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Summary1

In forensic soil science it is sometimes necessary to address a question of the form: ‘what2

is the most likely place of origin of this soil material’, where the possible provenances3

are in a large area. This ‘intelligence’ problem may be distinguished from the ‘evidence’4

problem where we need to evaluate the grounds for believing that some soil material is5

derived from one site rather than another. There is interest in the use of soil databases6

to solve intelligence problems. This paper proposes a geostatistical method to tackle the7

intelligence problem. Given data on a sample of unknown provenance, and a database8

with the same information from known sites, it is possible to define a likelihood function,9

the argument of which is location in space, which is the likelihood that the sample is10

from that location. In this paper we show how an approximation to this likelihood can11

be computed, using a principal component transformation of the data and disjunctive12

kriging.13

The proposed likelihood function is tested using a geochemical database on the soil14

of the Humber Trent region of north-east England. This shows that the function is a15

useful way to make a statistical prediction of the provenance of a soil sample. The region16

can be stratified according to the value of the likelihood function. A validation data set17

showed that if we defined a stratum with the top 4.5% of values of the likelihood function,18

then there was a 50% probablity that it included the true provenance of the sample, and19

there is a 90% probability of finding the true provenance of the sample in a stratum with20

the top 30% of values of the likelihood function. Note also that the spatial likelihood21

function could be integrated with other sources of information on the likely provenance22

of the sample by means of Bayes law.23

We conclude that this approach has value for forensic problems. The main difficulty24

is how to define the geostatistical support of the forensic specimen, and the reliability25

of analytical data on relatively small forensic samples, but this is a generic problem for26

forensic geoscience.27
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Introduction28

‘You have come up from the south-west, I see.’29

‘Yes, from Horsham.’30

‘That clay and chalk mixture which I see upon your toe caps is quite distinc-31

tive’.32

Sir Arthur Conan Doyle, The Five Orange Pips.33

Since most of the earth’s surface is covered by soil it is not surprising that there is a34

long-standing interest in the use of soil evidence for forensic purposes (Pye, 2007). In this35

paper we consider the case when soil has been found on a vehicle, a tool or some other36

exhibit, and the aim of the forensic investigator is to identify the likely provenance of this37

soil, or to exclude potential provenance regions from an investigation. Since the soil is38

very variable at all spatial scales neither the matching of a specimen to a provenance, nor39

the exclusion of possible provenances, which forensic scientists often wish to achieve, can40

usually be absolute. For this reason we set the task of inferring forensic intelligence from41

soil data in a statistical framework. This may be problematic for presenting evidence42

in court, but may be useful for forensic intelligence (i.e. as a guide to police during an43

investigation).44

Forensic scientists have to make inferences of this kind for real problems. For ex-45

ample, in 2000 three people were reported missing in South Australia. Their vehicle was46

later recovered; a shovel was in the boot with a lot of soil on it. Examination of the soil,47

its chemical properties, lithology, mineralogy and organic status, allowed soil scientists to48

narrow down its likely provenance, and this led directly to the discovery of the remains49

of the missing persons in a quarry (CAFSS, 2006).50

The problem of how best to determine the provenance of soil material for forensic51

purposes is a matter of considerable interest. For example, Rawlins et al. (2006) conducted52

a study in which four experts used different technologies (X-ray diffraction, scanning53
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electron microscopy, palynology and molecular characterization of organic matter) to54

examine soil specimens from different settings and identify their likely provenance. Two55

sites, with distinctive vegetation and parent material, were easily characterized, but a56

third was not.57

An alternative approach would be to compare forensic specimens with existing soil58

databases. In the UK, and in many European countries, there are substantial databases59

on the soil which have been collected to characterize soil resources, and as a baseline60

to monitor their quality (e.g. McGrath & Loveland, 1992). This raises the question of61

whether a comparison of soil material from a forensic exhibit with soil in such a database62

would allow the provenance of the forensic specimen to be narrowed down to a useful63

degree. Soil scientists have made substantial use of such databases to undertake classical64

geostatistical inference about the soil (spatial prediction). In such inference we start65

with a body of data on the soil at known discrete sample points, and proceed to predict66

soil properties at unsampled points. Locations are given at which the values of the soil67

properties are unknown. If these unsampled points consitute a grid, then the predictions68

can be used to produce an isarithmic map of soil properties (Burgess & Webster, 1980).69

In addition we can make other inferences at unsampled sites, we might compute the70

probability, conditional on our data, that the true value of a variable at some site exceeds71

a regulatory threshold. This can be done by disjunctive kriging (Matheron, 1976).72

The inference for forensic intelligence is rather different. Again, we have the database,73

on which our inference will be conditioned, but this time we know the values of key soil74

variables from a specimen of unknown provenance. What we want to do is to predict75

that provenance, or alternatively, to exclude sites of potential provenance, as a guide to76

investigators. We use ‘prediction’ in this paper in a statistical sense. A prediction of an77

unknown variable is value that is inferred, conditional on some data and some statistical78

model, that is ‘best’ by some appropriate criterion. Such a prediction has an attendant79

uncertainty, which may be quantified, and should not be treated as an unconditional80
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statement of fact. It is our contention in this paper that a geostatistical inference of the81

provenance of a soil sample, conditional on a spatial database, is possible via a spatial82

likelihood function. We present this likelihood function, and suggest how it might be83

approximated in practice. We then use an existing geochemical database on the soil to84

illustrate how the spatial likelihood function might be applied.85

Theory86

The concept of a spatial likelihood function.87

Let S be a random variate (e.g. a set of geochemical soil properties), let s (X) be a set of88

observations of this variate at locations in X, let x0 be some unsampled location and let89

φ be a vector of (cross) covariance parameters for S. These parameters may be estimated90

from the data s (X).91

The conditional probability density function (pdf) for S at x0 is92

P {S |s (X) ,x0,φ} . (1)

Now, if we consider an observed variate, of unknown provenance, s′ we could evaluate93

the probability density at any x0 given the data and covariance model. If we think of94

this conditional probability density as a function of location, conditional on a particular95

observation, it is a likelihood function:96

L{x0|s (X) , s′,φ} = P {s′ |s (X) ,x0,φ} . (2)

If we evaluated this likelihood function over a grid of locations it could be used to make97

inferences about the provenance of the soil sample. For example, a prediction of its98

provenance might be the location where the likelihood is largest. Alternatively, we might99

integrate the spatial likelihood function with a spatial prior probability density function100

for the provenance of the sample (which might reflect other evidence which is available)101

and then renormalize the result to obtain a spatial posterior probability density function.102

Again, while a prediction of the provenance could be obtained as the site where the103
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posterior probability density is largest, a map of the posterior probability density will104

be of most value for intelligence purposes, indicating those regions where searches or105

other investigations should be focussed. However, the evaluation of the spatial likelihood106

function is not a trivial task, and we now consider how it could be done in practice.107

Distributional assumptions.108

In geostatistical prediction we do not generally evaluate the full conditional pdf at some109

location x0. Rather we estimate the best linear unbiased predictor, which is the mean110

of the conditional pdf if the spatial (cross) covariance is known correctly. In the simple111

cokriging case (where the expectation of S is assumed to be known and constant, the112

cross-covariances of the kriging estimates are the covariance matrix of the conditional113

pdf, so, subject to assumptions of normality, the conditional pdf could be specified.114

In practice we do not proceed in this way when conditional probabilities for a random115

variable are required at unsampled locations, since our conclusions will be sensitive to the116

distributional assumption which is often not plausible. This is why the methods of non-117

linear geostatistics have been developed (Rivoirard, 1994). These entail simple kriging118

prediction of non-linear transforms of the data, such as the indicator transform (indicator119

kriging) or a Hermite transform (disjunctive kriging). We now consider the latter in more120

detail.121

Disjunctive kriging (DK) entails the assumption that our data are a realization of a122

process with a second-order stationary bivariate distribution. The assumption of second-123

order stationarity means that the covariance function exists and that the variogram is124

therefore bounded. It is also assumed that the data are from a Gaussian random process.125

Since data may often not resemble a Gaussian random variable the first step in DK is126

to transform the data with Hermite polynomials, which Rivoirard (1994) describes in127

more detail. The Hermite coefficients are then kriged to target locations of interest. A128

prediction of the original soil variable, S̃(x), is obtained from these and the conditional129

probability that S(x) occurs in specified intervals. Here we assume that the range of130
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a variable is divided into bins, and denote by ψk (x0) the probability that S(x0) is in131

the kth bin. Note that if we develop this approach, we obtain not a probability density132

function, but rather probabilities for discrete intervals of the variables. This is one sense133

in which the proposal developed in this paper provides us with an approximation to a134

spatial likelihood function.135

The problem of many variables.136

We have described disjunctive kriging above with respect to predicting a single variable,137

but in a forensic context we will probably want to evaluate a spatial likelihood function138

that is based on a random variate which represents several soil properties. Disjunctive139

cokriging is possible (e.g. Finke & Stein, 1994). However, all cokriging requires that we140

can model the spatial covariation of a variate in terms of an admissible model such as141

the linear model of coregionalization, LMCR (Journel & Huijbregts, 1978). While the142

LMCR can be fitted automatically (Lark & Papritz, 2003) which means that it is feasible143

to fit it for variates with many dimensions, it does impose strong assumptions of linearity,144

and as a result the fitted covariance matrices for the nested components of the model145

(coregionalization matrices) may often be positive semi-definite only, which represents146

the best admissible solution, but clearly implies some ‘strain’ in the fit of the model147

(since it implies that some of the variates are perfectly correlated). We would therefore148

prefer to avoid cokriging techniques that require these constraints.149

A proposal.150

We therefore propose the following approach.151

First, we transform our m-variate data set, s (X) , = {s(x1), s(x2), . . .}, to its m152

principal components, which we denote by a (X) , = {a(x1), a(x2), . . .}. We propose that153

the principal components analysis (PCA) is based on the sample correlation matrix of154

s (X) so that the transform is independent of the units in which the original variables are155

expressed. Any new vector, s′ (x0) can then be transformed to a′ (x0), a projection of the156

vector onto the same rotation of the original variables computed from the correlation ma-157
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trix of the data s (X). The principal components are uncorrelated, and so we will assume158

that they are a realization of m mutually independent random variables, A1, A2, . . . , Am.159

By reference to the eigenvalues from the PCA we can identify how many of the principal160

components are needed to represent some adequate proportion of the variation of s (X),161

we assume that m′ ≤ m are selected.162

The next step is to undertake DK estimation of the m′ selected principal components163

at a set of target sites. We divide the range of values of each component into intervals, so164

by DK we can estimate for any unsampled site, x0, a set of probabilities: ψi,k (x0) , i =165

1, 2, . . . ,m′; k = 1, 2, . . . , Ki, where ψi,k (x0) denotes the probability that Ai (x0) is in166

the kth inteval for the ith principal component out of Ki such intervals. Note that167

the intervals are non-overlapping and cover the full range of values so that, for any i,168 ∑Ki

k=1 ψi,k (x0) = 1.169

We now consider a sampled variate, s′ of unknown provenance. First, we transform170

it to a vector in the principal component space, a′. For each of the m′ principal com-171

ponents we can then identify the interval in which the corresponding variable in a′ falls,172

we denote this interval by the index k̂. On the assumption that the random variables,173

A1, A2, . . . , Am′ are mutually independent, the approximate spatial likelihood function174

at x0 for observed variate s′ is then computed as:175

L̆ (x0|s′) =
m′∏
i=1

ψi,k̂ (x0) , (3)

where the dependence of this likelihood on the data, on the covariance models used to176

compute the DK estimates and on the selected principal components is implicit.177

Case Study.178

In the case study we used soil geochemical data from the G-BASE project from179

across the Humber-Trent region of north-east England. These data were collected and180

are maintained by the British Geological Survey, and a large proportion of these data have181

been described in detail elsewhere (Rawlins et al., 2003). In a previous study Rawlins &182
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Cave (2004) used them to study geochemical variability of soils, and their implications183

for forensic problems. In summary, the data were obtained by a non-aligned sampling184

scheme. The strata were 2-km squares of the Ordnance Survey grid. Every second square185

was sampled at a random location. This gave 6411 sites in total. At each site five soil186

cores were collected from the centre and corners of a 20-m square; they were then bulked.187

The cores were 15 cm long and excluded surface litter. The bulked material was air-dried188

then seived and a 50-g subsample was ground. The total concentrations of 24 major189

and trace elements were determined in each sub-sample by wavelength dispersive XRFS190

(X-Ray Fluorescence Spectrometry).191

Rawlins & Cave (2004) concluded that, of the 24 elements determined on these192

sub-samples, 6 were not suitable for further analysis since many of the observations were193

below the detection limit of the XRFS system. We followed them in using the following194

18 determinations for our analysis, with major elements expressed as weight percent of195

their oxide: As, Ba, CaO, Co, Cr, Cu, Fe2O3, MgO, MnO, Mo, Pb, Rb, Sr, TiO2, U, V,196

Zr.197

We removed 1000 observations from the data set by simple random sampling. These198

were for later use as a validation subset. We then computed a principal components199

analysis of the correlation matrix of the remaining prediction data. Figure 1 shows a plot200

of the accumulated eigenvalues. We selected the first 7 principal components for further201

analysis, these account for 80% of the variation of the full data set between them.202

We then found a Hermite transformation of each of the principal components to203

a new normal variable, as described by Webster & Oliver (2007). We then computed204

empirical variograms of the new transformed variables and fitted models to them. Figure 2205

shows the variogram and fitted model for the transformed values of the first principal206

component. Note that the sill variance for the transformed variable should be 1.0. In207

this case the sill of the fitted model is slightly larger than this (1.04). The variogram is208

automatically rescaled to a sill of 1 by the disjunctive kriging program.209
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We then used disjunctive kriging to predict at the nodes of a square grid (interval210

1 km), and for each of our seven principal components, the conditional probability that211

the value of the principal component falls in each of 20 intervals. These intervals were212

defined by the 20-percentiles of the prediction data for each principal component. The213

code that we used was based on that of Yates et al. (1986).214

We then considered each of the 1000 validation data in turn. For each sample site215

we transformed its values for the 18 elements to the principal component scores of the216

PCA carried out on the prediction data set (i.e. we used the statistics of the prediction217

data, and the eigenvectors of their correlation matrix). We then approximated the spatial218

likelihood function for the sample at each node of the 1-km grid on which DK predictions219

were obtained. For each of the 7 principal components we identified the interval (out220

of 20) to which our validation sample corresponded. We then extracted the conditional221

probability for each of these seven intervals, and then computed the approximate spatial222

likelihood using Equation (??).223

Figure 3a shows the spatial likelihood function for one of the validation sample224

points. It also shows the actual location of this point, note that here the true location225

of the point coincides with the maximum of the spatial likelihood function. However,226

Figure 3b shows another case where the true value did not coincide with a marked peak227

in the spatial likelihood function. To give an overall evaluation of the predictions by the228

likelihood function we proceeded as follows. First, for each validation observation we eval-229

uated the spatial likelihood function at each of the 1-km grid nodes. We then identified230

the node which was closest to the actual location of the validation observation, and iden-231

tified that quantile of the set of likelihoods, qo to which the nearest node corresponded.232

We then computed the complement of this quantile (cq = 1 − qo), this will be zero if233

the nearest node is the one of maximum likelihood. We obtained cq for each validation234

observation, and then plotted the empirical cumulative distribution function of this vari-235

able for the whole validation set. These numbers may be interpreted as estimates, from236
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the random validation sample, of the probability of including the grid node nearest to237

the true provenance of a sample within a subset of nodes. This subset, which constitutes238

proportion cq of the full set, is designated as likely to contain the sample because the239

nodes have the largest values of the spatial likelihood function. The CDF of cq is plotted,240

with axis labels reflecting this interpretation, in Figure 4. The solid line shows this plot241

for spatial likelihoods computed with 7 principal components, and the dotted line shows242

the effect of reducing this to the first three principal components. The dashed line is the243

bisector, the expected form of this plot if the spatial likelihood is only randomly related244

to the true location of the observation.245

The plots show that the probability of including a site in a region designated from246

the spatial likelihood is always substantially larger than would be expected if the spatial247

likelihood were only randomly related to the provenance of a sample. In fact, when 7248

principal components were used to determine the spatial likelihood, then if we select the249

top 4.5% of nodes on spatial likelihood then there is a probability of 0.5 that one of250

these is the nearest node to the true provenance of the sample. This proportion has to251

be increased to 10.9% if we only use the first three principal components. To have a252

probability of 0.9 that the node nearest to the true sample is included, the designated253

area must be 30% when we use all 7 principal components.254

Discussion and Conclusions.255

The case study shows that the approximate spatial likelihood has considerable po-256

tential for predicting the likely provenance of a soil sample by comparison to observations257

in a spatial database. It should be noted that the likelihood function may only be part258

of the process of inferring the provenance of soil material. Other evidence might provide259

us with a prior spatial probability density function. This function might, for example,260

exclude the possibility that the soil material came from locations further than some max-261

imum distance from where the soil-covered exhibit was found. Integration of this prior262
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probability function with the likelihood function, and renormalization, would then pro-263

duce a posterior probability density function which reflects how the prior distribution is264

rationally modified by the soil evidence expressed in the spatial likelihood function.265

The case study also raises some practical issues. It is clear that there is substantial266

loss of information when we use just three principal components rather than 7. However,267

there are 18 components in total, and the plot of accumulated eigenvalues (Figure 1)268

shows that the variability explained by components increases more or less smoothly as269

the number of components is increased. It is therefore quite possible that using more270

than 7 principal components would give still better results. However, the process of271

computing Hermite transformations and modelling the variogram of many components is272

tedious, and is not readilly automated. Alternatively we might use indicator kriging to273

compute the conditional probabilities. This makes the transformation step quicker and274

easier; and although in theory DK retains more information, in practice little difference275

has been found between the estimated conditional probabilities by the two methods (Lark276

& Ferguson, 2004).277

Two further issues require careful consideration. First, in our case study all data,278

both those used to estimate the spatial likelihoods (representing a database), and those for279

which a prediction of provenance was obtained (representing forensic specimens), had been280

collected on the same spatial support. The support is the particular volume, shape and281

orientation of the soil sample; in this case a set of five cores from the centre and vertices of282

a square, sampled to 15 cm depth. In practice a soil database is likely to contain data with283

a support similar to this, but the support of the forensic specimen is essentially unknown,284

since it is collected by a suspect walking over bare soil, or transferred, for example, to285

the wheel-arches of a vehicle from the vehicle’s tyres. We distinguish, here, between286

the problem of unknown support and the problem of soil accumulation and mixing on287

an exhibit before, during and after a crime, although the latter is certainly important.288

Even if we could be confident that a soil specimen is from a single site the problem of289

12



support remains. Is it soil accumulated on the specimen while walking across the site,290

or is it a single clod? This problem of the unknown support of soil material on forensic291

exhibits is of more general importance to forensic science, and Rawlins & Cave (2004)292

drew attention to it. In the geostatistical context it means that the probabilistic model293

based on soil data from a standard support will not strictly apply to the forensic data of294

unknown support, and since the variability of measurements will decrease as the volume295

of the support increases, the uncertainty attached to our statements about the forensic296

material is likely to be an underestimate. Further work is needed on the implications of297

this, and on how we might tackle the problem. It might be possible to supplement a soil298

database with material collected on smaller supports, to provide a variance model that299

can then be regularized (Journel & Huijbregts, 1978) to represent variability on a larger300

support as deemed appropriate.301

Further, there is another potential limitation to practical implementation of the302

approach described in the case study. The quantity of soil retrieved from forensic items303

is typically very small; often less than 1 g. Significantly larger quantities of soil (ca. 12 g)304

are required for accurate, laboratory-based XRFS analyses reported in the case study. So305

in many real investigations it may not be possible to compare the geochemistry of the306

forensic sample to the database using the same analytical method. An alternative is to307

dissolve the sample in strong acid and analyse the resulting solution composition by ICP-308

MS (Inductively Coupled Plasma Mass Spectrometry); see Jarvis et al. (2004), but also309

note their reservations about ICP-MS when only small samples are available, and those of310

Bull et al. (in press). However, with the exception of the recent Tellus geochemical survey311

of northern Ireland (Tellus, 2007) we know of no other high-resolution soil geochemistry312

datasets, based on acid digest and ICP-MS analysis, which could be used as the spatial313

database. The general problem is whether we can reasonably compute a spatial likelihood314

function for a sample where the chemical analysis has been done by one method, which315

is different to the method used to obtain the spatial data.316
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To conclude, the spatial likelihood function seems to be a fruitful way of applying317

geostatistical inference to certain problems in forensic soil science. It provides a natural318

way to integrate soil with other evidence. The main problem, and one which is common319

to any forensic inference from soil, is how to relate the variability of reference material320

collected on a standard support to forensic specimens where the support is unknown and321

uncontrolled.322
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Figure Captions

Figure 1 Cumulative proportion of the trace of the correlation matrix accounted for by

eigenvalues of principal components of 18 elements from the Humber Trent GBASE

data.

Figure 2 Empirical (symbols) variogram of the Hermite-transformed values of the first

principal component of the Humber Trent data, with fitted double spherical model

(line).

Figure 3 Spatial likelihood functions for two validation observations. In each case a

cross indicates the actual provenance of the validation sample.

Figure 4 Estimations from the validation data of (ordinate) the probability of including

the 1-km grid node closest to the true provenance of a sample in a region determined

by including a specified proportion (abscissa) of sites as ordered by their spatial

likelihood on (solid line) 7 or (dotted line) 3 principal components of the Humber

Trent data.
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Figure 2.
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Figure 3.
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Figure 4.
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