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ABSTRACT

The deployment of a deep-diving long-range autonomous underwater vehicle (AUV) is a complex operation

that requires the use of a risk-informed decision-making process. Operational risk assessment is heavily de-

pendent on expert subjective judgment. Expert judgments can be elicited eithermathematically or behaviorally.

During mathematical elicitation experts are kept separate and provide their assessment individually. These are

then mathematically combined to create a judgment that represents the group view. The limitation with this

approach is that experts do not have the opportunity to discuss different views and thus remove bias from their

assessment. In this paper, a Bayesian behavioral approach to estimate and manage AUV operational risk is

proposed. At an initial workshop, behavioral aggregation, that is, reaching agreement on the distributions of

risks for faults or incidents, is followed by an agreed upon initial estimate of the likelihood of success of the

proposed risk mitigation methods. Postexpedition, a second workshop assesses the new data and compares

observed to predicted risk, thus updating the prior estimate using Bayes’ rule. This feedback further educates

the experts and assesses the actual effectiveness of the mitigationmeasures. Applying this approach to anAUV

campaign in ice-covered waters in the Arctic showed that the maximum error between the predicted and the

actual risk was 9% and that the experts’ assessments of the effectiveness of risk mitigation led to a maximum of

24% in risk reduction.

1. Introduction

An important category of missions for deep-diving

long-range autonomous underwater vehicles (AUVs) is

to carry out observations that cannot be conducted by

ships or any other instruments. Unlike smaller AUVs,

these large AUVs typically operate in uncertain envi-

ronments, well beyond acoustic range, for example,

under sea ice (Ferguson et al. 1999) or in complex sea-

bed terrain (McPhail 2009). In the Arctic, gathering in-

formation from beneath sea ice has long had scientific

(Dowdeswell et al. 2008; Nicholls et al. 2006; Jenkins

et al. 2010) and military (Rothrock and Wensnahan

2007) drivers. AUVs are being increasingly used for

polar missions, including for commercial (Kleiner et al.

Corresponding author address:MarioBrito, NationalOceanography

Centre, University of Southampton, EuropeanWay, Southampton

SO14 3ZH, United Kingdom.

E-mail: mario.brito@noc.ac.uk

NOVEMBER 2012 BR I TO ET AL . 1689

DOI: 10.1175/JTECH-D-12-00005.1

� 2012 American Meteorological Society



2011) and geopolitical purposes. The science community

has recognized that there is a substantial risk of not

completing missions and a risk of losing the vehicle

when operating in polar seas (Griffiths et al. 2003), and it

has developed mathematical methodologies to assess

and manage those risks (Brito et al. 2010). However,

when AUVs are to be used for data gathering in support

of geopolitical or commercial missions, the risks of not

completing missions or campaigns are likely to have

greater impact and repercussions than for science mis-

sions. Consequently, the risk analysis and management

processes need to be more robust, transparent, and de-

fensible.

This paper proposes extending the framework devised

previously for risk management of scientific AUV mis-

sions (Griffiths and Trembanis 2007). The motivation

came from the decision by the Canadian Government,

acting through Natural Resources Canada (NRCan), to

use AUVs as part of its data-gathering program in the

Arctic in support of its United Nations Convention on

the Law of the Sea (UNCLOS) submission (Crees et al.

2010). Article 76 allows countries to extend their juris-

diction beyond 200 nmi from the baselines if it is dem-

onstrated that the seabed and subsoil of the submarine

areas are ‘‘a natural prolongation of its land territory

to the outer edge of the continental margin’’ (United

Nations Oceans and Law of the Sea 2011). Countries

that aim to extend the territorial state beyond 200 nmi

must provide evidence, based on detailed mapping of

the seabed, that the seafloor is an extension of their

continental shelf. Given the importance of the dataset,

the cost of operations in the high Arctic, and the limited

season, credible AUV risk management was required.

In the Griffiths and Trembanis (2007) framework risk

management is informed by assessments provided by a

group of experts, where the final assessment is one that

represents the group judgment. Individual expert judg-

ments can be aggregated mathematically or behaviorally

to reach this group judgment. Previously, expert judg-

ments have been mathematically aggregated using the

linear opinion pool, where experts have been kept sepa-

rate during the elicitation (Clemen and Winkler 1999;

Griffiths et al. 2009; Brito et al. 2010). There are different

schools of thought as to what is the best aggregation

method; while some postulate the use of mathematical

methods (e.g.,Mosleh et al. 1987) others postulate the use

of behavioral methods (e.g., Phillips 1999). Mathematical

methods should be applied together with substantial

calibration and sensitivity studies; the latter are needed

to assess the impact of different methods and biases

(Keeney and von Winterfeldt 1989; Winkler 1967).

In previous AUV risk assessments, for particular faults

or incidents, experts provided judgments of a probability

of fault leading to loss that spanned three orders of

magnitude (Brito et al. 2010). Despite capturing each

expert’s estimate of uncertainty using quartiles, the large

spread for some assessments remained a concern. It was

not feasible to establish whether this spread reflected true

uncertainty, or whether the experts’ own specific experi-

ence or knowledge that was drawn upon to justify their

assessments could withstand peer review. To deal with

this potential bias issue, experts’ judgments were aggre-

gated mathematically into two separate groups, termed

optimists and pessimists. It was left to the decision maker

to decide which risk assessment to use.

For the last 60 yr there has been a flood of psycho-

logical experiments dealing with various aspects of man

as an intuitive statistician (e.g., Tversky and Kahneman

1974; Kynn 2008). In probability assessment, bias may

take many forms. Sources of biases are classified as

motivational or cognitive; both are a result of conscious

or subconscious adjustments in the experts’ assessments.

Motivational biases are introduced because the expert is

motivated by his or her perceived personal rewards or

concerns for various assessments. Cognitive bias may

result from the use of particular modes of judgment, also

denoted as mental shortcuts or heuristics. A number of

heuristics have been identified, and themost well known

are availability, adjustment or anchoring, and repre-

sentativeness. In availability heuristics the probability

assessment is based on the information that the expert

either recalls or visualizes, with little attention to the

specific details of the present circumstances. With ad-

justment and anchoring heuristics the most readily

available information forms the initial basis for the as-

sessment, and subsequent assessments result in adjust-

ments from this basis. In representativeness heuristics

the probability of an event is evaluated according to the

degree to which it is considered representative of a pop-

ulation from which it has originated.

One way to reduce bias in expert assessments is by

conducting a behavioral judgment elicitation.Here experts

are kept in the same room, they debate their views on

a particular fault or incident prior to the assessment of risk,

and at the end they agree on a single risk distribution that

represents the group’s consensual assessment (O’Hagan

et al. 2006). In most cases, experts may have specialized

knowledge in particular fields. The interaction between

experts has been shown to provide a better synthesis

through their collective expertise (Spetzler and Sael von

Holstein 1975).

In this paper we propose a behavioral risk assessment

approach for creating a risk profile of an autonomous

underwater vehicle in extreme environments. The

framework, influenced by Bayesian concepts, allows for

the risk assessment to be revisited postcampaign to (a)
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assess the outcomes against predictions and (b) provide

feedback to improve the collective knowledge of the

experts. Bayesian concepts are used by the experts for

computing a posteriori probability of loss based on the

experts’ assessments of the actual mission results. Here,

the a posteriori is not calculated as a function of the

product of the likelihood and the a priori, which can be

implemented in a mathematical algorithm. The Bayes-

ian concept is implicit in the experts’ assessments as they

estimate the a posterior in light of the campaign results

and their previous assessments.

For autonomous underwater vehicles operational risk

can be mitigated in two different ways; one way is by the

introduction of a monitoring distance. A monitoring

distance is particularly effective for long-range vehicles,

where the vehicle is monitored for a certain amount of

time while within acoustic range before committing to

the mission (Brito et al. 2010). A second way to mitigate

the operational risk is by removing the most significant

risks out of the operational profile. These can be either

hardware or software faults or human operator error.

While the design phase of an AUV will have sought to

reduce significant risks, faults inevitably emerge during

testing and use. Previous AUV risk assessment exercises

considered that a fault or risk was either mitigated or

not mitigated; it was assumed that the design team was

certain over each outcome (Griffiths et al. 2003).However,

inmost cases there is uncertainty over this assessment. For

example, the design team may not have sufficient time to

test a new component, system, or modification, or perhaps

the failure’s root cause has not been fully understood.

Consequently, this paper presents an approach for up-

dating the AUV risk profile based on the experts’ prob-

ability assessments on the effectiveness of risk mitigation

procedures.

The paper is organized as follows: section 2 outlines

the behavioral risk assessment process followed by a

summary of the fault history considered by the experts

for the motivating example in section 3. Section 4 pres-

ents the results of this risk assessment exercise; derivation

of the survival estimator used for creating the AUV risk

profile forms section 5, which is then applied in section 6

to calculate the AUV operational risk for a set of under–

sea ice missions in the Arctic. Original and observed

mitigation effectiveness is compared in section 7, and

section 8 presents our conclusions.

2. Behavioral expert judgment elicitation

The interpretation of risk can vary from application to

application (Kaplan and Garrick 1981). For example,

within the subject of oceanic and atmospheric technol-

ogy, when Dance et al. (2010) attempt to quantify the

probability of thunderstorm strike, risk is defined by the

following two quantities: the scenario (thunderstorm)

and the probability of occurrence. The consequence of

a thunderstorm is not considered. On the other hand,

Changnon (1999), attempting to quantify the risk of hail

in the United States, considered the following three

properties: the scenario (hail), the probability of hail in

different areas, and the financial costs caused by hail. To

avoid any ambiguity we shall now present the definition

of risk used in this paper. Two different interpretations

are considered—one for a static risk model and a second

for a dynamic risk model. For the static risk model,

formed by the faults and the experts assessments, risk is

defined by the duplet (S, Li), where S is the scenario, in

this case AUV loss, and Li is the subjective probability

of a fault (F) leading to loss in a given environment (E),

that is, P(LjF, E). For the dynamic risk model, risk re-

mains defined by the duplet (S, Li), while S remains the

same; Li is now the probability of loss given a specific

distance (d), P(LjF, E, d) (Brito et al. 2010). The fol-

lowing subsections provide details of the risk assessment

conducted for creating the static risk model.

a. Fault risk assessment

A number of expert judgment behavioral aggregation

methods have been published in academic journals and

research reports. The Delphi method (Dalkey 1969) is

arguably the most referenced, but other approaches,

such as the nominal group technique (Delbecq et al.

1975), the aggregationmethod of Kaplan (Kaplan 1990),

and the Sheffield Elicitation Framework (SHELF)

method (O’Hagan et al. 2006), are also widely referenced

and applied. Thesemethods vary in the form of interaction

between experts and facilitators (face to face, mediated by

a computer, or anonymously). Time is always at a pre-

mium in expert judgment elicitations. Because the aim in

this instance was to assess the risk posed by a number of

faults, a method that can be applied within an acceptable

time limit while maximizing the amount of discussion be-

tween experts was adopted by following the SHELF pro-

posed by O’Hagan et al. (2006).

The aim of the elicitation was to estimate the proba-

bility of a fault leading to loss in the given target envi-

ronment. It is well accepted that experts will not always

agree on a particular risk assessment, and this may result

in differences in the experts’ assessments. The SHELF

elicitation process defines means for capturing these in

a probability distribution. This rationale was pioneered

by Phillips and Wisbey (1993) and further developed by

O’Hagan (1998). Experts were asked to define the dis-

tribution using five parameters: the lower and upper

bounds (denoted as L and U, respectively), median M,

and lower and upper quartiles (denoted as LQ and UQ,
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respectively). Experts were given training on probability

assessment and on the concept of subjective probability

and Bayesian theory. The steps of the behavioral expert

judgment elicitation exercise are set out in the appendix.

b. Effectiveness of the mitigation assessment

Risk mitigation of operational faults can be achieved

by introducing design changes or new operational pro-

cedures. Over the years organizations concerned about

risk have developed processes, mostly simulation based,

for assessing the impact of risk mitigations. For example,

the National Aeronautics and Space Administration

(NASA) developed theDefectDetection and Prevention

(DDP) system for aiding decision making during the

early phase of technology and system development

(Feather and Cornford 2003). The DDP uses the assess-

ment of the effectiveness of a risk mitigation strategy for

updating the risk outcome of a defect. Here effectiveness

of risk mitigation is used for addressing the reliability of

the design. To our knowledge, no framework has been

proposed for updating operational risk estimation based

on the estimated effectiveness of risk mitigation strategies.

Risk mitigation procedures are not guaranteed to be

successful, for example, the implementation might not be

as simple as initially envisaged or time for operational

testing may be too short. Expert assessment presents the

formalism for quantifying the effectiveness of these pro-

cedures. The expert panel was asked to agree on the

probability that the mitigation plan proposed by the de-

sign team would completely remove the fault. This as-

sessment followed the risk elicitation described above,

and it lasted approximately 5 h. The experts’ assessments

for the mitigation strategies were based on the infor-

mation available. This was provided by two design and

operational engineers who also attended the workshop.

Following a debate, experts were asked to agree on

the assessment, assigning pMi
5 0 if the consensus was

that the proposed risk mitigation would not mitigate the

fault, pMi
5 1 if the consensus was that the proposed

mitigation would completely mitigate the fault, or an

intermediate value. Having estimated the effectiveness

of the mitigation strategy the static risk model can be

updated using the following:

P(Li jFi, E, Mi)5P(Li jFi, E)(12PM
i

) , (1)

whereP(LijFi,E,Mi) is the probability of loss given fault

Fi, environment E, and mitigation strategy Mi. From

this equation it is possible to see that if pMi
5 1, then

P(LijFi, E, Mi) 5 0 for fault Fi. Experts’ assessments

for pMi
for all faults in the motivating example are pre-

sented in Table 1.

3. Motivating example: Explorer AUV fault
history

Two Explorer class AUVs were delivered to NRCan

for the 2010 Arctic campaign, both of which had been

built by International Submarine Engineering (ISE;

Crees et al. 2010). Only vehicle 5’s data are used in this

paper, vehicle 6 had too few runs for the statistics to be

meaningful. Careful records had been kept of the 51

faults and incidents that emerged during the following

five testing phases:

1) fabrication and assembly (May–September 2009), in

which five faults emerged;

2) sea trials (8 September–12 October 2009), with 19

faults;

3) first homing and positioning trials (16 November–

4 December 2009), with 14 faults;

4) second homing and positioning trials (14 January–

28 February 2010), with 8 faults; and

5) mission testing (22 February–12 March 2010), with 5

faults.

The record for each fault or incident contained a de-

scription of the depth, if at sea; the time into themission;

the action taken by the AUV; a note on the possible

impact, if the fault had happened under ice; the corrective

action taken, or to be taken; and further comments where

applicable. In addition, the phase of the mission de-

ployment when the fault occurred was included to

allow for state transition analysis, following the methods

described in Brito and Griffiths (2011).

Taking broad categories, the top five types of failures

were software (25%), maneuvering (16%), navigation

(13%), control electronics (9%), and communications

(7%). Payload, ballast, electrical, and homing each had

approximately 5%; energy, electrical cabling, propulsion,

and collision avoidance each had approximately 2%.

4. Outcomes of behavioral aggregation:
Precampaign

This section illustrates and discusses the wide range of

behavioral aggregation outcomes, from quickly reached

unanimity to judgments with wide spans indicative of

agreements to disagree. The aggregated outcomes are

listed in Table 1, as the five parameters elicited, the 95%

quantile obtained from fitting a beta distribution to the

parameters, and the time into the mission the fault oc-

curred. In practical terms, a risk-informed decision should

not be based on themean ormedian. The reason for this is

because of the level of uncertainty associated with these

estimates, which in the case of the median is 50%. As

described in section 6 of this paper, in order to calculate
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AUV survival with distance, the agreed expert judgment

must be integratedwith a statistical survival estimator.We

decided to use the 95%quantile of the agreed distribution

because it reduces the amount of uncertainty that wemust

take into account in the final survival calculation.

One intrinsic part of the Bayesian elicitation process is

that experts update their assessments based on argu-

ments presented by other experts. In some cases the

most conservative expert changes his assessments to

agree with the most optimistic expert. For some other

TABLE 1. Aggregated expert judgments for the 51 faults that emerged prior to the Arctic campaign.

Fault Mission L LQ M UQ U

95%

quantile Time (h)

Probability of

mitigation

1 Assembly_1 1.0 3 1025 2.73 3 1025 4.0 3 1025 0.000 208 0.001 0.000 413 0 0

2 Assembly_2 0 1.68 3 1028 6.2 3 1028 2.3 3 1027 1.0 3 1026 6.43 3 1027 0 0.9

3 Assembly_3 0.0002 0.001 77 0.005 0.0234 0.1 5.36 3 1022 0 0.8

4 Assembly_4 0 1.68 3 1028 6.2 3 1028 2.3 3 1027 1.0 3 1026 6.43 3 1027 0 0.9

5 Assembly_5 0 1.68 3 1028 6.2 3 1028 2.3 3 1027 1.0 3 1026 6.43 3 1027 0 0.95

6 2_1 0 1.68 3 1028 6.2 3 1028 2.3 3 1027 1.0 3 1026 6.43 3 1027 6 h, 52 min 1

7 4_1 0 0 0 0 0 0 5 h, 29 min 1

8 4_2 0.1 0.176 0.216 0.4 0.5 0.48 5 h, 29 min 0.9

9 6_1 0.0001 0.000 87 0.001 46 0.0032 0.005 0.004 64 4 h, 10 min 0.1

10 6_2 1 1 1 1 1 1 4 h, 10 min 0.95

11 6_3 0 1.68 3 1028 6.2 3 1028 2.3 3 1027 1.0 3 1026 6.43 3 1027 4 h, 10 min 0.95

12 4_3 0.01 0.0487 0.134 0.28 0.75 0.504 5 h, 29 min 1

13 5_1 0.001 0.0046 0.013 0.0207 0.04 0.0362 3 h, 56 min 0.8

14 6_4 0.05 0.3 0.63 0.805 0.95 0.921 4 h, 10 min 0.75

15 6_5 0.1 0.363 0.546 0.73 1 0.901 4 h, 10 min 0.4

16 7_1 0.01 0.059 0.14 0.218 0.5 0.397 5 h, 42 min 0.95

17 8_1 0 0 0 0 0 0 4 h, 55 min 0

18 9_1 0.001 0.001 35 0.003 0.0093 0.05 0.0166 4 h, 56 min 0.9

19 10_1 0 0 0 0 0 0 5 h, 13 min 0.8

20 10_2 0.5 0.6 0.68 0.75 0.8 0.79 5 h, 13 min 0.4

21 18_1 0.001 0.0046 0.013 0.0207 0.04 0.0361 5 h, 51 min 0.8

22 18_2 1 1 1 1 1 1 5 h, 51 min 0

23 21_1 0 0 0 0 0 0 13 h, 43 min 0.9

24 17_1 0.001 0.0046 0.013 0.0207 0.04 0.0361 5 h, 16 min 0.95

25 23_1 0.02 0.052 0.08 0.111 0.2 0.167 4 h, 47 min 0.95

26 24_1 0 0 0 0 0 0 10 h, 39 min 0.9

27 24_2 0.001 0.0122 0.0458 0.077 0.2 0.176 10 h, 39 min 0.8

28 25_1 0.001 0.0046 0.013 0.0207 0.04 0.0361 8 h, 5 min 0.95

29 25_2 0 0 0 0 0 0 8 h, 5 min 1

30 25_3 0 0 0 0 0 0 8 h, 5 min 1

31 27_1 0.001 0.0018 0.0035 0.006 22 0.01 0.009 83 4 h, 17 min 0.9

32 27_2 0 0 0 0 0 0 4 h, 17 min 1

33 27_3 1 1 1 1 1 1 4 h, 17 min 0.6

34 28_1 0.4 0.49 0.61 0.7 0.8 0.798 3 h, 55 min 0.9

35 29_1 0.0001 0.000 87 0.001 46 0.0032 0.005 0.004 64 7 h, 28 min 0.1

36 31_1 0 0 0 0 0 0 7 h, 36 min 1

37 32_1 0.0004 0.004 0.012 0.048 0.2 0.109 7 h, 40 min 0.75

38 33_1 0.0004 0.0049 0.03 0.078 0.3 0.202 8 h, 2 min 0.5

39 35_1 0.001 0.004 0.01 0.0147 0.02 0.0189 5 h, 42 min 0.5

40 36_1 0.001 0.004 0.007 67 0.0117 0.02 0.0197 5 h, 21 min 0.5

41 36_2 1 1 1 1 1 1 5 h, 21 min 0.5

42 37_1 0.001 0.004 0.007 67 0.0117 0.02 0.0197 6 h, 7 min 0.5

43 38_1 0.001 0.005 67 0.0107 0.0157 0.02 0.0191 9 h, 29 min 0

44 40_1 1.0 3 1025 2.33 3 1025 4.67 3 1025 7.33 3 1025 0.0001 0.0009 5 h, 16 min 0.5

45 45_1 0.1 0.333 0.533 0.7 0.8 0.78 8 h 0.5

46 45_2 0.001 0.0393 0.163 0.257 0.5 0.451 8 h 0.5

47 46_1 1 1 1 1 1 1 5 h, 10 min 0.5

48 48_1 0.001 0.0046 0.013 0.0207 0.04 0.0361 62 h 0.95

49 49_1 0.1 0.333 0.533 0.7 0.8 0.78 4 h 0.5

50 50_1 0.1 0.333 0.533 0.7 0.8 0.78 60 h 0.5

51 50_2 0.001 0.003 17 0.005 33 0.007 33 0.01 0.009 47 60 h 0.1
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experts’ assessments we may see the opposite. This de-

pends on the robustness of the arguments presented by

each expert. Therefore, the 95% quantile of the agreed

probability of loss distribution is not the result of the

assessment provided by the most conservative expert.

a. Unanimity on faults that would inevitably lead to
loss under ice

For five faults (10, 22, 33, 41, and 47) the experts

concluded that there would be certain loss under ice, and

set all parameters of the distribution to 1. Fault 10 was

a time delay relay (TDR) malfunction. Based on the

evidence that the vehicle had to be recovered as a ‘‘dead

vehicle,’’ the experts agreed that if this fault occurred

during an under-ice mission, more than 300 m away from

an ice hole [the recovery remotely operated underwater

vehicle (ROV) operating radius], then it would lead to

certain vehicle loss. Faults that lead to the vehicle coming

to a complete stop were considered to lead to certain loss.

Fault 22 was a vehicle control computer (VCC) configu-

ration fault that caused the vehicle to exit AUV mode

and enter the stopmode for no apparent reason while the

vehicle was in the water. No cause could be identified,

but one of the experts (an Explorer user) had experi-

enced a similar fault previously.Amission-planning error

(fault 33) caused the vehicle to time out and stop. An

unexpected release of the drop weight, for no apparent

reason (faults 41 and 47), was also considered as leading

to certain loss. This conclusion was reached quickly, but

was followed by a long discussion on the possible causes

as an aid to finding a mitigation strategy.

b. Unanimity on faults that would have no impact at
all on survivability

For nine faults (7, 17, 19, 23, 26, 29, 30, 32, and 36) the

collective conclusion was that there was zero probability

of the faults leading to loss. In some cases this was be-

cause the component or subsystem that suffered the

fault would not be present for the Arctic missions. This

was the case for faults 7 (GPS antenna) and 17 (a VCC

reboot when a radio modem connection is established).

In another case it was because the fault occurred when

the operating environment was so dissimilar to the

ocean or the Arctic. Fault 19, a drop weight release

failure on deck resulting from salt encrustation, would

not have happened when in the water.

c. Faults where the phase of the mission may affect the
consequence

A class of faults, typified by fault 14, a failure by the

VCC to mount the hard drive at boot time, resulted in

vigorous discussion by the experts on the probability of

loss, because some experts considered the outcome to be

strongly dependent on the phase of the mission during

which the fault occurred. In this example, there were

different views of the combination of this failure to

mount the hard drive with the VCC’s ability to restart,

regain the mission, or return home, compounded with

the unknown technical issues that caused the reboot in

the first place. Consequently, the aggregated judgment

arrived at through discussion showed a large span be-

tween a lower limit of 0.05 and an upper limit of 0.95.

d. Faults where individual experts shared particular
insights affecting the aggregated outcome

A mistake in setting the VCC configuration (fault 12)

gave the wrong sign to the attitude sensor’s pitch rate,

resulting in the vehicle porpoising on the surface. In-

dividual experts gave different weighting in their con-

siderations to possible extra power consumption from

porpoising, thus depleting the battery supply, to possible

impact with the bottom in shallow water or at low alti-

tudes, and considered the unknown amplitude of the

pitch oscillations from the fault. The resulting distribu-

tion with a lower limit of 0.01 and an upper limit of 0.75

reflected the experts’ views on the range of behaviors

that this fault could engender.

e. Agreement that the fault leads to a wide range of
probability of loss

Fault 46 (a problem with a forward plane) was given

agreed assessments that spanned three orders of mag-

nitude. This wide range was not due to the need to en-

compass experts’ disagreements but to their uncertainty

concerning the outcome of the failure scenario, even

after extensive discussion. For fault 46 they found it

difficult to assess the risk without more information on

vehicle performance following a single plane failure.

Experts concluded that the risk distribution had to en-

compass a low risk tail, for the case where the failed

plane would feather and control could be maintained

using the functional planes, and a higher risk for when

the plane stuck at an extreme angle, causing much

higher drag and affecting control severely.

This was in contrast to those faults (13, 21, 24, 28, and

48) where it was clear that the planes failed into a feather

configuration, for which the experts agreed quickly on

a narrower, lower risk distribution.

f. Insights into instances of where a fault implied
a consequential vulnerability

Discussion between the experts on consequential

vulnerabilities arising from some faults proved valuable.

Through discussion they were able to see beyond the

immediate fault. For example, in fault 20 the Photonic

Inertial Navigation System (PHINS) serial input failed
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to accept inputs from the Doppler velocity log (DVL),

GPS, and depth sensor. Nevertheless, the PHINS con-

tinued to provide position information. While internally

the PHINS reported degraded performance there was

no alarm to indicate this to theVCC.As a result, this was

a nondetectable fault by the vehicle. The experts’ dis-

cussions focused on the impact that the distance be-

tween the AUV when the fault occurred and the

recovery point would have on the fault consequence.

Experts argued whether the distance between AUV and

the recovery point was sufficient for the induced error to

exceed the range of the homing system, before con-

cluding that this was a critical fault, with a lower limit of

loss of 0.5 and an upper limit of 0.8.

g. Agreement to use heuristic shortcuts

Working as a group, the experts agreed collectively

that they would spend little time on those faults that had

a very low, but nonzero, consequence for the risk of loss.

For these, they agreed on a standard distribution with

a lower limit of 0, a median of 6.2 3 1028, and an upper

limit of 1026. Examples are the two Network Time

Protocol server failures (faults 2 and 11) because they

only affected data logging, not command, control, or

navigation, and internal problems with the acoustic

survey instruments, again not influencing control (faults

4, 5, and 6). The small probabilities were considered to

account for unimagined consequences.

5. Outcomes of mitigation assessments:
Precampaign

The experts’ collectively agreed probabilities of suc-

cessful mitigation for the 51 faults presented as a histo-

gram (Fig. 1) shows three separate distributions. One,

with amode at zero, represents those faults for which the

experts agreed that the cause of the fault was unknown

or unproven (such as for fault 22 described earlier),

where there was no disagreement with the Explorer

engineers. This distribution also covered faults where

the experts were unconvinced that the proposed miti-

gation strategy would prove effective. This was the case

for fault 24, where the database of controller parameters

and configuration settings became corrupted. Despite

changes to data management protocols, the fault re-

curred, and a further fix had been conceived but not

tested.

The second distribution, with a sharp mode at 0.5,

represents those faults the experts considered for which,

although the proposed solution was appropriate, the

mitigation strategy had not been sufficiently tested or

proven in field trials, or where a recurrence of a similar

fault could not be ruled out. As an example of the

former, fault 20 with the PHINS navigation unit re-

sulted in the unit being sent back to the manufacturer,

a new motherboard and upgraded software was in-

stalled. However, because the unit was not tested,

confidence in a true fix was not high. Instances of a fault

where the particular occurrence was fixed, but there

could be no guarantee that the fault, or a very similar

fault, would not recur, were typified by human error or

oversight. For example, fault 46, caused by a loose

washer within a forward-plane controller. Software

configuration faults can also fall into this class, such as

fault 41, where the unintended consequence of a soft-

ware change made prior to the mission changed a fault

priority that resulted in the AUV stopping rather than

continuing. Experts considered human error could oc-

cur again with configuration settings.

The third distribution of probability of successful

mitigation has a mode at over 0.9, indicating a high to

very high level of confidence by the experts that the

causes of faults were well understood, and that the

solutions were known and tested. How well the solu-

tions were tested affected the judgment; for example,

for fault 13, the hydroplane not rotating correctly,

resulting from an incorrect gauge in the locking washer,

was assigned a mitigation probability of 0.8, which

would increase with subsequent in-water trials with

a washer of heavier gauge material. Certain success

for mitigation, retiring the faults completely, was the

FIG. 1. Histogram of the assignments of probability of successful

mitigation for the 51 faults, showing three distinct distributions.
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agreed outcome for those cases, such as faults 7 and 33,

where the components or subsystems concerned would

not be present for the Arctic missions. Also certain of

mitigation were faults such as 12 (the incorrect sign

of the PHINS pitch rate), where the cause was fully

understood, straightforward, and a solution was im-

plemented and tested. Some room for doubt, with a

probability of success of 0.95, was assigned to those

faults, while well understood and corrected could,

with a small probability, recur. For example, fault 11, a

missing battery in the network time protocol server

was a human error, easily corrected, but with a non-

zero chance of being repeated.

Combining the assessments on P(LjF, E) with PM

identifies those faults where P(LjF, E) is high but PM is

low. These form an important subset for the engineers

to address. Most critical was fault 22, the VCC con-

figuration problem, where P(LjF, E) was 1 and PM

was 0. For all other faults where PM was less than 0.1,

P(LjF, E) was less than 0.01 (Table 1); consequently,

the need for effort into improving the understanding of

the mitigation required was far less important. Of the

14 faults where 0.4, PM , 0.6 eight were assessed with

P(LjF, E). 0.5 (Table 1). This was the most important

set of faults for further investigation and improvement

in PM.

6. Survival estimator and confidence limits

The survival distribution for the ISE Explorer AUV

was created using the extended version proposed by

Brito et al. (2010) of the well-established Kaplan–Meier

nonparametric model for estimating and displaying

survival functions for small to medium samples of data.

The estimator was first introduced by Kaplan andMeier

(1958). Since then it has been applied in a wide variety of

fields from medical statistics to systems failure analysis

(Prentice and Kalbfleisch 2002). In failure analysis, the

method uses historical data to compute systems survival

as function of time. The historical data consist of failure

time data and times of failure-free operations. The sur-

vival function is computed from the product of these two

sources of data. The estimator uses a censor flag to

specify whether at a given time it is considering failure

data or survival data (nonfailure). In previous work we

have shown that if the censor flag is replaced by prob-

ability of loss given that failure Fi emerges in environ-

ment E, allow us to calculate system survival for a given

environment, this formulation is presented in Eq. (2).

For autonomous underwater vehicles we use distance

instead of time as distance is proportional to time. Given

a set of data comprising ordered mission ranges and

whether each mission ended with a fault that has a

probability of leading to loss [P(L j Fi, E)], the survivor

function S(r) with range r is defined as

S(r)5P
r
i
,r

�
12

1

ni
P(L j Fi,E)

�
, (2)

where ni is the number (of missions) at risk immediately

prior to range ri and is the number of losses at range r.

Thus, the survival dataset will include all fault assess-

ments, the distances at which they took place, and also

all fault-free missions (Table 2).

In the general case, the confidence limits for the ex-

tended Kaplan–Meier estimator are deduced from the

variance in the dataset and the variance in the expert

judgments (Brito et al. 2010). However, for this risk

assessment, which considers the 95% quantile of the

expert judgments obtained from fitting a beta distribu-

tion to the five parameters elicited from the experts

(Table 1) and not the mean, the variance in the experts’

assessments can be ignored. The 95% confidence limits

for the estimator then becomes

expf2exp[c1(r)]g, Ŝ(r), expf2exp[c2(r)]g , (3)

where

c6(r)5 log[2logŜ(r)]6 za/2

ffiffiffiffî
V

p
, (4)

and where za/2 is the upper a/2 point of the standard

normal distribution; the 5% point was used, which is

1.96.

TABLE 2. Fault-free missions prior to the Arctic campaign. Vehicle

is assumed to travel at a speed of 1.5 m s21.

Mission Time Distance (km)

3 5 h, 17 min 28.5

11 13 h, 56 min 75.2

12 3 h, 29 min 18.8

13 4 h, 35 min 24.8

14 5 h, 53 min 31.8

15 5 h, 6 min 27.5

16 26 min 2.3

19 6 h, 4 min 32.8

20 6 h, 15 min 33.8

22 5 h, 28 min 29.5

26 11 h, 50 min 63.9

30 6 h, 32 min 35.3

34 5 h, 30 min 29.7

39 6 h, 42 min 36.2

41 9 h, 13 min 49.8

42 3 h, 43 min 20.1

43 6 h, 14 min 33.7

44 5 h, 12 min 28.1

47 5 h, 56 min 37.4
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The variance is calculated using

VKM 5
1

log[S(r)2]
�
r
i
,r

pi
ni(ni 2 pi)

. (5)

The survival distributions for theExplorerAUV (Fig. 2)

show the probability of survival against distance without,

and with, mitigation of faults for a singlemission. Thus, for

a 200-km mission without considering the effectiveness of

mitigation strategies the probability of survival would be

0.7, increasing to 0.85 when the mitigation measures and

their assessed effectiveness were taken into account. That

is, the risk of loss is halved on this single mission. These

estimates are without considering the use of a monitoring

distance for further risk mitigation (Brito et al. 2010).

7. A priori campaign risk prediction

There were four types of missions planned for in the

Arctic in 2010 as follows:

1) proving missions around the main camp ice hole

(missions 51, 52, and 53);

(a) a round-trip dive from the main camp to the

southwest with the entire payload active (mis-

sion 51),

(b) a transit out to approximately 56 km before re-

turning back to the main camp using the short-

range localization (SRL) system with no sensors

active (mission 52), and

(c) a 131-km round-trip mission out to a beacon

camp to test the long-range homing system

(mission 53);

2) one-way transit mission from the main camp to the

remote camp (mission 54);

3) a survey of identified features of interest along the

continental shelf (mission 55); and

4) one-way transit mission from the remote camp to the

main camp (mission 56).

The missions’ distances covered by the vehicle during

the Arctic mission were different from those specified

prior to the campaign. Consequently, in order to com-

pare similar quantities, we use the prior risk model to

estimate the mission risk of the actual mission distances

instead of the planned mission distances. See Table 3 for

details.

Brito et al. (2010) showed how monitoring an AUV

for a distance d, over which the vehicle could be re-

covered if a fault developed, could increase the proba-

bility of survival over the actual mission distance R. Let

the probability of loss for the monitoring distance be

P(d) and the probability of loss for the mission range

be P(R), then the conditional probability expression

leads to

P(X,R jX.d)5
P(X5R)2P(X5d)

12P(X5 d)
, (6)

where P(X , RjX . d) is the probability of loss for

target mission range R given that the vehicle has sur-

vived monitoring distance d. Expression (6) can be de-

rived by manipulating the joint probability function of

two statistically dependent events in which P(X , R,

X. d)5 P(X, RjX. d) 3 P(X. d), where the term

on the left-hand side equals P(X 5 R) 2 P(X 5 d).

The probability of loss for distance greater than d is

P(X. d)5 12 P(X5 d). The probability of survival is

the complement of the probability of loss. If we denote

FIG. 2. (a) Kaplan–Meier probability of survival against distance

for the dataset as considered by the experts with no mitigation of

the individual faults and (b) with the assessment of individual fault

mitigation included.

TABLE 3. All missions during the Arctic campaign, missions 53

and 55, were fault free. Vehicle is assumed to travel at a speed of

1.5 m s21.

Mission Time Distance (km)

51 5 h, 39 min 30.51

52 10 h, 20 min 55.8

53 24 h, 18 min 131.22

54 62 h, 16 min 336.24

55 60 h, 22 min 325.98

56 60 h, 5 min 324.45
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the probability of survival as S, then S(X 5 d) 5 1 2
P(X 5 d).

The choice of the distance d is informedby theKaplan–

Meier plots in Fig. 2, balancing a sufficient distance to

enable those faults that have historically emerged at short

distances against the increasing overhead of choosing a

larger distance.

a. Proving missions around the main camp ice hole

In the initial analysis, we considered a monitoring dis-

tance of 20 km. However, in the actual deployment the

monitoring distance was 31 km (for which the probability

of survival is 0.9042); this was, in fact, mission 51.

For mission 52 the probability of survival becomes

unmitigated: P(surv) 5 0.722,

mitigated: P(surv) 5 0.860, and

mitigated 1 monitor 31 km: P(surv) 5 0.96;

and for mission 53

unmitigated: P(surv) 5 0.704,

mitigated: P(surv) 5 0.856, and

mitigated 1 monitor 31 km: P(surv) 5 0.947.

b. The survey missions

The product rule can be used to get at the overall

probability of surviving three such missions. The overall

P(survival) is simply the product of the individual

probabilities,

P(surv)5P
n

i51

P(surv)i . (7)

Hence, for this example set of three missions, overall,

unmitigated: P(surv) 5 p1(d 5 324 km) 3 p2(d 5
326 km) 3 p3(d 5 336 km)

0.704 3 0.518 3 0.50 5 0.182,

mitigated: P(surv) 5 p1(d 5 324 km) 3 p2(d 5
326 km) 3 p3(d 5 336 km)

0.856 3 0.741 3 0.74 5 0.469, and

mitigated 1 monitor 31 km:

P(surv) 5 p1(d 5 324 km) 3 p2(d 5 326 km) 3
p3(d 5 336 km)

0.946 3 0.82 3 0.819 5 0.635.

8. Postcampaign risk assessment

In the previous section we used the extended version of

the Kaplan–Meier estimator to quantify the probability

of survival with distance predicted from the prior history

of faults and incidents. In this section we compare this

prediction with the probability of survival derived using

exactly the same methodology, but based only on the

faults and incidents observed during the deployment. At

a second risk assessment workshop the criticality of 17

faults that emerged during the 2010 Arctic campaign

were assessed. These faults fell into the categories of

control and electronics (17%); navigation (17%); payload

(17%); software (12%); and ballast, communications,

electrical and cabling, and mission planning (6%) each.

a. Expert judgments on emerged faults

During the expert judgment elicitation a similar pat-

tern to that observed in the first workshop was seen. For

some faults, experts quickly reached an agreement, for

others a longer debate was required.

For five faults, experts assigned zero to all parameters

of the probability of loss distribution. These consisted

mainly of payload faults, where experts considered that

while these would have an impact on science data gath-

ering, they would pose no risk to the vehicle’s safety.

Also in this category was fault 3, a VCC configuration

fault that meant that engineers could not put the vehicle

intomissionmode acoustically. This was fixed at the time

of the deployment by increasing the telemetry item size

in the configuration file. Experts considered this real-

time fix to be an important factor, certain of correcting

the problem.

In the previous workshop, experts identified a class of

faults that had low impact. For these faults they agreed on

a probability of loss distribution that was low but non-

zero. In this assessment experts did not explicitly reach

such an agreement and distribution for this type of fault.

Nevertheless, the assessments for faults 12 and 15 showed

that such distributions were used in this workshop un-

consciously rather than through deliberate agreement.

Fault 1, a ground fault on the variable ballasting system,

was also considered low impact, but here expertswere not

so quick to reach agreement.

The agreed distributions for other faults fell into one of

three shapes. First are the distributions that were skewed

to the left (low probability), with a long tail toward high

probability. Experts agreed on such distribution for faults,

2, 8, 9, 10, and 16. These are in general faults that would

not result in immediate vehicle loss but would degrade the

vehicle’s safety with time. For example, fault 2, a CTD

sensor failure, resulted from a crack on the sensor that

could lead to degraded sonar data with a possible conse-

quential degradation of navigation accuracy. The same

rationale was adopted for fault 8, a bottom-avoidance

altimeter ground fault, and fault 9, a Mimosa (mission

planning software) distance estimation inaccuracy. Fault

10 was a VCC configuration failure that resulted in an

under-depth fault response during the mission. Fault 16

1698 JOURNAL OF ATMOSPHER IC AND OCEAN IC TECHNOLOGY VOLUME 29



was a lower transducer failure at the end of the Arctic

mission at themain camp, just before recovery. The upper

bound for all of these distributionswas assigned to capture

the most critical consequence.

Second, the distribution for fault 4 is skewed to the

right, but here experts agreed that the whole distribution

should be defined by high probability values. Fault 4 was

a VCC configuration fault, where the VCC was config-

ured so that the PHINS was power cycled when the ACE

restarts. This would cause loss of PHINS alignment with

every VCC reboot. Given the high likelihood of a reboot,

experts considered that the probability of loss should be

high, because PHINS alignment is a lengthy process at

high latitudes.

Finally, there are the normally distributed expert

judgments. This is the case for faults 6, 7, and 17. Of

these, two were ground faults in critical components.

Fault 6 was an acoustic modem ground fault, and fault 7

was a main bus 48-V ground fault. Fault 17 was a com-

munications fault, with no acoustic command at the

remote camp. The lower bound may be justified by the

fact that these faults did not result in vehicle loss during

the deployment; the vehicle was still capable of finding

its way to the recovery point. The upper bound reflects

the fact that these faults, if compounded with other

failures, for example, failure to detect them, would very

likely result in vehicle loss.

b. Actual risk during the Arctic campaign

The simplest way to compare two groups of survival

data is to plot the corresponding survival distributions

on the same axes. However, in this case, it would not

support our analysis because we must take into account

the effect of the monitoring distance, and this is not

explicit in the survival plot. Thus, here, our comparisons

are based on single-point observations.

Similarly to our previous analysis the data consist of

fault assessments and distances of missions with no

faults at all (missions 53 and 55). The experts’ judgments

(Table 4) form the basis for the extended Kaplan–Meier

survival plot (Fig. 3). Having derived this distribution,

the probability of survival based on the actual Arctic

missions can be calculated and compared to the a priori–

estimated risk based on trials data. The differences

TABLE 4. Aggregated risk assessments for the 17 faults that emerged during the arctic campaign. No faults emerged during missions 53

and 55. Faults and their assessments are presented in the order that they were assessed by the expert panel. The two successful fault free

missions were added at the end of the table.

Fault Mission L LQ M UQ U Distance (km) 95% quantile

1 — 0 1.0 3 1027 1.00 3 1026 1.00 3 1025 0.0001 0 4.48 3 1025

2 — 0.000 01 5.00 3 1025 0.0001 0.0005 0.005 0 0.00106

3 — 0 0 0 0 0 0 0

4 — 0.8 0.85 0.9 0.95 1 0 0.977

5 51 0 0 0 0 0 1.35 0

6 51 0.001 0.005 0.01 0.05 0.1 0.09 0.0933

7 52 0.0001 0.0009 0.003 0.009 0.05 32.4 0.0209

8 52 3.00 3 1026 6.00 3 1025 0.000 16 0.0008 0.01 48.6 0.001 98

9 — 0.0001 0.0001 0.0003 0.0009 0.01 0 0.001 70

10 — 5.00 3 1026 1.00 3 1025 0.0005 0.001 0.008 0 0.004 22

11 — 0 0 0 0 0 0 0

12 — 1.00 3 1027 2.00 3 1027 7.00 3 1027 2.00 3 1026 1.00 3 1025 0 4.13 3 1026

13 — 0 0 0 0 0 0 0

14 — 0 0 0 0 0 0 0

15 — 1.00 3 1027 2.00 3 1027 7.00 3 1027 2.00 3 1026 1.00 3 1025 0 4.13 3 1026

16 56 2.50 3 1025 0.000 25 0.0025 0.0125 0.025 324.45 0.0225

17 54 0.001 0.01 0.04 0.082 0.1 334.8 0.0964

53 0 0 0 0 0 131.22 0

55 0 0 0 0 0 325.98 0

FIG. 3. Kaplan–Meier probability of survival for the AUV based

on actual faults and incidents that occurred during the April 2010

Arctic campaign. This should be compared with the distribution for

the a priori dataset, including the effect of mitigation effectiveness

in Fig. 2b.
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between the a priori–estimated and the campaign risk

are presented in Table 5. Results show that the maxi-

mum error between the estimated a priori risk after

mitigation effectiveness was taken into account and the

campaign risk was 10%. Both of the risk profiles against

mission distance, a priori umitigated (Fig. 2b) and ob-

served (Fig. 3), show an approximately 10% reduction in

the probability of survival near the maximum distance. It

is important to note that these are independent datasets,

based on the trials and the Arctic mission datasets, re-

spectively. Consequently, the mission distances are not

the same, and as steps in the Kaplan–Meier plots take

place at the mission distances, it is only to be expected

that there can be instances where the difference between

the two risk profiles may be sensitive to small differences

in mission distance. This becomes more pronounced at

the longer distances, where there have been fewer mis-

sions and the denominator ni in Eq. (2) is therefore small.

For the a priori, mitigated profile, the 10% risk reduction

takes place at 324 km, whereas for the observed risk the

10% step takes place at 334.5 km, resulting in the 10%

difference. The minimum error was 0.9%. The differences

between the a priori unmitigated risk of loss and the cam-

paign riskwere far greater. This emphasizes the importance

of taking mitigation into account when projecting forward

risk based on trials results when a period of addressing and

correcting faults occurs prior to the actual deployment,

otherwise the campaign risk may be overestimated.

9. Discussion and conclusions

This paper addresses a key issue in any critical system

deployment, which is how to quantify the operational risk

when deploying a system in hazardous environments.

Marine and atmospheric scientists attempt to address

these questions prior to the deployment of any critical

system. This assessment is generally based on engineering

judgment and in some cases may be informed by failure

statistics. Good practice is to use formal methods to elicit

the necessary judgments, allowing the process to be trans-

parent, capable of replication, and minimize bias that can

be consciously or subconsciously introduced by experts.

Previous use of formal judgment elicitation for AUV risk

assessment applied mathematical methods to aggregate

the expert judgments into a single judgment. However, as

discussed in this paper and in the referenced work, math-

ematical methods allow bias to be introduced. Behavioral

expert judgment elicitation encourages experts to discuss

and then agree on the risk assessment resulting in a more

informed assessment from the group. The method pre-

sented in this paper captures the experts’ judgment in a

probability distribution. The agreed expert judgment dis-

tributions are unimodal, but can take a number of shapes

reflecting the arguments that underpin them. The benefit

of obtaining a distribution rather than a single-point as-

sessment is that we canmeasure the confidence in the risk

estimation. Subsequence assessments can be carried out

based on the 95% quantile rather than the mean.

After finding a fault one cannot assume that the mit-

igation action will be completely effective and that the

fault will be completely removed from the system. This

will depend on a number of factors, such as fault un-

derstanding and the intensity and efficacy of testing.

Using expert judgment to capture the confidence that

the mitigation plan would completely remove the fault

has been shown to provide realistic updates of the ini-

tial risk estimate.

Validating risk models has always been a concern for

any system developer and user. This is particular true for

systems where a catastrophic event does not occur during

its lifetime. In conventional systems engineering, valida-

tion comprises comparing the model estimates against

results obtained from field testing. Although risk models

are based on expert judgments, a similar rationale ap-

plies. Having conducted two workshops, the first prior to

anArctic deployment (covering 51 faults) and the second

after the deployment (covering 17 faults), the maximum

difference in risk estimates was 10%, indicating an ac-

ceptable level of repeatability and demonstrating that the

a priori estimate was a good predictor of near-term risk

during actual operations after accounting for the effec-

tiveness of mitigation.

TABLE 5. Estimated operational risk for six missions. Numbers are approximated to the third most significant figure.

Probability of loss

No. Objective Distance (km) Unmitigated Mitigated

Mitigated 1 30.51 km

monitoring as mitigated

Observed

risk Difference

51 Monitoring distance 3 0.173 0.090 — 0.072

52 Test mission 1 55 0.278 0.140 0.040 0.077 0.037

53 Test mission 2 131 0.296 0.144 0.005 33 0.077 0.0717

54 Survey mission 1 336 0.500 0.260 0.181 0.172 0.009

55 Survey mission 2 326 0.481 0.259 0.180 0.083 0.097

56 Survey mission 3 324 0.296 0.144 0.054 0.077 0.023
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APPENDIX

The Behavioral Elicitation Process

The judgment elicitation took place in two separate

workshops, the first held inHalifax, Nova Scotia, Canada,

from 8 to 10 December 2009, and the second was held in

Vancouver, British Columbia, Canada, from 21 to 23 July

2011. The assessments provided on the second workshop

were used to validate the assessments provided in the

first.

a. Expert selection

A preelicitation meeting was organized by the project

stakeholders and the facilitators. The aim was to define

the scope of the elicitation exercise, to select experts,

and to set out the seed questions that would be used to

familiarize the experts with subjective probability. Ex-

perts were selected based on their experience in AUV

operations, with an emphasis on the ISE Explorer ve-

hicle, but also with a wider representation to provide

another perspective. The experts for the first workshop

were as follows:

1) Chris Kaminski, from the International Submarine

Engineering in Canada: With 18 yr of experience in

AUVs, he was part of the Theseus AUV team and

had spent three seasons in the Arctic.

2) Jean-Marc la Framboise, from the International

Submarine Engineering in Canada. Currently an

AUV program manager, he had been involved in

AUV development since 1982, working as project

manager for 10 AUV development programs. His

background is in electrical engineering.

3) Jan Opderbecke, from the Institut Français de

Recherche pour l’Exploitation de laMer (IFREMER)

in France: He serves as the programmanager for a fleet

of Explorer AUVs.

4) Jeff Williams, from the University of Southern

Mississippi: He is an operations engineer with a

background in mechanical, electrical, and software

engineering, and has operational experience of an

Explorer AUV.

5) Steve McPhail, from the National Oceanography

Centre in the United Kingdom. He has 22 yr of AUV

experience, designing, building, and operating the

Autosub family of vehicles.

For the second workshop Jeff Williams was unavailable,

and was substituted by Richard Pedersen from the De-

fense Research and Development of Canada. He was fa-

miliar with the elicitation process, because he was one of

the observers in the first risk assessment exercise and had

experience as a project manager of AUV campaigns.

b. Preelicitation briefing

The preelicitation briefing note was distributed to

experts. The document contained five papers providing

an introduction into the elicitationmethod and details of

the SHELF package and supporting literature; the

background information for the elicitation; a list of at-

tendees, experts, and all other stakeholders; the sched-

ule for the workshop; extracts of bathymetric charts and

example ice coverage charts relevant to the study.

c. Training the experts

In previous studies seed variables have been used to

1) measure expert performance,

2) enable performance-based weighted combination of

experts’ distributions, and

3) evaluate, and to an extent validate, the aggregated

output.

Points 2 and 3 remain controversial; the best way to

combine expert judgment based on howwell they perform

in seed questions is not settled (Cooke and Goossens

2004). In this study two seed questions were used to train

experts and make them aware of the fallacies of expert

judgment assessments. The first question was, ‘‘What is

the probability of losing an AUV in an under ice shelf

mission of .10 km?’’; the second question was, ‘‘What is

the probability of an AUV abort during missions under

sea ice?’’ The facilitators knew the answers to the seed

questions from frequentist statistics, not from judgment.

These real facts allowed the facilitators to check that the

experts’ judgments were realistic. Figure A1 presents the

assessment for the two seed questions. The agreedmedian

for question 1 at 0.064was lower than the actual frequency

of loss of 0.22, because two AUVs have been lost in nine

missions under shelf ice. The 95% quantile of the agreed

distribution was 0.35 above the actual frequency of loss;

thus, at the 95% level of confidence that the actual

probability of loss would not be above the estimate from

the experts, their view agreed with actual loss statistics

to date.

d. Eliciting the five parameters of a probability
distribution

First, the plausible range was established by reaching

agreement collectively through discussion on the lower

and upper bounds such that it was extremely unlikely,

but not necessarily impossible, that the probability of

the fault leading to a loss in the described environment

lay outside these bounds. Second, each expert working

alone, without discussion, estimated the median and

then the lower and upper quartiles. After discussion of

the distributions arrived at individually by the experts,
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and sharing of knowledge and reasoning about the dif-

ferences, the experts reached consensus values for the

median and quartiles.
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