

Quarry Fines Minimisation

Clive Mitchell

Industrial Mineral Specialist

Kingsley Dunham Centre Keyworth Nottingham NG12 5GG Tel 0115 936 3100

© NERC All rights reserved

Outline of Presentation

- What are Quarry Fines?
- Why Minimisation?
- Statistics
- What Industry Thinks
- Good Practice for Low Fines
- Case Study
- Conclusions

What are Quarry Fines ?

- **BS EN Fine aggregate** <4mm (<2mm for asphalt)
- **BS EN Fines** inherent material < 0.063mm

(<63 microns, equivalent to width of human hair)

- **BS EN Filler** material < 0.063mm added to products
- 'Quarry fines' (also known as 'dust' or 'fines')
 Material finer than 4mm (or 3.35 / 3 / 5mm)
- As distinct from nuisance dust (which forms part of it)

Quarry fines stockpile, Gritstone Quarry

How are Fines Formed?

- Extraction drilling & blasting, haulage/ transfer
- **Primary crushing** scalping pre- or post-crushing, primary surge pile
- Secondary crushing (& further stages) cone & impact
- **Screening** production of aggregate products inc. quarry fines, recirculation/ recrushing of oversize & coarse aggregate
- **Stockpiling** uncovered or covered
- Handling/ distribution/ transportation
- Fines/ dust management

How are fines formed: 2

- Fines a function of crushing, mineralogy, texture, breakage characteristics & size distribution
- Fine grained and flaky material tends to produce more fines than coarse grained and blocky material
- Limestone inherently softer, typically 20 25% fines
- Gritstone demand cubical high-PSV, 35 40% fines
- Igneous & metamorphic wide range, typically hard & durable, 10 - 30% fines

Quarry fines produced at each stage

Production Stage	Quarry fines produced by hard rock quarries		
Primary crusher	Igneous Limestone Gritstone	3 – 6% (Jaw) to 10-15% (Gyratory) 6 – 7% (Jaw) to 20% (Impact) 1 – 2% (Jaw) to 15 – 20% (Jaw & Gyratory)	
Secondary crusher	Igneous Limestone Gritstone	10 – 23% (Cone) <10% (Cone) to <20% (Impact) 4 – 5% (Jaw & Cone)	
Tertiary crusher (& further)	Igneous Limestone Gritstone	5 – 30% (Cone) to 40% (Impact) < 20% (Impact) to 40% (Hammer mill) ~15% (Cone) to 40% (Impact)	

Primary crusher (Gyratory), Granite Quarry

Scalpings stockpile, Gritstone Quarry

Primary surgepile, Limestone Quarry

Quarry fines stockpile, Limestone quarry

Why minimisation ?

- Changes in market: Increasing stocks
- **Aggregate Levy:** Discouraged use of quarry fines in favour of cheaper alternatives
- **Market trends:** Thin (re)surfacing of roads & demand for finer aggregate (14 & 10mm) means increased fines production
- Quarry fines utilisation: Often involves finding new markets, mostly used in asphalt & concrete products
- **Minimising fines production:** Prevention rather than cure, optimising resource use

Crushed gravel, Sand & Gravel quarry

Statistics

Defra statistics mineral waste : saleable product ratio 1 : 9

www.defra.gov.uk/environment/statistics/waste/wrmineral.htm

Environmental Protection

Contact us | Access to information | News | Site A-Z | Search

BGS estimates of quarry fines

- 1:9 for Sand & Gravel (<0.063mm)
- 1:4 for Limestone and Igneous & Metamorphic
- 1:3 for Sandstone

UK Minerals Yearbook 2007 * free download *

www.mineralsuk.com/britmin/ukmy2007.pdf

United Kingdom Minerals Yearbook 2007

© NERC All rights reserved

Production, Waste & Fines

Rock Type	Production (Mtpa, 2007e)	Mineral Waste ¹ (Mtpa, 2007e)	Quarry Fines ² (Mtpa, 2007e)
Limestone	95.0	10.6	23.8
Igneous + Metamorphic	57.0	6.3	14.3
Sandstone	19.0	2.1	6.3
Sand + Gravel	93.0	10.3	10.3
Total	264.0	28.4	52.6

1 = Defra : Waste : Product ratio of 1 : 9; 2 = UKMY: Fines : Product ratio 1 : 9 for Sand + Gravel (<0.063mm),

1:4 for Limestone, Igneous + Metamorphic and 1:3 for Sandstone; 2007e = estimated production

© NERC All rights reserved

Quarry fines stockpile, Gritstone Quarry

Natural dust suppression, Gritstone Quarry

What the industry think

- Quarry fines production & stockpiling usually known
- How much at each production stage usually a guess
- More focus on 'nuisance' dust control
- Many produce too much (~65%), some have a balance (~25%) & a few can't meet demand (~10%)
- Minimisation a secondary consideration
- Process audits & optimisation reviews are apparently rare
- Rely on equipment manufacturer advice

Working benches, Gritstone Quarry

Covered dust stocks, Gritstone Quarry

Good Practice for Low Fines

- Modern crusher technology with the correct process
- Size reduction ratio less than 6:1
- Choke feeding of jaw & cone crushers will minimise top size of product
- Lower crusher speed will lead to lower fines generation
- Evenly distributed feed to cone & impact crushers
- Screening between crushing stages
- Open circuit crushing
- Proper training of operators

http://www.aggdesigns.com/Jaw-Crusher-info.htm

Cone Crusher

http://www.aggdesigns.com/Cone-Crusher-info.htm

Case Study: Gritstone Quarry

- **Operation**: Gritstone quarry in SW England
- **Market** : High PSV roadstone aggregate, 10mm mainly
- Production: Four-stage crushing, Jaw + Cone Crushers, aim for cubical aggregate, 38% fines
- Process optimisation: Process audit to determine 'mass balance'
- **Simulation**: Three stage crushing inc. VSI, particle shape maintained with 27% fines (potential increase in filler fines a concern)
- Alternative: Screening aggregate after tertiary stage

Copyright Metso Minerals. All rights reserved.

Gritstone quarry case study

Business Case

- Energy input into aggregate crushing
- Every kilowatt hour (kWh) electricity costs 6.17pence (BERR 2008 Q2) with 0.523kg CO₂ emission (Defra)
- For each 10% reduction in fines there is 2 to 3% decrease in energy costs (& CO₂ emission)
- Quarry fines minimisation of 25 40% is realistic
- Reduction in crushing cost & CO₂ emission of greater than 10% would be possible

- Quarry fines are a problem
 In 2/3 of quarries, stockpiles are growing
- Performance assessments are needed Process audits can highlight production changes
- More efficient resource use Minimisation = optimisation of resource use
- Bottom line

Reduced fines = lower cost + lower CO_2 emission

Thank you for listening

Contact details

Clive Mitchell

British Geological Survey

Keyworth, Nottingham, NG12 5GG

Tel. +44(0)115 936 3257

Fax. +44(0)115 936 3520

Email: cjmi@bgs.ac.uk

Web: www.bgs.ac.uk/mineralsuk

