
Interactions of forests with secondary air pollutants – some challenges for future 
research. 
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Abstract 

The effects of ozone and other photochemical oxidants on individual trees have been 

studied for several decades, but there has been much less research on the potential 

effects on entire forest ecosystems. Given that ozone and other oxidants affect the 

production and subsequent fate of biogenic volatile organic compounds that act as 

signalling molecules, there is a need for more detailed study of the role of oxidants in 

modifying trophic interactions in forests. Deposition of fine particulates to forests 

may act as a source of nutrients, but also changes leaf surface properties, increasing 

the duration of surface wetness and modifying the habitat for epiphytic organisms, 

leading to increased risks from pathogens. Even where this pathway contributes a 

relatively small input of nutrients to forests, the indirect effects on canopy processes 

and subsequent deposition to the forest floor in throughfall and litter may play a more 

important role that has yet to be fully investigated. 
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Secondary air pollutants may have indirect effects on forest ecology that have not yet 

been fully explored. 
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Introduction 

Air pollution effects on forests have been documented as both local and regional 

problems since the early years of the 20th century, and were initially attributed to the 

obvious effects of soot (Rhine, 1924) and gases such as sulphur dioxide (Härtel, 

1953). These were perceived as direct damage to foliage following deposition from 

the atmosphere. More recently, the debate on ‘acid rain’ in the 1970s and 1980s, 

particularly in Europe, led to hypotheses that attributed damage to trees through the 

acidification of forest soils, rather than a direct effect on foliage (Schulze et al., 1989). 

Responses to airborne pollutants were often interpreted in terms of nutrient 

imbalances caused by leaching of one or more essential metals (e.g. calcium, 

magnesium) from the rooting zones of forest soils. Nutrient imbalances are 

exacerbated by increased deposition of nitrogen, although its influence has also been 

implicated in an observed increase in stem growth and timber yield (Spiecker, 1999). 

The effects of photo-oxidants on trees, with ozone and PAN (peroxyacetyl nitrate) as 

particular gaseous pollutants, were recognised in the 1960s with the seminal studies in 

southern California and later throughout the USA (Karnosky et al., 2007a, Miller and 

McBride, 1999). Observed symptoms were largely ascribed to direct damage relating 

to foliar uptake by the tree canopy. 

 

Although air pollution in much of Europe and North America is now less severe than 

in the 1980s (Cape et al., 2003, Lehmann et al., 2005), as a result of legislation to 

reduce emissions of sulphur dioxide (SO2) and the ozone precursors, nitrogen oxides 



(NOx) and volatile organic compounds (VOCs), the threat to forests from air pollution 

caused by the rapid industrialisation of other parts of the world (e.g. China, India) is a 

regional issue that translates the problems of last century in Europe and North 

America to different tree species and different climatic regimes in this century 

(Emberson et al., 2001). However, even in the areas where emissions of the primary 

pollutants (SO2, NOx, VOCs) have been controlled by legislation and changing fuel 

types, the threat from secondary air pollutants has not been removed. ‘Acid rain’ and 

ozone are the most studied secondary pollutants, as far as forest effects are concerned, 

and while amounts of wet-deposited acidity (and sulphate and nitrate) have decreased, 

there are still large areas of Europe and North America that exceed the Critical Loads 

for forests (Hettelingh et al., 1995). Moreover, the increasing industrialisation of 

India, China and south-east Asia is leading to a gradual increase in the ‘background’ 

concentrations of ozone across the northern hemisphere, with several studies 

demonstrating that long-range (intercontinental) transport of ozone and/or its 

precursors is affecting annual average ozone concentrations across the whole 

hemisphere (Auvray and Bey, 2005, Derwent et al., 2006, Jaffe et al., 2003, Jonson et 

al., 2006, Oltmans et al., 2006, Vingarzan, 2004). This gradual increase in 

‘background’ ozone is set against a pattern of decreasing severity of peak ozone 

concentrations during episodes, which can be attributed to the effects of emission 

controls, particularly on VOCs (Derwent et al., 2003). The predicted increase in 

‘background’ ozone concentrations may be offset to some extent by climatic changes 

that are forecast to occur over similar time scales (decades). In particular, increased 

temperatures will lead to higher emissions of biogenic VOCs and larger water vapour 

concentrations in the atmosphere, which have opposing effects on the formation of 

ozone. The overall changes that can be attributed to the interactions between climate 
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and emissions have been studied in a global model by comparing the results of a 

model with fixed climate over the period 1990-2030 with results from a model with a 

varying climate (Stevenson et al., 2005), using the scenario of ‘Current Legislation’ to 

define precursor emissions. The overall conclusion was that climate-chemistry 

interactions as regards ozone formation appear to be largely negative, but year-to-year 

variability caused by changes in circulation patterns (e.g. ENSO) were at least as large 

as the variability in ozone that could be attributed either to changes in emissions or 

changes in climate. Increasing carbon dioxide concentrations may also influence 

biogenic VOC emissions (Pegoraro et al., 2005), but too little is known as yet to make 

quantitative predictions on a global scale. 
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Photochemical reactions of primary pollutants, including both anthropogenic and 

biogenic VOCs, lead to the formation of airborne particulates, adding to the burden of 

particulates emitted directly from combustion processes. Fine particulates, particularly 

those in the respirable size range (diameter < 10 μm, PM10), have been associated 

with effects on human health (Englert, 2004), and reductions in visibility (Brewer and 

Adlhoch, 2005), but the potential effects of fine particulates on vegetation have 

received little experimental attention. Most studies on potential effects of airborne 

particulates have focussed on larger particles (soot, dust) from combustion or 

mechanical generation in quarries etc. which can occlude stomata or in extreme cases 

physically cover leaf surfaces and exclude light (Farmer, 1993, Grantz et al., 2003). 

Reductions in photosynthetically active radiation (PAR) on a regional scale in China, 

and consequent decreases in plant growth, have been attributed to the formation of 

fine particulates (ammonium sulphates and nitrate) in the atmosphere (Chameides et 



al., 1999, Liang and Xia, 2005), but there is little information on potential direct 

effects on trees and other vegetation. However, the impact of particulates on forests 

may not be totally negative – one study suggests that although total irradiance may be 

attenuated by fine particulates, diffuse irradiance may be enhanced, leading to a net 

increase in photosynthesis (Misson et al., 2005). 

106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 

123 

124 

125 

126 

127 

128 

129 

130 

 

This paper expands upon ideas presented to an international conference on the 

impacts of air pollution and climate change on forest ecosystems, held in Riverside, 

California in 2006 (Cape, 2007). Two aspects of secondary air pollution are 

discussed: (1) the interaction of ozone and biogenic VOCs, in terms of affecting the 

biogenic production of VOCs and their subsequent rates of oxidation, and the 

potential consequential effects on forest ecosystems, and (2) the potential effects of 

fine particulates on forests. 

 

Ozone and biogenic VOCs 

In the context of a slow but apparently inexorable increase in hemispheric ozone 

concentrations (see above), the potential for direct effects of ozone on forest trees is of 

continuing concern. Whereas the observed effects on Ponderosa pine and other 

conifers in California were associated with peak ozone concentrations that exceeded 

200 nl l-1 (ppbv) (Miller and McBride, 1998), more recent studies have emphasised 

the overall increase in ozone concentrations outside major ‘episodes’, and the 

potential for chronic injury (Coyle et al., 2003). There have been successful 

experiments that have moved from the study of young trees (seedlings or saplings) in 

the laboratory to the field-scale fumigation of adult trees with ozone, recognising that 

the responses of small, immature plants in a controlled chamber environment may not 



be a good predictor of effects on forest trees growing in situ (Karnosky et al., 2007b, 

Matyssek et al., 2007). This recognition of the importance of studying trees in the 

context of their normal environment is a step towards thinking about potential effects 

on the forest ecosystem as a whole and not just the major tree species that are the most 

obvious components. Well-replicated field-scale experiments that recreate forest 

conditions are beginning to provide information on the effects of ozone (and carbon 

dioxide) on more than just trees (Percy et al., 2003). 
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Forest ecosystems, like other vegetation communities, rely on complex interactions 

above and below ground, with a myriad of life forms, from epiphytic micro-organisms 

on leaf surfaces (the phyllosphere) to the soil bacteria and fauna that process decaying 

plant material in the soil – and everything in between (Figure 1). One of the primary 

effects of ozone in plants is to interfere with signalling processes within the plant 

(Evans et al., 2005), with consequences for the movement of water, nutrients and 

photosynthate between root and shoot. However, there are other signalling processes 

that operate between plant and plant, and between plant and animal, both atmospheric 

and in the soil, and these may also be affected by exposure to ozone and other photo-

oxidants. In this context, it must be remembered that ozone is only one component of 

a photochemically active atmosphere, that happens to be reasonably easily measured – 

enhanced ozone concentrations are associated with greater free radical concentrations, 

e.g. hydroxyl (OH) and nitrate (NO3) radicals, which also have the potential to 

interfere with biological processes (Cape, 1997).  

 

Biogenic VOCs (BVOCs) have been recognised as a component of natural 

undisturbed plant communities for several decades, although their physiological and 



ecological roles, and the factors that control their emissions, are only now becoming 

better understood. VOCs are energy-rich molecules, and production within a plant is 

an expensive use of photosynthate. There has been considerable debate as to their role 

(Holopainen, 2004, Kesselmeier and Staudt, 1999, Sharkey and Yeh, 2001), whether 

inside the leaf (possibly acting to remove reactive oxygen species), or outside the leaf, 

as signalling molecules. There is evidence for several different external roles, such as 

signalling herbivory, attracting predators of herbivores, or triggering defence 

responses in neighbouring plants (Ashmore, 2005, Du et al., 1998, Engelberth et al., 

2004). Herbivory has been shown to stimulate release of mono- and sesquiterpenes 

(e.g. ocimene, linalool, farnesene) in crop plants (Pare and Tumlinson, 1999), and the 

monoterpenes α- and β-pinene and δ-3-carene from conifers (Litvak et al., 1999). 

Even though the ecological roles of such molecules are not fully understood, the 

recent discovery that such biogenic molecules are chiral (i.e. are produced in a left-

handed or right-handed form) suggests an evolved specificity for their role as a 

signalling agent that is different for tropical and Boreal forests (Williams et al., 2007). 

Exposure to ozone and other oxidants has been shown to stimulate emissions of 

signalling molecules (Heiden et al., 1999), presumably because the type of damage 

caused mimics attack by herbivores or similar mechanical damage (Langebartels et 

al., 2002). However, there may also be enhanced emissions of VOCs from forest 

canopies in response to ozone that have a chemical rather than biological source 

(Fruekilde et al., 1998) with no obvious ecological role. 
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Many biogenic VOCs that act as signalling molecules (examples are shown in Figure 

2) contain double bonds that are susceptible to attack by ozone and oxidant free 

radicals, and their role as signalling agents presumably evolved in atmospheres with 



markedly less ozone than at present, or likely to be seen in the near future. What are 

the implications of increased oxidant concentrations in the atmosphere? A selection of 

reaction rates is presented in Table 1, which shows the lifetime with respect to 

oxidation by ozone under pre-industrial, current day, and possible future scenarios, 

and for comparison, the current lifetime relative to OH radical during daylight (based 

on a nominal 12 h daytime concentration).  
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It is significant that no data exist for one of the more important of the recognised 

signalling molecules, E-β-farnesene, although α-farnesene is reported to be more 

reactive than monoterpenes (Joutsensaari, 2005). The decreased lifetime of such 

molecules as ozone concentrations increase implies a shorter dispersion path in the 

atmosphere and a reduction in the spatial effectiveness of the signalling. Despite the 

possibility that ozone (and other oxidants) might interfere with atmospheric signalling 

processes (Vuorinen et al., 2004), there is also limited evidence that less reactive 

biogenic VOCs may act as signalling molecules, and be relatively unaffected by 

oxidants (Pinto et al., 2007). Similarly, the effects of ozone on the production of 

signalling molecules may not require an atmospheric pathway, but may nevertheless 

have a direct influence on herbivore behaviour (Mondor et al., 2004). 

 

Potential direct effects of ozone and other oxidant air pollutants below canopy, 

whether on flora or fauna, have not been clearly established from field measurements, 

partly because of interactions with sunlight penetration, water and nutrient supply, and 

the lower air concentrations of pollutant gases below the canopy than above 

(Krzyzanowski, 2004). However, there is some evidence of air pollutant effects on the 

understorey (Allen et al., 2007). The role of other oxidants, such as the nitrate radical 



(NO3), under the low-light conditions below forest canopies, has still to be explored in 

detail (Cape, 2002). 
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The challenge is for more research to investigate the ecological impacts of the effects 

of ozone and associated oxidants on signalling processes between different 

components of forest ecosystems. 

 

Secondary aerosol particles 

The oxidation of biogenic VOCs can be an important first step in the generation of 

secondary organic aerosol (SOA) particles (Joutsensaari et al., 2005, Rohr et al., 

2007), a process that has long been associated with forests, leading to the 

characteristic ‘blue haze’ observed over forested areas. Reactions with sesquiterpenes 

(e.g. farnesene) are particularly rapid, leading to depletion of the BVOC and 

generation of SOA within the forest canopy (Lunden et al., 2006). The initial 

formation of SOA, with diameters of 10 nm or less, leads to the eventual formation of 

larger particles, through coalescence, until the ‘accumulation mode’ is reached, with 

diameters up to 1000 nm. This size range of particles is only slowly removed from the 

atmosphere by turbulent deposition, and consequently can be long-lived, travelling 

long distances in the atmosphere. The continuing oxidation of SOA leads to 

progressively more polar functional groups, and an increasing affinity of the SOA 

particles for water, which condenses and enhances the particle size, leading to faster 

deposition rates. Increased oxidation rates, from higher oxidant concentrations, and 

increased emissions of BVOCs (in response to ozone stress), can therefore lead to 

enhanced rates of formation of SOA, which in turn lead to a decrease in visible range 

and a direct contribution to the risk to human health of respirable particles in the PM1 



to PM10 size range. Forests contribute to the ‘background’ PM concentrations, even in 

the absence of other pollutant emissions, and may therefore contribute directly to the 

exceedance of regulatory thresholds for PM concentrations. 
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The preceding section dealt with forests as a source of SOA, which contributes to 

particulate matter in the atmosphere. Forests are also a sink for particulates, albeit 

rather inefficient (in terms of the deposition velocity) compared to the sink for 

reactive gases such as ozone and sulphur dioxide. However, in regions with high 

atmospheric concentrations of ammonium salts (nitrates and sulphates) the deposition 

of nutrients to forest canopies as fine particulates cannot be ignored. For example, a 

deposition velocity of 1 cm s-1, which is typical for fine particulate deposition to 

forests (Gallagher et al., 1997), and an air concentration of around 6 μg N m-3 as 

measured in parts of China (Aas et al., 2007, Wang et al., 2006) would give an annual 

N deposition greater than 15 kg ha-1, close to the Critical Load for forests used in 

Europe (Hettelingh et al., 1995) before any consideration of other atmospheric sources 

of N deposition, such as wet deposition or dry deposition of N-containing gases.  

 

Even in areas with smaller air concentrations, however, the effects of particle 

deposition to forests may be seen not simply in terms of nutrient input, but in terms of 

the effects of such particles on the leaf surfaces of the canopy. Ammonium salts are 

hygroscopic, absorbing water vapour from the atmosphere to form solutions at 

relative humidities (RH) well below saturation (100%). Pure ammonium sulphate is 

hygroscopic at 70% RH; mixtures of different ammonium salts are likely to become 

hygroscopic at lower RHs. Consequently, the deposition of ammonium salts on leaf 

surfaces will lead to the generation of liquid water even in air which is unsaturated, 



leading to conditions similar to those which promote the formation of dew (Burkhardt 

and Eiden, 1994). Areas on leaf surfaces close to sources of water vapour (transpiring 

stomata) will remain ‘wet’ for longer than in the absence of the particle deposition. 

This mechanism has been suggested as a possible explanation for increased water loss 

from forest canopies (Burkhardt, 1995) and enhanced deposition rates of water-

soluble gases (Cape, 1996), and may also be responsible for decreased CO2 uptake by 

leaf surfaces that stay wet for longer in the morning (Misson et al., 2005). Perhaps as 

important are the implications for biological activity on leaf surfaces exposed to 

ammonium salts. Apart from the ready availability of N as a nutrient source for micro-

organisms, enhanced periods with liquid water availability could lead to enhanced 

ion-exchange and leaching across the leaf surface (Tukey, 1970), and may also affect 

the deposition and reaction of ozone (Altimir et al., 2006). The more favourable 

conditions for micro-organism growth lead to increased risks of pathogen attack 

(Huber and Gillespie, 1992). Even in the absence of pathogenic activity, the 

proliferation of algae on a canopy that is well supplied with nitrogen and water may 

lead to situations where primary photosynthesis by the leaf is inhibited (Cape et al., 

1989). Certainly, the processing of nitrogen within forest canopies is still not well 

described or understood – transformations from inorganic to organic forms can occur, 

and organic N can be retained within the canopy, either by epiphytic microbes or by 

the leaf itself (Hill et al., 2005, Piirainen et al., 1998). In the latter case, the long-term 

ecological implications of a transfer of the pathway for N uptake from roots to 

canopies (Rennenberg and Gessler, 1999), although recognised as a problem because 

of the changes in signalling hormones within the plant, have not been fully explored. 

Similarly, changes in the chemical form of deposited N reaching the forest floor as 

throughfall, interacting with understorey vegetation and entering the forest soil, have 
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implications for the storage and transport of N within and beyond the forest. Changes 

in the canopy may also affect leaf composition in a way that changes litter 

decomposition rates (Magill and Aber, 2000), with further long-term implications for 

nutrient availability, accumulation and transport. 
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The challenge is to understand the long-term implications of the deposition of 

hygroscopic fine particulates to forest canopies, in terms of leaf surface wetness, ion 

exchange, effects on epiphytic organisms, and nutrient pathways in the trees 

themselves and also in the forest floor. 

 

Conclusions 

Secondary air pollutants such as ozone and fine particulates are the products of 

chemical reactions in the atmosphere. The time taken for their production from 

primary pollutant emissions means that they can be transported over long distances, 

and therefore can affect forests (and other types of vegetation) far from the original 

pollution source. Although the direct effects on forest trees of ozone and other 

photochemical oxidants has long been recognised, most studies have relied on 

examination of the direct effects on the forest canopy. At much larger scales, studies 

of the potential effects of ozone on water status at the catchment (watershed) scale 

(McLaughlin et al., 2007) show the broader implications of ozone effects on forests. 

Although the interaction of ozone with biogenic VOCs, both in terms of effects on 

molecular signalling, and SOA formation, have been identified, little is known 

quantitatively of the long-term ecological effects of increasing atmospheric oxidant 

concentrations in forest ecosystems.  

 



Increased fine particle concentrations in the atmosphere, whether from combustion, or 

secondary oxidation of inorganic pollutants or VOCs, have not been seen as a direct 

threat to forests, except perhaps in relation to reduced photosynthesis because of light 

exclusion. However, the hygroscopic nature of fine particulate matter may have long-

term impacts on forest health because of the changed conditions (increased incidence 

of surface wetness) on canopy surfaces and consequent interactions with pathogens 

and other epiphytic organisms. The input of nutrients as fine particulate matter may 

also be of importance in some regions, whether as direct input to the canopy, or 

through changing the composition of throughfall and input to the forest floor. 
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 Table 1. Atmospheric lifetimes of selected monoterpenes and sesquiterpenes with 

respect to different concentrations of ozone and OH radical, based on 

published reaction rates (Atkinson and Arey, 2003) 
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547  

Biogenic 

VOC 

Pre-industrial O3 

(20 nl l-1) 

Current O3 

(40 nl l-1) 

Future O3 

(60 nl l-1) 

Current daytime OH 

(2 x 106 cm-3 / 12 h) 

α-pinene 6.5 h 3.3 h 2.2 h 2.6 h 

β-pinene 1.6 d 19 h 12 h 1.8 h 

3-carene 16 h 7.8 h 5.2 h 1.6 h 

ocimene 1.0 h 31 min 21 min 33 min 

linalool 1.3 h 39 min 26 min 52 min 

farnesene No data   ?<1 h* No data No data No data ?< 30 min** 

* (Joutsensaari, 2005)  **(Kwok and Atkinson, 1995) 548 
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Captions to Figures 

Figure 1.  Schematic diagram of the interactions and pathways of ozone and other 

oxidants with biogenic VOCs, and of the role of airborne particulates, in forest 

ecosystems. 

Figure 2.  Examples of biogenic VOCs that have been shown to act as signalling 

molecules. 
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Figure 1.  Schematic diagram of the interactions and pathways of ozone and other 

oxidants with biogenic VOCs, and of the role of airborne particulates, in forest 

ecosystems. 
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Figure 2.  Examples of biogenic VOCs that have been shown to act as signalling 

molecules. 
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