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[1] A grid derived from a new compilation of marine echo-sounding data sets has allowed us to visualize
and map the geomorphology of the entire continental shelf around South Georgia at an unprecedented level
of detail. The grid is the first continuous bathymetric data set covering South Georgia to include multibeam
swath bathymetry and represent them at a subkilometer resolution. Large and previously undescribed
glacially eroded troughs, linked to South Georgia’s modern-day fjords, radiate from the island, marking the
former pathways of large outlet glaciers and ice streams. A tectonic or geological influence is apparent for
the major troughs, where glaciers have exploited structural weaknesses on the continental block. Bed forms
lining the troughs give some first insights into glacial dynamics within the troughs, suggesting arteries of
fast flowing ice occupied these topographic depressions in the past and operated over both bedrock and
sedimentary substrates. On the outer shelf and within the troughs, large ridges and banks are also common,
interpreted as terminal, lateral, and recessional moraines marking former positions of ice sheets on the shelf
and their subsequent reorganization during deglaciation. A small trough mouth fan has developed at the
mouth of at least one of the cross-shelf troughs, demonstrating a focused sediment delivery to the margin.
Slides and slide scars are also present on parts of the margin, showing that margin stability, perhaps also
related to glaciation, has been an important factor in depositional processes on the continental slope.
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Implications of the new observations are that ice sheets have been more extensive on South Georgia than
any previous studies have reported. Their age may date back to late Miocene times, and evolution of the
shelf system has probably involved numerous late Cenozoic glacial episodes. However, relatively fresh
seafloor geomorphology coupled with evidence from other maritime-Antarctic islands (Heard Island and
Kerguelen Island) indicating extensive glaciation at the Last Glacial Maximum raises the possibility that
the extent of sub-Antarctic glaciation for the Last Glacial period has, until now, been underestimated.
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1. Introduction

[2] An increasingly important question in the sub-
Antarctic is, what was the maximum ice extent
during the last glacial cycle? The question is
critical because the varying size of maritime-
Antarctic ice sheets reflect past changes in climatic
gradients and provide constraints on relative sea
level, glacial isostasy and ice sheet/glacier fluctua-
tions. Isolated in the Southern Ocean and as one of
the largest sub-Antarctic islands, South Georgia
has a particularly long history of glacial geological
investigation, motivated by terrestrial geomorpho-
logical evidence that an independent ice sheet
glaciated the island during the Last Glacial Maxi-
mum (LGM) [Clapperton, 1971, 1990; Bentley et
al., 2007a]. However, longer-term knowledge of
the island’s ice sheets (in terms of size, extents,
configurations and sensitivity) is lacking. This can
be attributed to the fact that nearly all late Quater-
nary investigations to date have focused upon ter-
restrial sites, with specific research foci centered on
onshore geomorphological mapping [Clapperton,
1971, 1990; Clapperton et al., 1989; Bentley et
al., 2007a], paleolimnological studies [Wasell,
1993; Rosqvist et al., 1999; Van der Putten and
Verbruggen, 2005], radiocarbon-based geochrono-
logical models of glacial sediments [Gordon, 1987]
and, more recently, surface exposure age (cosmo-
genic isotope) dating of moraines formed during the
last deglaciation [Bentley et al., 2007a].

[3] In contrast, there have been no comparative
studies to understand the offshore glacial geomor-
phology and marine sedimentary environments

around South Georgia; such records harbor the
potential to reveal detail on LGM or pre-LGM ice
sheet configurations. Yet, despite frequent visits to
the island and its surrounding seas, no sediment
cores and relatively few subbottom acoustic data
have been recovered from the South Georgia conti-
nental shelf. As a result, there is still debate over the
extent and thickness of former ice sheets that cov-
ered South Georgia and, in particular, the last major
(late Quaternary, Marine Isotope Stage 2) ice cap.

[4] In terms of LGM ice sheet limits, two general
models currently exist: the first invoking that ice
sheets extended to the edge of the continental shelf
around South Georgia at the LGM [Clapperton et
al., 1989], the other proposing a more restricted
LGM limit at inner fjord limits based on recent
mapping and dating of the onshore Late Glacial to
Holocene moraines [Bentley et al., 2007a]. The
‘‘extensive LGM model’’ lacks geological data on
the continental shelf to support it. By contrast,
although the ‘‘restricted model’’ is supported by
radiocarbon dating from lake basal sediments in-
dicating ice free landscapes from 18.6 ka B.P.
onward [Bentley et al., 2007a; Rosqvist et al.,
1999], it has recently been the subject of some
debate [Van der Putten and Verbruggen, 2007;
Bentley et al., 2007b]. If a restricted LGM limit
is correct, then glacial ‘‘channels,’’ which are
known to extend offshore South Georgia in some
areas [Simpson and Griffiths, 1982], would predate
the LGM and might have formed during one or
more of the series of Pleistocene glaciations (of
MIS 20 and younger) that extended beyond LGM
limits in Patagonia [Rabassa et al., 2000]. How-
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ever, in the absence of offshore data to test these
models further, including marine sediment cores
where the transition between glacial diamicton and
biogenic sediments can be dated, both views re-
main plausible within the existing lines of evidence
for South Georgia glaciation.

[5] Here, we present a new compilation of bathy-
metric soundings from the South Georgia conti-
nental shelf and surrounding waters, which reveals
the glacial geomorphology of the shelf and slope at
an unprecedented level of detail. Using the new
compilation we are able to visualize the large-scale
geomorphology, and smaller three-dimensional

geomorphic elements of the submarine landscape.
In particular, the new data set provides evidence of
the former drainage patterns in past ice sheets on
South Georgia, allowing preliminary interpreta-
tions to be made concerning past ice sheet extents
and glaciodynamics. We show that past glaciations
of South Georgia were extensive [cf. Clapperton et
al., 1989].

2. Tectonic and Physiographic Setting

[6] South Georgia is the largest island of the Scotia
arc, situated in the northeastern Scotia Sea
(Figure 1) [MacDonald and Storey, 1987]. It com-

Figure 1. Regional location map and setting of South Georgia. The island forms part of the Scotia arc and lies at the
boundary between the South American and Scotia plates. Position of the Polar Front and other oceanic fronts
illustrated. sACCF/sACCB, southern Antarctic Circumpolar Current Front/Boundary; sAF, sub-Antarctic Front. Polar
stereographic projection.
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prises one of a series of islands and submarine
ridges, which together characterize the North Sco-
tia Ridge, a tectonically active, complex, and
convergent boundary which accommodates sinis-
tral strike-slip motion between the South American
and Scotia plates [Cunningham et al., 1998]. South
Georgia’s ongoing tectonic history is important to
ice sheet development in sub-Antarctica for two
reasons: (1) The island may still be uplifting owing
to oblique convergence between the South Amer-
ican and Scotia plates, although its overall history
of uplift is still poorly known. (2) The island has
probably maintained its present position, relative to
the South American plate, since the late Miocene
when seafloor spreading in the West Scotia ridge
and in the Central Scotia Sea ceased [Barker and
Hill, 1981; Maldonado et al., 2006]. Thus, it has
been a stable site for potential glaciation since
�6.4 Ma.

[7] Present-day South Georgia lies �350 km south
of the mean position of the Polar Frontal Zone
(Figure 1). Two main NW–SE trending mountain
ranges (the Allardyce and Salvesen ranges), divide
the 175 km-long island to the north and south by a
relief of up to 2960 m (above sea level). Accord-
ingly, modern topography has a strong orographic
control, which in turn influences precipitation
patterns over South Georgia. Sea surface temper-
atures exhibit strong and persistent gradients north-
south (with latitude) either side of the island, while
Antarctic sea ice limits also fluctuate between the
southern and northern extents of the island [Bentley
et al., 2007a]. Precipitation, temperature and ocean
circulation show strong gradients and high vari-
ability around South Georgia, often exhibiting
interannual changes or anomalies, and hence sig-
nificantly perturb environmental conditions there
[Meredith et al., 2003]. In particular, environmen-
tal conditions are closely connected to the behavior

Figure 2. Data distribution map for the South Georgia bathymetric compilation. Areas of primary, multibeam swath
bathymetric data (dark gray), and secondary older multibeam swath, BAS, Hydrographic Office and Fisheries single-
beam data (light gray) are shown. Black line defines approximate edge of the continental shelf. WGS84 Mercator
projection.
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of the Antarctic Circumpolar Current and related
deep water tongues, which wrap around the island
to its east and north (Figure 1). They provide
influxes of heat to the waters around South Georgia
and have been shown to affect local climate, from
the deeper ocean onto the shelf [Meredith et al.,
2003].

[8] In combination these physiographic conditions
result in a highly sensitive maritime glaciological
regime on South Georgia. Ice fields now occupy
the central spine of South Georgia, from which
glaciers radiate; most extending down through
glacial valleys as tidewater glaciers of the modern
coastline [Gordon et al., 2008]. Suites of moraines
on the island’s lowlands, particularly along the
northeast coast, demonstrate former limits of gla-
ciers and ice sheets [Bentley et al., 2007a]. Trim-

lines provide evidence of phases of more extensive
ice sheet growth at higher elevations [Clapperton
et al., 1989]. Glaciers have also carved out rela-
tively deep fjords along the South Georgia coast-
line and, farther offshore Simpson and Griffiths
[1982] previously identified several seabed ‘‘chan-
nels,’’ which extend from the modern-day fjords
and attributed their presence to glacial activity.
Prior to this study, these were the only observations
of continental shelf geomorphology offshore South
Georgia.

3. Data Compilation

[9] We constructed a subkilometer-scale bathymet-
ric compilation grid to characterize the geomor-
phology of the South Georgia shelf (Figure 2). The
new seafloor bathymetric grid (Figure 3) was

Figure 3. Newly compiled bathymetric map of the South Georgia continental shelf (223 m cell size grid, UTM
Zone 24S projection). Note the aligned trough systems widening from fjordal areas toward the outer shelf, converging
tributaries, banked shelf edge features, well-defined shape of the continental margin, and distribution of troughs north
and south of the island. Contours on the shelf are at 350, 200, and 100 m. Color bar is skewed toward these water
depths on the shelf. Hillshade of DEM of South Georgia from P. Fretwell. Locations of Figures 4–8 shown inset.
Numbered troughs (in black) relate to the statistics in Table 1 and to references in the text. BOI, Bay of Isles; POH,
Prince Olav Harbour; AB, Antarctica Bay; FB, Fortuna Bay; CB, Cumberland Bay.
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produced from a number of different data sources
(Table 1 and Figure 2). These included the follow-
ing: a collation of BAS multibeam echo-sounding
data acquired over several years aboard the RRS
James Clark Ross; older BAS single-beam echo-
sounding data; Hydrographic Office single-beam
acoustic and swath bathymetric data; various fish-
eries echo sounder data sets; and GEBCO bathy-
metric data for areas lacking higher-resolution
coverage [GEBCO, 2003].

[10] Multibeam data were cleaned and compiled
using MB software, and subsequently gridded
using the TopoGrid program in ArcGIS 9.2 with a
‘‘natural neighbor’’ gridding algorithm [cf. Nitsche
et al., 2007]. The investigated area covers a region
of continental shelf and slope spanning 320 by
160 km (>50,000 km2) in size. Lateral resolution of
the bathymetric grid (cell size) is 223 m (equivalent
to 0.002 decimal degrees of latitude at 54�S,
37�W), providing good spatial resolution for the
interpretation of large-scale glacial geomorpho-
logical features, but falling below the quality of
data typically required for more detailed geomor-
phic analyses (e.g., from multibeam data, optimal
spatial resolution on shallow shelves of 10–20 m).

[11] Relatively few artifacts are present on the
compiled bathymetric map (Figure 3), but where
present these include unrealistically deep holes,
coherent patches of noise and edge effects, all of
which probably result from less reliable outer

beams of multibeam swaths, or gaps in the data
coverage. For the most part, data coverage is good
on the continental shelf. However, the varying
distribution of multibeam swath data means there
is a bias toward resolving features to the north of
South Georgia.

[12] Given the comparatively coarse resolution of
our data set we supplemented interpretation of the
regional grid by examining some higher-resolution
multibeam swath bathymetric data (Kongsberg
Simrad EM120 data comprising water velocity
profile-corrected and unedited swaths, gridded with
a 30–50 m cell size) from selected areas of the
continental shelf. We also utilized information
from the Olex global bathymetric database, a form
of single-beam echo sounder used commonly by
commercial fishing vessels, and employed recently
in the mapping of offshore portions of the last
British Ice Sheet [Bradwell et al., 2008]. The data
set comprises gridded point data, with a 5 m cell
size, 1 m vertical resolution, and a positional
accuracy better than 10 m. Both data sources
served to provide more detailed geomorphological
records of paleo–ice flow.

4. Results

[13] Our new bathymetric grid affords significant
improvements upon older bathymetric maps of the
broad continental shelf around South Georgia

Table 1. Data Sets Used in the South Georgia Bathymetric Compilation

Survey ID Data Type Year Reference/Source

JR167/168 Kongsberg EM120 multibeam 2007 BAS
JR100 Kongsberg EK60 echo sounder 2003 BAS
JR103 Kongsberg EM120 multibeam 2003 BAS
JR107 Kongsberg EM120 multibeam 2004 BAS
JR109 Kongsberg EM120 multibeam 2004 BAS
JR114/121 Kongsberg EM120 multibeam 2005 BAS
JR116 Kongsberg EM120 multibeam 2004 BAS
JR149 Kongsberg EM120 multibeam 2006 BAS
JR60 - - BAS
JR69 Kongsberg EM120 multibeam 2001 BAS
JR72 Kongsberg EM120 multibeam/EK500 echo sounder 2002 BAS
JR82 Kongsberg EK60 echo sounder 2003 BAS
JR92 Kongsberg EK60 echo sounder 2003 BAS
JR93 Kongsberg EM120 multibeam 2003 BAS
JR134 Kongsberg EM120 multibeam 2005 BAS
JR77/78 Kongsberg EM120 multibeam 2004 BAS
BAS/UK Hydrographic Office tracks Kongsberg EA600 single-beam - UKHO
HO chart no. 3596 soundings from scanned charts - UKHO
HO chart no. 3597 soundings from scanned charts - UKHO
Fisheries data single-beam echo sounders

(FV Argos Helena, FPV Dorada)
2003/04 -

GEBCO database global bathymetric compilation 2003 GEBCO [2003]
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(Figure 4). The newmap reveals (1) shallower water
depths on the shelf than the previous average,
(2) subtle differences in the shape of the shelf and
margin and (3) more detailed representation of
geomorphic features on the shelf (Figures 3 and
4). We describe these geomorphic elements herein.

4.1. Trough Systems

[14] The most prominent large-scale geomorphic
features on the seafloor around South Georgia are a
series of long and relatively deep cross-shelf
troughs (250–380 m water depth), with interven-
ing shallower banks (<80–200 m water depth),
which extend from the modern-day fjords toward
the shelf edge (Figures 3, 5a, 5b, and 6 and
Table 2). At least ten separate trough systems are
identified around South Georgia, seven of which
discharge to the north of the island, and three to the
south (Figures 3, 5, and 6a). The pattern of troughs
is more or less radial from the present landmass, but
with a strong sense of drainage to the north of the
island and less well defined drainage pathways
south of South Georgia (Figure 3); this discrepancy
could be related, in part, to the lower density of data
there. Troughs measure between 2 and 5 km wide in
the inner shelf and fjords, widening to 12–26 km on
the middle to outer shelf. They vary between �40–
102 km in length and have maximum amplitudes
ranging from relatively shallow (�80 m) up to
�250 m (Table 2). Along the troughs, depths tend
to decrease very gradually seaward (compare to
troughs offshore West Antarctica [Nitsche et al.,
2007]) At times of glacial maxima, assuming eu-
static falls of �127 m (max. estimate) [CLIMAP
Project Members, 1981; Fairbanks, 1989; Lambeck

et al., 2002] at least part of this shelf area would
have been emergent, although in practice ice sheet
loading may have kept virtually the entire shelf
below sea level.

[15] Many of the troughs are fed by more than one
tributary, these often converging in the inner shelf
areas (Figures 3, 4, and 5a). Good examples
visualized on the new data set north of the island
include a 68 km-long convergent system, which
feeds from Prince Olav Harbour, Antarctic Bay and
Fortuna Bay (Trough 4; Figure 3 inset). A 50 km-
long trough also connects three large converging
tributaries north of the Bay of Isles (Troughs 2 and
3, Figure 3 inset and Figure 5a), and a 40 km-long
trough is formed by converging tributaries north of
Bird Island (Trough 1, Figure 3 inset and
Figure 5c). To the south of South Georgia, groups
of 2–3 troughs extend from fjord outlets and
typically converge on the inner shelf to form
broader troughs seaward (Figure 3 and Table 1).

[16] Cross-profiles of all the troughs show that they
are normally u-shaped, with steep valley sides and
flat bottoms (Figure 6a). In between the troughs,
shelf profiles show reverse gradient slopes with
characteristically deep inner to midshelf bathyme-
try, and shallow, positive-relief banks at the outer
shelf (Figure 6b). By contrast, the long axis pro-
files of several of the troughs are relatively flat,
except for in the fjords where isolated depressions
occur as a result of overdeepening, most likely by
local glacier erosion, or on the inner shelf where
raised bedrock platforms are encountered (Figures 6c
and 6d).

[17] On the basis of their distinct profiles, cross-
shelf alignment, radial drainage pattern, and con-

Figure 4. Comparison of (a) GEBCO shelf bathymetric grid against (b) the new BAS bathymetric compilation.
Note the level of detail provided by the new compilation.
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nection to modern upstream glaciers, we interpret
the troughs as features formed by glacial erosion.
Although we have little data on the seafloor
lithologies, on the basis of the trough morphology,
seafloor profiles, and older geophysical surveys of
the shelf it is likely that Mesozoic sedimentary and

volcanic rocks (that outcrop onshore) extend be-
neath the inner shelf. Cenozoic sediments form the
outer parts of the continental shelf [Simpson and
Griffiths, 1982].

Figure 5. (a–e) Planform details of seafloor bathymetry from selected areas of the South Georgia continental shelf.
A variety of convergent seabed troughs, ridges and banks (moraines, arrowed), a slope trough mouth fan (TMF),
gullies, and canyons are imaged. See Figure 3 inset for locations. (f) Three-dimensional scene of large canyons (C)
extending down the continental slope and rise to the abyssal plain, northwest of South Georgia. Note the channels are
separated by large sediment lobes (L). They are interpreted as contourite or debris flow features, interspersed with
small sediment drifts. See Figure 3 inset and Figure 5e for location.
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4.2. Moraines

[18] Large straight to arcuate ridges and banks are
visualized in three situations on the South Georgia
continental shelf, superimposed on the trough mor-
phology: (1) at the seaward limit of seven of the
cross-shelf troughs, (2) along the axis of at least
four of the shelf troughs, and (3) on areas of
seafloor between trough features north of South
Georgia (Figures 5a, 5b, 5c, and 5d). These range
in size from large shelf edge ‘‘banks’’ to smaller
ridges, with widths of 1–12 km and lengths from a
few km up to �36 km. Ridges have a subtle relief,
from a few meters up to >75 m height (e.g.,
Figure 5, Profiles 2 and 4). Profiles which extend
down the trough axes and between troughs high-
light these ridges clearly, at both midshelf posi-
tions, and shelf edge extents (Figures 6b and 6c).

[19] Shelf-edge ridges, which cross the mouths of
several glacial troughs northwest of the island have
arcuate geometries, gentle proximal slopes and
steeper distal flanks which are continuous with
the shelf break. The landward steepening of the
trough axis gradient in these areas produces a
characteristic asymmetric wedge-like cross-profile
(e.g., Figures 5a and 5b, Profiles 1 and 3; see also
Figure 6c). We interpret such shelf-edge ridges as
ice-proximal grounding line (terminal) moraines,
or grounding zone wedges, formed as depositional
bodies at marine-based ice sheet margins on the
basis of their geometry, size, distinct positive relief
and association with glacial troughs [Hambrey,

1995; cf. Bart and Anderson, 1997; Shipp et al.,
2002; Shaw et al., 2006; Ottesen et al., 2007].
Some of the best examples of shelf ridges occur
west of South Georgia, where large plateaus of
troughless continental shelf are bounded toward the
shelf edge by distinct strings of arcuate ridges and
banks (Figure 5c). Their profiles, peaked crests and
geometry indicate that they are also terminal mor-
aines (Figure 5c, profile 4).

[20] On higher-resolution Olex bathymetry from
areas between troughs 4 and 5 (Figure 3 inset),
we also image large banks at the shelf edge, up to
15 km long, 4 km wide and several tens of meters
high (Figure 7). The improved spatial resolution of
the Olex data set reveals that the shelf edge banks
here are draped and surrounded by a number of
shorter, lobate to long, arcuate to curvilinear ridges
(Figure 7). Their arrangement is complex, and most
have a shelf-strike orientation (�2.5–10 km long,
�10–30 m high, �500–950 m wide). Some of the
most distal (seaward positioned) ridges are also
truncated by better preserved landward positioned
ridges (e.g., Figure 7b). We interpret the ridges as
typical high-latitude margin ice sheet end moraines
[e.g., Stoker and Holmes, 1991; Bradwell et al.,
2008], and attribute their formation to a number of
individual oscillatory episodes of ice sheet activity
offshore South Georgia. Our observations also
imply at least two generations of moraine forma-
tion, and consequently, that the seafloor has been
subject to repeated grounding line advances, or

Figure 5. (continued)

Geochemistry
Geophysics
Geosystems G3G3

graham et al.: paleo–ice sheet drainage on south georgia 10.1029/2008GC001993

9 of 21



Figure 6. Seafloor profiles of the continental shelf around South Georgia illustrating (a) a series of u-shaped cross-
shelf troughs north of the island, labeled Troughs 1–7; (b–d) reverse gradient cross-shelf profiles with moraines at
midtrough and shelf edge positions; (d and e) a trough mouth fan at the seaward extent of one of the glacial troughs.
Slides and debris flow channels have also influenced the part of the margin near the trough mouth fan, imaged in a
3-D scene in Figure 6e. See Figure 3 inset for locations.
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readvances, toward the shelf edge in the past. It
remains uncertain whether these advances occurred
during successive cycles of glaciation, or during
the course of a single glacial episode. A series of
smaller ridges in parallel sets (5–6 m high, 1–2 km
length, 200–300 m wide), which occurs between
the larger ridges, also resemble the form of ‘‘De
Geer’’ moraines (Figure 7). Characterized by their
flow-transverse orientation, slightly arcuate to
anastomosing form, and occurrence in parallel
clusters [Lundqvist, 2000], such ridges are usually
indicative of short pauses in a marine-based
grounding line during ice sheet retreat [e.g., Todd
et al., 2007]. Their formation is believed to result
from the deposition of subglacially advected ma-
terial, associated with a deforming ice sheet bed
[Linden and Møller, 2005].

[21] Less well defined ‘‘sills’’ occur across the
centers of troughs in the middle shelf and fjord
areas (Figures 5a and 6c). In contrast to the shelf-
edge moraines, these ridges are generally smaller
and have symmetric cross-profiles with more
rounded crests (e.g., Figures 5a, profile 2, and
Figure 6c). Although limited by the data resolution,
we consider these likely candidates for morainic
landforms formed under two possible scenarios: (1)
during smaller readvances of the ice sheet in the
troughs during a longer-term phase of deglaciation
or (2) as stillstands of the ice margin during a
continuous deglaciation [cf. Bradwell et al., 2008].

These interpretations are based on the ridge geom-
etries (parallel to the shelf break and perpendicular
to radial trough orientations) as well as positive
seafloor relief (Figure 6c). Examples of moraines
lining cross-shelf troughs and forming sills at the
mouths of glacial fjords are numerous [e.g., Davies
et al., 1997].

[22] A lone trough-mouth lateral ridge is also
identified parallel to the long axis of a single
trough aligned across the shelf northward of the
Bay of Isles (Troughs 2 and 3, Figure 3 inset and
Figure 5a). Owing to its cross-shelf alignment,
straight form and pointed crest the ridge is inter-
preted as a lateral moraine formed at the shear
margin of a glacier which once occupied the trough
(Figure 5a; compare to example given by Bartek et
al. [1997]).

[23] Finally, closer to the modern shoreline, east of
South Georgia, an assemblage of arcuate ridges is
well imaged over a shallow part of the seafloor
(Figure 5d). This group comprises gently arced
ridges measuring 350–1000 m in width, with
lengths between 2 and 13 km and a relief of 3–
15 m. Cross-profiles of the ridges show a rugged
and ridged seafloor expression (Figure 5d, profile
5). The ridges are likely to be recessional moraines;
depositional features formed during progressive ice
margin retreat or by fluctuations of a relatively
slower moving part of the paleo–ice sheet [cf.
Shaw et al., 2006; Ottesen et al., 2007; Todd et
al., 2007]. They follow the general trend of the
coastline in parallel sets, and are found adjacent to
smaller fjordal outlets where modern glaciers cur-
rently reside (Figure 5d).

4.3. Shelf Margin Morphology and Features

[24] On the slope of the continental block, north-
east of the recessional moraines, one part of the
margin is clearly lobate in form, covering an area
of seafloor �380 km2 in size, and situated at the
mouth of one of the most prominent cross-shelf
troughs (Figures 5b and 6e). Judging by the convex
shape of the continental margin, low-angle slope
profile (0.85� on part of the upper surface, <6� on
lower slope), and the smooth, arcuate slope and
rise in this area, the feature is interpreted as a small

Table 2. Characteristics of Cross-Shelf Troughs, Off-
shore South Georgiaa

Trough (Map
Reference,

Figure 3 inset)

Max.
Length
(km)

Trough
Widths

(min-max, km)

Max.
Amplitude

(m)

Number
of

Tributaries

1 40 2–13 180 2
2/3 50 2–15 250 3–4
4 68 3–12 90 >3
5 69 4–12 100 2
6 47 5–26 150 2
7 69 2–15 165 >3
8 71 2–16 200 >2
9 102 2–20 190 >2
10 57 2–12 80 2

a
See Figure 3 inset for locations.

Figure 7. Planform images of Olex echo sounder bathymetry data for an area north of South Georgia, between
Troughs 4 and 5. (a and b) Two planview visualizations of large sedimentary banked moraines and arcuate ridges.
(c) Arbitrary cross-sectional profile [X-X0] through 5 of the main ridges and smaller ‘‘De Geer’’ moraines. (d) Sketch
interpretation of the large banks and superimposed moraines. Horizontal datum is WGS84; vertical reference is
equinoctial spring low water.
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trough mouth fan, formed by focused delivery of
sediment to the shelf margin (Figures 6d and 6e)
[Stoker, 1995; Vorren and Laberg, 1997]. Trough
mouth fans are normally formed of prograded and
stacked sequences of glacigenic debris flows
sourced from the front of ice streams, which
occupy cross-shelf troughs [e.g., Cooper et al.,
1991; Vorren et al., 1998]. The bulge visualized
in the seafloor contours (e.g., Figure 5b) can be
explained by the presence of built out fan material
and is typical of large glacial fans of the Northern
European continental margin (e.g., Byørnøya Fan
[Hjelstuen et al., 2007]).

[25] Other sedimentary mounds occur on the lower
slope and rise in the same area (Figure 6e). These
may represent additional trough mouth fans or
slide bodies derived from margin deposits, as
suggested by their long-axis profile, planform
geometry, and by the presence of slide scar head-
walls at the shelf break adjacent to large sedimen-
tary accumulations (Figure 6e). Channels are also
carved through and around these deposits, proba-
bly reflecting the downslope movement of sedi-
ment and water in debris flows or turbidity currents
(arrowed in Figure 6e) [Pudsey, 2000; Dowdeswell
et al., 2004].

[26] Canyons and gullies also dominate the sea-
floor morphology on the slope and continental rise
in at least two places offshore South Georgia
(Figures 5e and 5f). Large, gently sinuous to
straight canyons extend for >30 km in the best
examples (northwest of the island), where they are
more than 2–3 km wide, with amplitudes of 100–
450 m. We interpret their morphology as having
formed by the interaction of turbidity currents and
contour currents. Smaller erosional gullies also
incise the flanks of the canyons and intervening
highs (Figure 5e). Large lobate mounds imaged
between channels may be drifts formed by the
entrainment of fine-grained components of turbidity
currents or via downslope debris flows (Figure 5f)
[cf. Nitsche et al., 2000]. The evidence presented
here is strongly suggestive of the presence of mobile
sediment on the outer shelf and margin around
South Georgia, indicating that marginal features
are formed of unconsolidated sediments as opposed
to harder bedrock.

4.4. Bed Forms

[27] Glacial bed forms on the shelf are generally
poorly resolved on the regional bathymetric grid, at
or near the spatial resolution of the data set (at
223 m). Multibeam swath bathymetric data used in

the compilation of our grid reveal more detailed
imagery of the seafloor in one of the cross-shelf
troughs northwest of South Georgia (Trough 1,
Figure 3 inset; Figure 8, 30–50 m cell size). Here,
we identify an assemblage of short, slightly atten-
uated to highly elongate and streamlined bed
forms, oriented along the main axis of the cross-
shelf trough at the seabed. They have lengths of
�0.4–10 km, widths < 250–500 m, heights < 20 m,
and length:width ratios up to a maximum of �24:1.
Highs surrounding the trough also exhibit stream-
lined grooves, which align with the bed forms
within the trough itself (Figure 8). The longest
and most elongate features occur seaward in the
center of the trough, while shorter forms lie land-
ward at the mouths of tributaries and at the tribu-
tary confluence (Figure 8). Several of the bed
forms are also continuous across a well-imaged
midtrough moraine, which sits transversely across
the trough axis on the midshelf.

[28] On the basis of their geometry and form we
interpret the bed forms as subglacial drumlins and
lineations, characteristic of formation in a sub–ice
sheet environment via a combination of glacial
erosion, subglacial sediment deformation and de-
position [cf. Shipp et al., 2002]. It is unlikely that
elongate drumlins and lineations are formed under
areas of ice sheets that are moving slowly
[Andreassen et al., 2008]. Instead, there is now a
general consensus that drumlins and attenuated
lineations form key components of ice stream land
systems, and typically characterize increasing
downstream velocities in paleo–ice stream path-
ways [Wellner et al., 2001; Ó Cofaigh et al., 2002;
Anderson and Oakes-Fretwell, 2008; Ottesen et al.,
2008]. Therefore, we consider their identification
here as consistent with interpretations of former,
relatively fast flowing or accelerating ice within the
trough [Stokes and Clark, 1999].

5. Paleo–Ice Sheet Drainage
and Shelf Evolution

[29] Imaged here for the first time, the trough-bank
morphology of the South Georgia continental shelf
and associated geomorphic features (streamlined
bed forms, moraines, trough mouth fans) are all
hallmarks of a heavily glacially influenced seafloor
(Figure 9). They indicate that glacial deposition
and erosion has been a major influence over the
development and current form of the South Geor-
gia continental shelf and margin. The trough sys-
tems demonstrate the presence of widespread
grounded ice on the shelf, probably on more than
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one occasion, having formed via a combination of
focused glacial erosion (in the troughs) and slower
erosion/aggradation on intervening shallower
banks. Suites of moraines and sedimentary banks
also indicate that at least one previous ice sheet has
been extensive on the South Georgia continental
shelf, extending to the shelf edge in at least several
locations, where it formed ice marginal landforms.
The most prominent ridges at the shelf edge are
characteristic of terminal moraines that record
pinning points and depositional centers at the
maximum extent of grounded ice limits (Figures
7 and 9). Smaller midshelf moraines record degla-
cial stages or previous terminal limits of one or
more former ice sheets. Furthermore, the trough
systems we image on the bathymetric data are
consistent with an ice sheet whose glacidynamics
were controlled by radial arteries of topographical-
ly controlled, faster flowing ice in the form of large

outlet glaciers or ice streams (Figure 9). Cross-
shelf troughs are well-known focal areas for ice
flow convergence and acceleration in the Antarctic,
and northern hemisphere, midlatitude Quaternary
ice sheets [e.g., Canals et al., 2002; Ottesen et al.,
2005]. Bed form evidence within one of the
troughs, in the form of elongate lineations, with
length:width ratios of >10:1 (up to 24:1 in our
study), is widely regarded as being indicative of
faster flowing elements in grounded paleo–ice
sheets [Stokes and Clark, 1999; Wellner et al.,
2005; Ó Cofaigh et al., 2002, 2005; Mosola and
Anderson, 2006]. Drumlins which occur landward
of these lineations also support a concept that the
last paleo–ice sheets to cross the shelf were accel-
erating as they did so, within the troughs [Wellner
et al., 2001; Ó Cofaigh et al., 2002]. This obser-
vation is supported by the convergence of glacial
tributaries on the middle shelf which further

Figure 8. Unedited, water-velocity corrected multibeam swath bathymetric data from a glacial trough (Trough 1)
northwest of South Georgia. Crudely streamlined bedrock characterizes the tributary areas, while the trough
confluence is lined with elongate drumlins. Seaward of the confluence, several highly elongate lineations are imaged
on the trough floor. Black arrows depict interpreted ice flow direction. Grid cell size 30–50 m (0.0008 degrees).
Mercator projection. See Figure 3 inset for location.
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implies accelerating paleo–ice sheet conditions for
some of the cross-shelf troughs. Given that these
bed forms also crosscut midtrough moraines (Fig-
ure 8), and that other shelf-edge moraines overprint
one another (Figure 7), we propose a minimum of
two grounding line advances over the shelf in the
past.

[30] The continental margin itself has likely been
extended and enlarged through progradation as a
result of ice sheets feeding sediment onto the shelf,
and focusing sediment delivery along fast flow
arteries. Indeed, several glacial episodes have
probably served to overdeepen the troughs on the
shelf thereby accentuating the pathways for ice
drainage along these routes. In the absence of a
chronology to constrain the age of trough mor-
phology, it is acknowledged that this drainage
evolution may have begun pre-Quaternary, given

that South Georgia has been a stable site for
glaciation since its pinning by Shag Rocks Passage
at �6 Ma [Barker and Hill, 1981]. In this setting
south of the polar front, with a high relief, and in
maritime conditions with continually high precip-
itation rates, we would expect the island to be
consistently colder than South America during
glacial episodes. On this basis, South Georgia
should possess a glacial history at least comparable
with that of Patagonia, where glaciation began in
the Late Miocene [Rabassa et al., 2005].

[31] The single trough mouth fan identified off-
shore eastern South Georgia is a probable concen-
trated sink for the sediment carried by a former
glacial outlet (Figure 9); its existence downstream
from a cross-shelf trough, coupled with streamlined
bed form evidence elsewhere strongly suggests the
repeated presence of former ice streams in South

Figure 9. (a) Summary of geomorphic interpretations from the new bathymetric grid. Black polygons are features
interpreted as moraines which reside at the seafloor on the continental shelf. Grayed areas depict fast flow outlets
along cross-shelf troughs (note parts of the margin also shaded owing to similar water depths). Geological structures
are also illustrated; the troughs show a strong association with the location of major faults extending from the west-
east dislocation zone. TMF, trough mouth fan. (b) Olex echo sounder data set for the Icelandic continental shelf
showing bathymetry characterized by radial, glacial cross-shelf troughs.
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Georgia ice sheets. The fan thus constitutes a
potential locus for an extended sedimentary archive
of ice movements offshore South Georgia. Other
cross-shelf troughs imaged on the new bathymetry
may also be associated with additional trough
mouth fans but if so, the current bathymetric data
are insufficiently detailed to reveal them.

[32] Elsewhere on the margin, canyons, gullies,
and sediment drifts reveal that downslope and
along-slope processes have been active on the
South Georgia continental slope and rise. Channels
and sediment mounds imaged in the new bathym-
etry are linked tentatively to sediment transport to
the margin (through meltwater plumes, turbidites
and debris flows) perhaps during glacial episodes.
The form and orientation of the channel/drift
systems are also likely to be influenced to some
degree by fluxes of a Weddell Sea derived bottom
current, which flows along the base of the conti-
nental slope and rise toward the Argentine Basin to
the northwest (Figure 1) [Locarnini et al., 1993;
Cunningham and Barker, 1996]. In contrast, slides
and their headwalls imaged in our bathymetric grid
might relate to mass wasting events as a result of
lowered margin stability through rapid deposition
on the upper continental slope during glacial
stages.

6. Controls on Trough Systems and Ice
Sheet Configurations

[33] Morphologically, the orientation of many of
the cross-shelf troughs, particularly north of South
Georgia show a consistent NE–SW pattern (Figure
9a), revealing a hitherto unrecognized structural
control on glacial drainage, as nearly all of the
cross-shelf troughs follow structural geological
elements of the continental block (Figure 9a).
Our correlation of terrestrially mapped faults with
troughs extending offshore of South Georgia show
that past ice streams have exploited weaknesses in
the bedrock structure (mainly cross-faults extend-
ing away from the Cumberland Bay Dislocation
Zone, Figure 9) and hence that their locality, as
well as straight geometry, has been directly influ-
enced by the bedrock geology. Ice stream troughs
on the circum-Antarctic shelves are often tectoni-
cally controlled (e.g., Amery Trough [Cooper et
al., 1991]) and the loci of many modern Antarctic
ice streams are known to be controlled by subgla-
cial geology [Bell et al., 1998; Anandakrishnan et
al., 1998]. Because the ice streams that drained ice
away from the island are also interpreted to have
crossed both bedrock and sedimentary substrate,

increasingly erodible substrates seaward of South
Georgia may be partly responsible for past ice flow
velocities and ice stream initiation in paleo–ice
sheets on South Georgia [Wellner et al., 2001].
Rapid flow of ice in ice streams has been shown to
originate via basal sliding and deformation of a
subglacial till layer [Alley et al., 1986; Kamb,
2001; Ó Cofaigh et al., 2005]. Soft shelf sediments
and their availability would therefore allow for fast
flow in South Georgia’s ice sheets and facilitate the
high sediment supply required in order to maintain
high flow rates in their ice streams.

[34] South Georgia’s geology and its effect on
physiography has also served to influence its
patterns of glacierization; recent studies have
shown that glacier mass balance exhibits a strong
north-south gradient over the island today [Gordon
et al., 2008]. Accordingly, the spatial patterns of
paleo-ice stream troughs on the shelf demonstrate a
similar bias toward the north of South Georgia
where troughs are more numerous and well-de-
fined, and where moraines are well developed.
Possible explanations for this spatial arrangement
may be increased solar radiation on the northern
side of the paleo–ice sheet, increasing surface melt
and water supply to the ice sheet bed, thereby
enhancing northerly ice flow. Alternatively, past
variations in ocean temperature (and hence air
temperature and ice surface temperature) and pre-
cipitation patterns may have influenced ice sheet
mass balance across the north-south divide, with a
less active erosive environment south of the island,
and a focused glacial discharge to the north. The
well-formed shelf edge moraines north of the
island can be best explained as a consequence of
rapid basal melting through interaction with rela-
tively warm Circumpolar Deep Water, tongues of
which encircle the continental block east and north
of South Georgia today (Figure 1). In turn, the
absence of similar moraines south of the island
may be attributable to the bias in multibeam data
coverage toward the north of the island (Figure 2).

7. Analogues and Implications for Last
Glacial Maximum Glaciation

[35] Considering the newly discovered ice drainage
patterns presented here, we suggest possible com-
parisons with suitable analogs from other maritime
glaciated subpolar islands. Icelandic glaciations
during the Quaternary have been especially well
studied in recent years [Andrews, 2008], and the
offshore domains surrounding Iceland are relative-
ly well understood. The region therefore lends
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strong support to our interpretation of extensive
paleoglaciations in South Georgia, on the basis that
their analogous topographic and environmental
settings leads one to expect similarities in their
past glacial regimes.

[36] Both regions share physiographic character-
istics, being maritime glaciated areas strongly in-
fluenced by the movement of polar frontal zones
and oceanographic changes. Similar maritime and
climatic conditions suggest that the degree and
scale of ice sheet growth and decay is likely to
have been comparable in both localities, with
extensive offshore ice sheets documented on the
Icelandic continental shelf since the late Pliocene
[Ingólfsson, 1991].

[37] We use Olex echo sounder bathymetry recent-
ly compiled for the Icelandic shelf to demonstrate
that South Georgian ice sheets had a similar radial
patterns of shelf drainage to those in Icelandic
glacial configurations (up to 18 shelf troughs have
been reported from Iceland [Andrews et al., 2000]),
implying that paleo– ice sheets on respective
shelves were controlled at their maximum extents
by drainage along topographically controlled outlet
glaciers (Figure 9b). We also recognize a strong
potential in each region for the development of ice
streams due to high precipitation (at relatively
warm temperatures) as a result of their comparable
maritime settings, producing mainly wet-based
glacial systems with high net-balance gradients
[Canals et al., 2002]. Furthermore, high budget
gradients, which are common to maritime ice
sheets, will produce significant rates of subglacial
erosion [Hooke, 2005], consistent with the obser-
vation of eroded troughs on both shelves today.
Additionally, the outer continental shelf and termi-
ni of Icelandic cross-shelf troughs are characterized
by large moraines, similar to those imaged around
South Georgia in this study, while numerous ridges
and ice margin pinning points also characterize
areas of the continental shelf landward of the Ice-
landic shelf break [Andrews et al., 2000; Bingham et
al., 2003].

[38] In view of these similarities we again pose the
question, what was the extent of the LGM ice sheet
in sub-Antarctica? Recent work in Iceland has
indicated an extensive LGM ice sheet on the
continental shelf [Andrews et al., 2000], contrary
to earlier investigations that interpreted a restricted
LGM ice sheet with a largely pre-LGM shelf
geomorphology [Hjort et al., 1985]. Although
there is no direct evidence for any similar extensive
marine ice sheet operating during the LGM in

South Georgia, the possibility of an expansive
glaciation during the LGM is supported by our
data. The existence of subglacial bed forms in at
least one trough demonstrates that ice sheet activity
has been extensive relatively recently, generally
unaffected by subsequent erosion or burial, within
the constraints of our data resolution. Also, the
preservation of shelf-residing moraines, akin to
other high-latitude examples, supports a record of
reorganization and oscillation of the ice sheet and
its fronts during deglaciation (e.g., recessional and
terminal moraines, Figures 5d and 7). On many
continental shelves similarly exposed ice marginal
features relate to young ice sheet events interacting
with the seabed [e.g., Bradwell et al., 2008], while
older features are generally removed or buried
[Nygård et al., 2004]. In support of a young age
for the moraines, if we assume typical average
sedimentation rates for the South Georgia outer
continental shelf of anywhere from 5 to 800 cm/ka
(sensu minimum sedimentation rates for postgla-
cial times on the Norwegian glaciated shelf [e.g.,
Rise et al., 2008]), then we would expect features
with amplitudes of tens of meters (i.e., moraines
and bed forms) to be completely buried within only
a few tens to hundreds of kiloyears or less. Thus,
these simple estimates suggest strongly that the
newly visualized outer shelf geomorphology relates
to relatively recent phases of offshore glaciation.

[39] While an extensive LGM interpretation would
contradict the recent work of Bentley et al. [2007a],
who suggested that moraines lining the South
Georgia coastline record a terminal limit of the
ice sheet, it could be considered that terrestrially
mapped moraines are in fact stillstand or readvance
margins of a post-LGM ice sheet, formed subse-
quent to the maximum extension of the ice sheet
onto the shelf (compare to Patagonian Ice Sheet
readvances from 15 to 10 14C ka B.P. [Rabassa et
al., 2005]). Indeed, the oldest of the moraines
mapped by Bentley et al. [2007a] (younger than
14.1 ka B.P.) postdates the range of accepted
timings for LGM global ice sheet volume by 7–
12 ka (LGM at �26–21 ka B.P. [Peltier and
Fairbanks, 2006]) and surpasses the LGM in
neighboring Patagonia by �11 ka, where a period
of maximum extent is recorded at �25 ka B.P. on
the basis of 10Be dates from terminal moraines
[Kaplan et al., 2008]. Both chronologies allow for
an extensive shelf glaciation and retreat to Late
Glacial coastal limits. The combination of environ-
mentally sensitive glaciers and the reverse-slope
morphology of the continental shelf would also
allow for dynamic and rapid advance, and retreat of
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shelf ice through mechanisms which, for the most
part, are understood for the Icelandic and West
Antarctic Ice Sheets [Hubbard et al., 2006; Schoof,
2007].

[40] Ultimately, the geomorphic record offshore
South Georgia requires age constraints and further
detailed marine investigation is therefore needed. If
smaller subglacial bed forms and moraines are
formed in bedrock or on a relict sedimentary terrain
then they may be of indeterminate pre-LGM age
(compare to offshore Patagonian moraines [Kaplan
et al., 2008] or relict ice scours offshore Greenland
described by Syvitski et al. [2001]). However,
taking into account (1) that other maritime Antarc-
tic Islands (Heard Island and Kerguelen Island)
which lie within the Polar Front have been identi-
fied as possible areas of former extensive LGM
glaciation, on the basis of depositional grounding
zone features which occupy areas of shallow water
around these isles [Balco, 2007]; (2) that a large
Patagonian ice sheet developed at the LGM in
southern South America, a locality that shares
strong geological, environmental and glaciological
influences with the sub-Antarctic regions [Hall,
2004]; and (3) that geomorphic observations from
our new data set favor recent glacial activity, there
is a distinct possibility that ice caps of much greater
extent could have existed across many of the sub-
Antarctic islands at the LGM. If true then the
significance of glaciation in these regions may
have, until now, been notably underestimated.

8. Conclusions

[41] 1. A subkilometer-resolution compilation grid
of bathymetric data has revealed hitherto unseen
detail concerning the drainage patterns and glaci-
ated character of the South Georgia continental
shelf.

[42] 2. The presence of glacially formed cross-shelf
troughs and ice sheet terminal moraines indicates
that a South Georgian ice sheet extended to the
shelf break at least once, and probably numerous
times, in the past.

[43] 3. Fast flowing outlet glaciers or ice streams
formed the main drainage pattern of past ice sheets
on the shelf and were influenced by the structural
framework and maritime setting.

[44] 4. The age of the shelf geomorphology docu-
mented on the new bathymetric grid remains open
to interpretation, potentially reflecting glaciation
from late Miocene times onward. An extensive

LGM glaciation of South Georgia is feasible, but
such a hypothesis remains untested, and calls for a
well-dated sequence of sediment cores.

[45] 5. Our observations from this new data set are
only preliminary and require a more thorough
interrogation supplemented with further marine
geophysical (high resolution seismic) and geolog-
ical (offshore coring) investigation of the South
Georgia shelf and fjords.

[46] An up-to-date version of the bathymetric grid
used in this paper is available online at http://
www.antarctica.ac.uk/bas_research/data/online_re-
sources/sgbd/.
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Dowdeswell, J. A., C. Ó Cofaigh, and C. J. Pudsey (2004),
Continental slope morphology and sedimentary processes at
the mouth of an Antarctic palaeo-ice stream, Mar. Geol.,
204, 203–214, doi:10.1016/S0025-3227(03)00338-4.

Fairbanks, R. G. (1989), A 17000-year glacio-eustatic sea level
record: Influence of glacial melting rates on the Younger
Dryas event and deep-ocean circulation, Nature, 342, 637–
642, doi:10.1038/342637a0.

GEBCO (2003), General Bathymetric Chart of the Oceans,
digital edition, Int. Hydrogr. Organ., Monaco. (Available at
http://www.gebco.net)

Gordon, J. E. (1987), Radiocarbon dates from Nordenskjold
Glacier, South Georgia, and their implications for late Holo-
cene glacier chronology, Br. Antarct. Surv. Bull., 76, 1–5.

Gordon, J. E., V. Haynes, and A. Hubbard (2008), Recent
glacier changes and climate trends on South Georgia, Global
Planet. Change, 60, 72 – 84, doi:10.1016/j.glopla-
cha.2006.07.037.

Hall, K. (2004), Quaternary glaciation of the sub-Antarctic
Islands, in Glaciations—Extent and Chronology. Part III:
South America, Asia, Africa, Australasia, Antarctica, edited
by J. Ehlers and P. Gibbard, pp. 339–345, Elsevier, Amster-
dam.

Hambrey, M. J. (1995), Glacial Environments, 2nd ed., 296
pp., Univ. College London Press, London.

Hjelstuen, B. O., O. Eldholm, and J. I. Faleide (2007), Recur-
rent Pleistocene mega-failures on the SW Barents Sea mar-
gin, Earth Planet. Sci. Lett., 258, 605–618, doi:10.1016/
j.epsl.2007.04.025.
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