, that 

models are always incorrect because they are a simplification of real processes and model 

performances cannot be discussed in an absolute manner (Oreskes et al., 1994). Thus, our analyses and 

probabilities of correctness must be considered as indicative information towards plausible model 

structures (van Oijen et al. 2011). 
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Conclusions 

 In this work, different methods (i.e., BC, BMC, MSE-decomposition and the Morris method) 

were used in combination for the first time to evaluate improvements in the structure of a process-based 

model. Our results showed that the new version of the 3PGN model, with the new algorithm for 

autotrophic respiration based on maintenance and growth respiration, has a higher conditional 

probability of being correct. Overall, the three operations of the Bayesian framework (Bayesian 

calibration, Bayesian model comparison and the analysis of model-data mismatch) in combination with 

the Morris method, allowed us to reduce uncertainties in parameters and outputs, and identify the 

weaknesses of the two 3PGN versions. Furthermore, the Bayesian approach allowed to identify the 

weaknesses and strengths of the dataset used, making possible the improvement and optimization of 

future data collection. 

 The analyses on model-data mismatch showed that both versions of the model are able to 

reliably predict average stand diameter at breast height, average stand height, stand volume and stem 

biomass. However, the models were unable to accurately predict foliage and root biomass, probably 

because the dataset was small and characterized by high uncertainty. Net ecosystem production was 

also not well predicted, because of uncertainty in the data but also due to model structural errors. 

 The efficiency of the MCMC algorithm should be enhanced to reduce the chain length and make 

the process less time consuming. In our study with process-based models rich in parameters, good 

convergence of all parameters is reached when the potential scale reduction (Ř) assumes values close to 

1.03. 
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Table 1a. Symbols, units, minimum and maximum values and prior distributions for the 3PGN 

and 3PGN* parameters calibrated for Eucalyptus globulus in Portugal. 

Parameter description Symbols Units Min Max Prior distr. 

Constant in the aboveground biomoss vs. height 

relationship 
aH ― 1.9 2.8 Normal* 

Canopy quantum efficiency alpha 
mol C * 

MJ
-1

 
0.04 0.08 Normal 

Canopy boundary layer conductance BLcond m*s
-1

 0.16 0.24 Uniform 

Power in the aboveground biomoss vs. height 

relationship 
bW ― 0 0.3 Weibull* 

Defines stomatal response to VPD CoeffCond Mbar
-1

 0.04 0.06 Uniform 

Basic density Density Mg*m
3
 0.36 0.54 Normal 

Convertion of fresh biomass to dry biomass dmC ― 0.45 0.55 Normal 

Value of fNutr when FR = 0 fN0 ― 0 0.5 Uniform 

Branch and bark fraction at age 0 fracBB0 ― 0.6 0.9 Normal 

Branch and bark fraction for mature stands fracBB1 ― 0.12 0.18 Normal 

Age at canopy cover fullCanAge years 2 5 Normal 

Litterfall rate at t = 0  gammaF0 month
-1

 0.0008 0.0012 Normal 

Maximum litterfall rate gammaFx month
-1

 0.0216 0.0324 Normal 

Humification coefficient hc ― 0.1 0.15 Uniform 

Extinction coefficient for absorption of PAR by 

canopy 
k ― 0.4 0.6 Normal 

Days of production lost per frost day kF days 0 3 Normal 

Decomposition rate constant for the ‘‘young and 

labile’’ pool per month 
klmax month

-1
 0.006 0.01 Uniform 

Decomposition rate constant for the ‘‘old’’ pool komax month
-1

 0.0004 0.0006 Uniform 

Decomposition rate constant for the ‘‘young and 

refractory’’ pool per month 
krmax month

-1
 0.03 0.05 Uniform 

LAI for maximum canopy conductance LAIgcx ― 2.664 3.996 Uniform 

LAI for maximum rainfall interception LAImaxIntcptn ― 0 0.05 Uniform 

Value of m when FR = 0 m0 ― 0 0.2 Uniform 

Maximum stand age used in age modifier MaxAge years 80 200 Uniform 

Maximum canopy conductance MaxCond m*s
-1

 0.016 0.024 Uniform 

Maximum proportion of rainfall evaporated from 

canopy 
MaxIntcptn ― 0.12 0.18 Uniform 

Power of relative age in function for fAge nAge ― 2 5 Uniform 

Foliage–stem partitioning ratio @ D = 2 cm pFS2 ― 0.8 1.2 Uniform 

Foliage–stem partitioning ratio @ D = 20 cm pFS20 ― 0.12 0.18 Uniform 

Maximum fraction of NPP to roots pRn ― 0.2 0.3 Uniform 

Minimum fraction of NPP to roots pRx ― 0.64 0.96 Uniform 

Q10 Q10** ― 1 3.5 Normal 

Relative age to give fAge = 0.5 rAge ― 0.76 1 Uniform 

Foliage biomass respiration rate rf**   0.0005 0.02 Gamma 

Growth respiration rate rg**   0.2 0.3 Normal 

Average monthly root turnover rate Rttover month
-1

 0.012 0.018 Gamma 

 

Table(s)



Table 1a. (Concluded) 

Parameter description Symbols Units Min Max Prior distr. 

Woody biomass respiration rate rw**   0.001 0.06 Gamma 

Woody biomass respiration rate rw**   0.001 0.06 Gamma 

Specific leaf area at age 0 SLA0 m
2
*kg

-1
 10.5 14 normal* 

Specific leaf area for mature leaves SLA1 m
2
*kg

-1
 3.7 4.4 normal* 

Constant in the aboveground biomass vs. diameter 

relationship 
StemConst ― 1.15 1.4 gamma* 

Power in the aboveground biomass vs. diameter 

relationship 
StemPower ― 0.5 0.55 gamma* 

Moisture ratio deficit for fq = 0.5 SWconst ― 0.63 0.77 normal 

Power of moisture ratio deficit SWpower ― 8.1 9.9 normal 

Age at which fracBB = (fracBB0 + fracBB1)/2 tBB years 1.6 2.4 normal 

Age at which litterfall rate has median value tgammaF years 9.6 14.4 normal 

Maximum temperature for growth Tmax ºC 32 48 normal 

Minimum temperature for growth Tmin ºC 6.8 10.2 normal 

Optimum temperature for growth Topt ºC 12.8 19.2 normal 

Age at which specific leaf area = (SLA0 + SLA1)/2 tSLA years 1.2 2 normal* 

Ratio NPP/GPP Y*** ― 0.376 0.564 normal 

            

* distributions fitted over posterior distributions     

 

    

** only 3PGN* parameters           

*** only 3PGN parameters           

 

  



 

 

Table 1b. Symbols, units, minimum and maximum values and prior distributions for the 3PGN 

site variables used in this work. 

 

Site variable description Symbols Units min max 
prior 

distr. 

Fertility rating for the Espirra site FR_espirra ― 0.4 0.7 normal 

Fertility rating for the ferc site FR_ferc ― 0.4 0.7 normal 

Fertility rating for the ferf site FR_ferf ― 0.6 1 normal 

Fertility rating for the feri site FR_feri ― 0.4 0.7 normal 

Fertility rating for the ferif site FR_ferif ― 0.6 1 normal 

Maximum available soil water for the Espirra forest MaxASW_espirra mm*ha
-1

 120 180 uniform 

Maximum available soil water for the Furadouro 

experiment 
MaxASW_fer mm*ha

-1
 120 180 normal 

Minimum available soil water for the Espirra forest MinASW_espirra mm*ha
-1

 0 60 uniform 

Minimum available soil water for the Furadouro 

experiment 
MinASW_fer mm*ha

-1
 0 40 normal 

Initial carbon in the old pool O_C_i kg*ha
-1

 30 50 normal 

Tree density at the Espirra site StemNo_espirra trees*ha
-1

 1650 1750 normal 

Tree density at the ferc site StemNo_ferc trees*ha
-1

 1060 1120 normal 

Tree density at the ferf site StemNo_ferf trees*ha
-1

 1060 1120 normal 

Tree density at the feri site StemNo_feri trees*ha
-1

 1060 1120 normal 

Tree density at the ferif site StemNo_ferif trees*ha
-1

 1060 1120 normal 

Initial foliage biomass WF_i kg*ha
-1

 0.01 0.2 uniform 

Initial root biomass WR_i kg*ha
-1

 0.001 0.1 uniform 

Initial stem and branches biomass WS_i kg*ha
-1

 0.001 0.05 uniform 

Initial carbon in the young labile pool Yl_C_i kg*ha
-1

 8 12 normal 

Initial carbon in the young refractory pool Yr_C_i kg*ha
-1

 0 10 uniform 



Table 2. Results of the Bayesian model comparison of 3PGN and 3PGN*. The table shows the 

log-transformed integrated likelihood values for the prior BMC and post BMC. 

  

 

3PGN 3PGN* 

prior BMC -640.6 -638.94 

post BMC -71.58 -65.71 



Table 3. Comparison of data with model outputs: squared correlation coefficient (r²) and 

normalized root mean square error (NRMSE). The table shows the distribution means of statistics 

induced by prior and posterior parameter distributions. In bold: posterior values that are improvements 

over the prior (r increased, NRMSE reduced). 

    3PGN 3PGN* 

Var. Statistic Prior Post. Prior Post. 

PE 

r² 0.11 0.25 0.15 0.26 

slope 0.27 0.47 0.33 0.52 

NRMSE 118.4 101.8 121.3 109.3 

D 

r² 0.89 0.98 0.91 0.98 

Slope 1.51 0.88 1.24 0.9 

NRMSE 124.7 20.4 91.6 14.8 

H 

r² 0.96 0.93 0.92 0.93 

slope 1.65 1.25 1.38 1.29 

NRMSE 78.9 33.2 44.7 31.2 

WF 

r² 0.92 0.71 0.83 0.68 

slope 1.36 0.89 1.03 0.88 

NRMSE 52 55.4 33.1 57.2 

WR 

r² 0.99 0.95 0.96 0.93 

slope 1.5 0.83 1.06 0.94 

NRMSE 28 38.4 17.3 31.3 

WS 

r² 0.94 0.97 0.91 0.96 

slope 3.53 1.09 2.15 1.15 

NRMSE 86.2 19.5 63.4 21.5 

V 

r² 0.94 0.98 0.95 0.98 

slope 3.74 1.06 2.14 1.1 

NRMSE 89.3 14 63.9 17.1 

 

 



Figure 1a. Plots of σ vs. μ* of the five highest sensitive parameters for foliage (WF), root (WR) 

and stem (WS) biomasses for 3PGN and 3PGN* outputs at age 4 (circles), 8 (triangles) and 12 (cruces). 

Figure(s)



 Figure 1b. Plots of σ vs. μ* of the five highest sensitive  parameters for diameter at breast 

height (D), average stand height (H) and stand volume (V) for 3PGN and 3PGN* outputs at age 4 

(circles), 8 (triangles) and 12 (cruces). 



 

Figure 1c. Plots of σ vs. μ* of the five highest sensitive parameters for the annual net ecosystem 

production (aPE) for 3PGN and 3PGN* outputs at age 4 (circles), 8 (triangles) and 12 (cruces). 



Figure 2. Prior (grey histograms) and posterior (black histograms) distributions of log-

likelihoods for the two model versions, for the seven categories of output variables. 



    Figure 3a. Marginal prior distributions (continuo  us line) and margina l posterior distributions 

of 3PGN (dashed line) and 3PGN* (dotted line). Parameters are grouped as respiration parameters (group 

1), allometric parameters (group 2), allocation parameters (group 3), turnover parameters (group 4), light 

use efficiency and light interception parameters (group 5). 



Figure 3b. Marginal prior distributions (continuous line) and marginal posterior distributions of 

3PGN (dashed line) and 3PGN* (dotted line). Parameters are grouped as water stress parameters (group 

1), volume and density parameters (group 2), age stress parameters (group 3) and soil parameters (group 

4).  



Figure 3c. Marginal prior distributions (continuous line) and marginal posterior distributions of 

3PGN (dashed line) and 3PGN* (dotted line). Parameters are grouped as temperature and frost stress 

parameters (group 1), fertility parameters (group 2), site parameters (group 3).  



Figure 4. Decomposition of the mean squared error associated with the modes of the prior (pr) 

and posterior (pt) parameter distributions, for 3PGN and 3PGN*. In squared brackets are reported the 

number of data for each variable. 
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