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1.Introduction
Forecasting of river flows at seasonal time scales, defined as lead times of 1 to 6 months, is an area of growing 
research interest. This is because seasonal forecasts of river flows are of practical use in informing water 
management decisions and preparing to mitigate hydrological extremes (floods or droughts), which may have major 
societal and economic impacts. The fundamental aim of our work is to improve the accuracy achieved of the 
seasonal forecasts of river flows.  

The aim of this research is to compare the potential skill of river flow forecasting using (1) Global Climate Model 
(GCM) output in the form of reanalysis data and (2) downscaled precipitation data from GCMs.

This poster research focuses upon the River Dyfi catchment in West Wales, UK (see section 3). The work 
undertaken includes the calibration of the Probability Distributed rainfall-runoff Model (PDM), and the input of GCM 
reanalysis data and downscaled reanalysis data into the PDM rainfall-runoff model.

2. The PDM Rainfall-Runoff model
The Probability Distributed Model (PDM) is a lumped rainfall-runoff model (based on probability distributed    
moisture stores) that transforms rainfall and potential evaporation to river flow at the basin outlet. A schematic  
of the PDM structure is shown in figure 1 (PDM User Guide, 2005).

Figure 1:  The Probability Distributed Model (PDM)

3. Data
The River Dyfi basin was chosen as a test case as it has limited anthropogenic influence, hence the climate-flow  
signal should be stronger than a basin with greater human impact. It is a temperate basin, and relatively small with 
an area of 471.3 km2. In figure 2 the rain gauges used to calculate the catchment-averaged rainfall are in red, and 
the dark brown colour show elevations higher than 600 metres. Daily catchment-averaged rainfall, monthly 
catchment-averaged potential evaporation (PE) and daily river flow data were used to calibrate the PDM. PDM 
was calibrated for 01/05/1980 – 30/04/1990, and evaluated for 01/05/1991 – 30/04/2001.

ERA-40 data were used as input in the PDM, which is a 45 year reanalysis of meteorological observations 
produced by the European Centre for Medium-Range Weather Forecasts (ECMWF). The ERA-40 data was 
available at 2.5˚ x 2.5˚, and at a reduced 1.5˚ x 1.5˚ grid resolution. 

Figure 2: The location of the river Dyfi basin in Great Britain.

4. Methods
1. ERA-40 data

The stratiform and convective precipitation and snowfall were summed daily for the two grid points nearest the Dyfi
catchment (52.5˚N 5˚W and 52.5˚N 2.5˚W for 2.5˚ resolution; 52.5˚N 4.5˚W and 52.5˚N 3˚W for 1.5˚ resolution). 
These rainfall time series were then run directly through the PDM model, whilst the PE data was left unchanged from 
the model calibration. The grid point from which the precipitation explained the highest proportion of river flow in the 
PDM was the westernmost point (52.5˚N 5˚W and 52.5˚N 4.5˚W for 2.5˚ and 1.5˚ resolution respectively), and these 
two grid points were used for the downscaling procedure.

2. Downscaling technique

Owing to the coarser resolution of the ERA-40 data in comparison with the spatial scale of the river basin, the 

Statistical Downscaling Model (SDSM) Version 4.1 was utilised to produce rainfall data at the catchment scale. The 
key process when using SDSM is the identification of empirical relationships between the local scale predictand 
(rainfall) and regional scale predictors. A Calibrate Model operation fitted the best multiple regression equation for 
the whole year between the predictand and set of predictors, and a stochastic Weather Generator produced an 
ensemble of 20 synthetic daily rainfall series. Three predictor variables explained best the rainfall and they were the 
Mean Sea-level Pressure (MSLP), 850hPa Specific Humidity (q) and 850hPa zonal velocity (u). These variables 
could be considered as independent, as shown in figure 3.

The ability of GCM and downscaled GCM rainfall time series to reproduce river flow was assessed through the 
percent exceedance flow (QN). For example the Q5 value is the river flow which is equalled or exceeded 5% of the 
time (high flow index), and the Q95 value is the river flow which is equalled or exceeded 95% of the time (low flow 
index). 

6. Conclusions and Future Work
The background to this work was to compare the potential skill of raw versus downscaled GCM output for simulating river flow. 
The results at both tested resolutions highlighted that by using ERA-40 precipitation data as direct input to the PDM rainfall-
runoff model, the simulated river flow substantially underestimated the observed river flow in the Dyfi basin. This is likely to be 
due to the reanalysis data's inability to resolve catchment-scale (or GCM sub-grid scale) atmospheric processes such as 
orographic enhancement of rainfall over the Welsh Mountains. The direct use of GCM output as input to a rainfall-runoff model is 
thus not recommended due to its poor ability in reproducing observed river flows. 

To address the relatively poor performance of the GCM data, a statistical downscaling technique (SDSM) was used. The 
downscaling process added skill to the river flow simulations for ERA-40, and more particularly for ERA-40 1.5˚ resolution. This 
improvement is significant for all parts of the river regime (from high flows such as Q5 to low flows such as Q95).

This research suggests that much improvement is added to GCM output when combining them with statistical methods. In the 
future we intend to test the downscaling method used here on seasonal forecasts from GCMs to assess how combining 
dynamical with statistical techniques could forecast river flow in the UK.
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5. Results

Figure 4: A portion of the PDM calibration period (left), and evaluation period (right).

Figure 5: PDM simulated river flows for the calibrated flow (red line), ERA40 1.5˚ resolution input (green line) and the 20 ensembles generated 

by the downscaling process (grey lines) for (a) a dry period and (b) a wet period. The flow duration curves for 1.5˚ resolution is shown in (c), 

and table (d) displays statistics on the different data input. 

Precipitation from both the ERA-40 resolutions result in underestimated modelled flows compared to the observed; and this is 
highlighted by the very large negative biases in the Q5, Q95 and Q98 in table 1.5 (d). 

When the ERA-40 rainfall time series is run through the PDM, the simulated flow (green line) is lower than when the observed 
series is input (red line). The ERA-40 data does represent the number of wet days (wet day is defined here as > 0 mm) 
accurately. However, the average rainfall intensity from ERA-40 on the wet days is under half of what the observations suggest. 
This implies that the bias in the ERA-40 rainfall maybe due to the underestimation of the rain amount which falls in the events, 
rather than the rainfall occurrence. 

The downscaling process generated different daily rainfall time series, and this on average increases the R2 value by 0.15 and 
0.03 for 1.5˚ and 2.5˚ resolution respectively. Figure 1.5 (c) shows the improvement in using downscaled series versus 1.5˚ 
resolution ERA-40 data in the flow duration curves. The biases between the percent exceedance flows are reduced substantially 
for the downscaled ensemble mean in comparison with the direct use of ERA-40 data in the PDM. 

1.5 Resolution Dry Period
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1.5 Resolution Wet Period
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Figure 3: Correlation between the variables used in the regression model.

Flow Duration Curves
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