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1 Introduction

Within the framework of the EU PROMISE project, 1-d generic turbulence-
SPM-wave interaction models have been derived to investigate the role of
turbulence in relation to SPM and density stratification in space and time.
It is planned to use the results to improve existing multi-dimensional SPM
models on a pre-operational level.

The starting point for the model development was the k-¢ model de-
scribed by Baumert & Radach [1994] and Burchard & Baumert [1995] which
has been expanded to include an SPM capability. Two versions of the model
have been established. Version A considers cohesive SPM (i.e. flocs) whereas
version B focusses on non-cohesive materials (i.e. sand). With regard to
wave activity, only the tidal wave is considered at present.

The generic model versions A and B were developed with the following
background in mind:

e The working area under consideration within the PROMISE project
ranges from the Holderness coastal strip and the Sylt-Rgmg area to
the entire North Sea.

e Over small time and space scales, the transport of non-cohesive sedi-
ments and the dynamics of moveable beds are important.

e On larger scales cohesive SPM transport and floc dynamics including
autocatalytic production (cell division) of new flocs due to biological
processes (to be addressed during a later phase of PROMISE) become
important.

To derive the generic turbulence-SPM-wave interaction model (version
A), the k-e model has been considerably improved and extended by the in-
clusion of a transport module for SPM, which includes sinking and diffusion
processes. At present, only a single floc size is considered. However, further
development will lead to a minimum of three size classes. As version A in-
cludes only cohesive materials, the processes of erosion and sedimentation
are not implemented i.e. there is no exchange with the bed in version A of
the model. In order to be able to resolve the fluffy layer close to the bottom,
we have introduced an non-uniform spatial grid.

While the k,¢,u and v model equations are solved by a fully implicit
three-point, two-layer finite-difference scheme (see Samarskij [1984]), the



numerical solution of the SPM sinking/diffusion problem is carried out util-
ising the control volume method of Patankar [1980]. This method incorpo-
rates a power law interpolation scheme, sequential implicit time marching
and deals with both smaller and larger grid Peclet numbers. The numerical
diffusion inherent in the advective/sinking term is reduced by applying the
Hybrid Linear /Parabolic Approximation (HLPA) introduced by Zhu [1991].

Version B of the model considers non-cohesive SPM and hence, in addi-
tion to the advection and diffusion processes, also includes resuspension and
sedimentation processes, after Sheng & Villaret [1989]. It is also necessary
to allow the grid to adapt to the time dependent variation in water depth
(moveable bed), thus also changing the model’s domain of integration.

A first test of the model was conducted for the site of the FLEX exper-
iment [1976], from which the required meterological forcing data and mea-
sured temperature profiles for validation of the model results were available.
First results showed that the characteristic features of the vertical temper-
ature gradient are well reproduced. Furthermore, turbulent microstructure
parameters showed reasonable values.

Further applications of the 1-d model are planned for the time of the
PROMIX experiment as these datasets will allow detailed insight into the
ability of the model to simulate the microstructure properties of turbulent
flows.



2 Model Description

The model presented here is based on the k-¢ turbulence model which in
our case is used in its one dimensional form, including the boundary layer
approximation and the earth’s rotation. The coordinate system is located
at mean sea level with the vertical axis directed upwards. In §2.1 we present
the standard k-¢ model. The SPM submodel versions A and B are presented
in §2.2. We define the following abbreviations: 0 := %, Op = %, Oy : 9

and 8, = (% denoting the partial differentials with respect to time and
cartesian coordinates, respectively.
The Reynolds equations of the hydro-thermodynamic submodel are
3\
0 + 0, {TWw) = fo— ;—oa,.,p,
0D + 0, () = —fi— -0y,
T + 8,(wT) = 8., > (1)
Bei + 0 (Wi) + ws 0.4 = QF +Q7,

where @, 9, w, T, § and ¢; are the ensemble means of the velocity com-
ponents, temperature, salinity and suspended matter (SPM, non-cohesive
 material in model version B and cohesive material in model version A)
concentration, respectively. , 9, W, T’, S and 5, represent their fluctu-
ations. In both model versions A and B ¢; denotes the i'th fraction of
SPM under consideration, with ¢ = 1..N and N the total number of frac-
tions which are accounted for. Since at the moment only one floc size class
is included in model version A and one SPM fraction in model version B
N =1 in both models. In the 1-d case the equation of continuity degener-
ates to w = 0. (4w) and (W) represent turbulent fluxes of momentum, pg
is the mean density and p the hydrostatic pressure at the depth z, for which
p(z,t) = g [* p (T(2,1),5(2,1), $(2',t)) d2', with ¢ the deviation from the
mean water level. (wT), (wS) and (¢;) are the turbulent fluxes of heat,
salt and SPM, respectively. w;; denotes the sinking velocity of the #’th
SPM fraction, f is the Coriolis parameter, g the gravitational acceleration



~and ;}o—ﬁzp and ploayp represent the horizontal pressure gradients in z and
y directions respectively. Since model version B deals exclusively with non-
cohesive material, ] and Q; are defined with regard to the cohesive ma-
terial in model version A only. They denote sources and sinks regarding the
1’th floc size class included in model version A and represent the interaction
between different floc size classes due to physical, biological and chemical
processes. These processes are responsible for an increase or decrease in floc
size class concentration due to coagulation of smaller flocs to bigger ones or
to the breakup of bigger flocs into smaller ones.

¢p is the specific heat capacity of seawater. 8,I represents the differen-
tial absorption of incoming radiation. In model version A the water depth
is fixed to H and since changes in water depth in model version B occur
stepwise rather than continous, water depth can be regarded to be constant
in this case at any time step as well.

Molecular viscosity and diffusivity in (1) are neglected as they are small
compared to their turbulent counterparts.

The pressure gradients are determined by the periodic sea surface eleva-
tion due to tidal action and are modelled as follows:

_ (2)
+ Az ssinfwst + @)

and

—plo D= —g0y¢ = Aymcosfwnt + ém]

(3)
+  Ay,s coslwst + @)

In equations (2) and (3), A;; represent the amplitudes (i = z,y; j =
m, s) of lunar and solar tidal components with s and m referring to the solar
and lunar components. wp,, ws and ¢, ¢s denote their angular frequencies
and phases respectively

Due to the unknown correlators < .. >, (1) does not represent a closed
system of equations. It is necessary to introduce some assumptions regarding
the turbulent fluxes of material, momentum and heat. The computation of
these fluxes is described below.
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2.1 The k-¢ Model

Within the k-¢ model, the turbulent kinetic energy (TKE) and dissipation
rate of TKE (g) are described via transport equations. TKE and ¢ are
defined by

k= (@) + (5%) + (&%) (4)

and

e=vY 3 (957, (5)
7 i

(1 = z,y,2; j = z,y,2) where tilded quantities denote fluctuations and
v is the molecular viscosity. Equations (4) and (5) allow us to describe
the temporal and spatial variability of the turbulent dynamics of the water
coloumn in detail. Exact transport equations for these quantities can be
derived from the Navier-Stokes and the Reynolds equations. However, they
contain again, as in (1) unknown higher-order correlators which have to be
described by closure assumptions.
In its final form, the k-¢ model is given by (cf. Rodi [1980]):

Ok + Diffk) =P+ G—¢ (6)
€ g2
Oie + Diff(e) = 1 (P + CgG)E — Cz—k— (D
where

P = —(aw)0,a — (0w)0,v (8)

is the shear production and
G = —Z(wp) (9)

Po

is the buoyancy production of TKE. The ” Diff” diffusion terms in (6) and (7)
are specified later. The density p is a function of temperature and salinity.
The mean and fluctuating density are approximated by

12
=
“OJI
;@;l

(p(T,S,¢)) = (p(t+T,5,9))
(10)
p = p(T, S, d)) - (p(T, S, ¢)) ~ Tan(Ta S'a J’)v
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i.e. fluctuations in S and ¢ are neglected here. Equations (6)-(9) represent
the kernel of the k- model.

To close the system of equations (6)-(9), the eddy viscosity concept is
applied, relating the turbulent fluxes of momentum and heat to the gradients
of the mean quantities ¢.e.

(UW) = —v40,4, (W)= —v10,¥ (11)
and
i) = 2o T (@) = ~2£8.5.  (wd) = —228.3
(wT) = = 9, T, (wS) - 8,5, (we) oo 9,9. (12)

The parameter v; represents the eddy (turbulent) viscosity. o; denotes
the turbulent Prandtl number which is defined as the ratio of eddy viscosity
to turbulent heat conductivity. s and o4 are the turbulent Schmidt num-
bers for the transport of salt and SPM and are defined as the ratio of eddy
viscosity to the appropriate eddy diffusivity.

The turbulent Prandtl number o4, can be modelled empirically, as de-
scribed by Munk and Anderson [1948]

(1+32R,)%/2
(1_-1-130R:W for Rg > 0,

Ot = (13)
1, for R; <0

where R, is the gradient Richardson number!, a dimensionless measure of
stratification, given by

‘— 2

Rg = 5T
N? = —Z3,p (14)
S? = (0,u)%+(0,0)?

where S and N are the shear and Brunt-Vaisald frequencies respectively.
Another important measure of the stability of stratification is provided by
the flux Richardson number

Ry =2 (15)

!The gradient and flux Richardson numbers are positive for stable, negative for unstable
and zero for neutrally stratified flows
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i.e. Ry = —G/P. The Kolmogorov-Prandtl relation (cf. Kolmogorov [1942],

Prandtl [1945]) links the mean flow equations to the state variables of the
turbulence model. This relation reads:

k? .

Uy = C#—E— (16 )

Finally, the diffusion terms for k¥ and ¢ are related to the corresponding
gradients thus

Difi(k) = —az(s—;azk), Diff(e) = —az(gfam. (17)

The empirical constants used in this model are shown in Table 1
(Rodi [1980]). The parameter c3 is discussed later.

009 | 144|192 |10 |13

Table 1: Empirical constants for the standard k-¢ model

2.1.1 The Homogeneous Shear Layer

In the idealised case of a homogeneous shear layer, all diffusive terms Diff(k)
and Diff(¢) in (6) and (7) are neglected, whereas the gradients in the source
and sink terms P and G are not. In this case the following system of ordinary
differential equations is obtained:

. k2
k=m——e (18)
and
g2 .
£ =172k — c2? (19)
with
_ —\2 =2 g
1= CM{(azu) +(8:0)°} + %Cuazp (20)
and
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v2 = ¢, {(8.8) + (8,0)%} + c%c;azp (21)

with ¢}, := ¢, /ot in the case of the standard model. With the replacement
X :=¢/k it follows that

. ké—ck

with which equations (18) and (19) condense into one:

X =a—bX? (23)
witha:=c;yga—v1 and b:=c2 —1> 0.
2.1.1.1 The Lower Limit for Ry It is obvious that the parameter b
in equation (23) is a positive constant so that negative values of the function
a(t) may lead, under certain circumstances, to negative values of X. This
is physically not permissible, because by definition € and k are positive?. In

order to ensure the positivity of X, the condition a(t) > 0 is sufficient (not
necessary). This condition implies that

Ry > R?m,for c3 < l
or (24)

. 1
Ry < le"",for 3> —

where leim represents a limiting flux Richardson number,

: Cc1 — 1
Rlzm —
f cics — 1 (25)
which, in the present k-¢ model forms a lower limit for Ry:
; Cc1 — 1
R > Rlzm —
f=" cicz3 —1 (26)

Because of (24), this implies an upper bound for the parameter c3, i.e.,
3 < ¢! = 0.694. For the case of c; = —1.4 this gives Rffim = —0.146 ( see
Burchard & Baumert [1995]). .

ZNegative values of ¢ in the sense of Weinstock (J. Atmosph. Sci. 37, 1980, p.1548) in
relation to spectral considerations are not considered here.
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2.1.1.2 The Steady State. The search for stationary solutions of the
system of equations (18)-(19) leads to the following necessary relation:

Y162 — Y261 =0 (27)
For 3,4 # 0 this can be expressed through the condition:

R ;= Rfct (28)

where for the stationary Richardson number the following relation is valid:
Rst = c2 - C]y > Rllm '2 ]

f co —cCi1c3 f { g)

Hereby a functional relationship between the flux Richardson number and
¢3 is introduced.

Consider the special case of quasi-stationary velocity and density gra-
dients i.e. 9;0,4 = 8:0,p = 0. This is permissible since the characteristic
timescales of these quantities are much larger than k/e, the timescale of the
turbulent motion.

From equation (23), it is obvious that in the case of a > 0

x-1= k — b_ [ -1 (30)
€ a ar:—m )

is valid for any Richardson number. The expression /b/a can be interpreted
as the turbulent lifetime, which is established by the gradients in the mean
flow.

The system (18)-(19) will be in steady state if the ration k/¢ has reached
. . . “1/2
its upper limit. In this case ke /e =77 '~.
From equations (26)-(28), one can derive a relation between the critical

numbers ij and leim

OzRR—
Rf=—1 31
d R; —Br (31)
with
an=2"C_ 0522, Br=S"L 0418 (32)
Co — 1 Ccy — 1

The values given in equation (32) are calculated using the constants in Table
1.
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For the system of equations (18)-(19), one can find analytical solutions
and proofs that Rff’m represents the limit for the onset of convection and R¥
the limit for the collapse of turbulence (Burchard & Baumert [1995]).

2.1.2 Boundary Conditions

The surface and botom boundary conditions for the system of equations (1)
were formulated in the usual way with the turbulent fluxes of energy and
matter taken to be proportional to the vertical gradients of the appropriate

property.

2.1.2.1 _The Momentum Equation

1. Free Surface Boundary Condition:

zslt
10, g = 222 (33)
and
t
[Vtaz'l—’]z=o = Typs(f ) (34)
with
Tis = pKp0, Wy, i=2x,y (35)

K, is the turbulent viscosity regarding the turbulent flux of momen-
tum in the air and (W, W,) is the near surface wind velocity vector.
Assuming a logarithmic velocity profile, the calculation of the surface
momentum flux is approximated by

po is the air density and ¢; is a wind friction coefficient that is a
function of wind velocity. For wind velocities between 8 and 25ms™1!,
cg = (1.2+40.025|W|) with additional formulae for other wind speeds.
The coefficient ¢4 can be calculated using empirical formulae, for ex-
ample those developed by Kondo [1975) which we used here.
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2. Bottom Boundary Conditions:

In order to obtain bottom boundary conditions, a logarithmic bound-
ary layer (LBL) is assumed in which the shear stress is constant and
equal to the bottom stress. Because of the strong velocity and dissipa-
tion rate gradients within the LBL, the integral mean over the bottom
interval of the discrete scheme were taken as boundary conditions.

el = @) = -2 — _RaGa (0
and
[e8,7),,, = (#) = —Tyf’:ét) = —Ro(z, t)us (38)

where @, = i(2p,t) (2, € LBL) with the layer-integrated bottom drag
coefficient R given by (e.g. Tennekes & Lumley [1972])

K2 _Ks

R= In2](29.96/¢)(1 + (1/p))1tP]’ P=R

(39)

In equation (39) k = 0.4 is the Kdrman constant, Ks denotes the
linear size of the roughness elements, uy = \/[@(2,)]* + [6(25,t)]2 > 0
represent a mean value over the LBL and Az the spacing of the bottom
grid interval.

2.1.2.2 The Heat Balance

1. Free Surface Boundary Condition:

ot

[ﬁazz‘] =L (QL+0s+Qr) (40)
z=0 CpPo

where @ denotes the latent heat, Q)¢ is the sensible heat or direct
heat flux and Qg is the heat loss due to longwave backradiation at the
sea, surface.

Temperature changes due to the absorption the visible part of solar
radiation are included in the source term pTlc;azI in the third equation

in (1), where the absorption of the longwave range of insulation at the

17



sea surface (z = 0) is given by the surface flux 8,T},_, = ﬁ] IR [IR

is the insulation at the sea surface in Wm™2. Obviously I'E+I(z = 0)
denotes the total global radiation.

2. Bottom Boundary Condition:

At the bed the adiabatic boundary condition is applied so that

[ﬁaz:ﬁ] _ =0 (41)

Calculation of the heat fluxes Qr, @s and Qg is carried out using em-
pirical bulk formulae (see Busch [1977), Friedrich et al. [1981]) which are
derived and presented in detail by Kondo [1975]. These formulae contain
much empirical information such as the dependency on air density or water
vapour pressure (the Magnus formula) and the effect of temperature on the
specific heat of water (see Moller [1973]). These formulae have been applied
and presented in compressed form by Regener [1992]. They also take into
consideration the state of the atmosphere (unstable, neutral, stable). The
long wave back radiation budget is calculated (Kondratyev [1969]) from the
Stefan-Boltzman constant, the emissivity and the cloudiness (measured in
Okta).

The absorption of incoming visible solar radiation is parameterised using
the approach adopted by Paulson & Simpson [1977].

2.1.2.3 Salinity Equation For salinity the no-flux condition is assumed
to hold both at the free surface and at the bottom boundary. The free sur-
face condition is justified since precipitation and evaporation are of similar
magnitude for the area of the North Sea. Thus, the boundary conditions for
salt read

[—825’] =0 (42)

18



2.1.2.4 Turbulent Kinetic Energy (TKE)
1. Free Surface Boundary Condition:
[20.k] =0, : if E>ul/ym

= (43)

k=ul //C: : otherwise

uj is the wind friction velocity at the sea surface with uf = ,/2* and

7s = /T2 + 7. This approach was suggested by Rodi [1980]. The

discrete form of (43) which is used in the model is described in chapter
3.4.

2. Bottom Boundary Condition:
k(z,1) = k(t) = [us (0)]° / /Ca- (49)
2.1.2.5 The Dissipation Rate Of TKE

1. Surface Boundary Condition:

k3/2 c3/ 4 ‘
€= - 2 1/2 (45)
k [z +0.07H (1 - ug? /kei/®)]
This approach is also described by Rodi [1980].
2. Bottom Boundary Condition:
x 1 .

ez, 1) = [uj (1)]° py (46)
where u} is the bottom friction velocity given by: uf = /(@2 +;§3

. [r2 + 2
with 7, = ——E"O—Tﬂ = (u;;)2 Note that 7, as well as uj are constant
throughout the LBL (constant stress region).

As with the momentum boundary condition equation, the TKE and dis-
sipation equations are taken in their integral mean form over the bottom
interval of the discrete scheme.

19



2.2 SPM Model (Version A, cohesive material)

This version of the generic model considers cohesive SPM i.e. flocs. Thus,
besides the interaction between particles of different floc size classes, the ma-
terial is assumed not to react with the bed sediments and to be continuously
in suspension, with highly variable concentrations, leading to formation of
a lutocline or fluffy layer and giving rise to colliding of particles of different
floc size classes. The flocs are transported both up and down the water col-
umn via turbulent diffusion with settling under gravity also contributing to
the downward flux. Given that there is no interaction with the bed, no-flux
boundary conditions are appropriate for both bed and surface. The result-
ing conditions for the SPM equation in (1) are (note that in the following
i, 7,1 mark the corresponding floc size classes)

1. Free Surface Boundary Condition:

[‘Z’iws,i - %@Jh} =0. (47)
2=0

1

2. Bottom Boundary Condition:

[q‘s,-ws,z- - iazq’z} =0. - (48)
T z=—H

The sinking velocity w;; is dependent on the floc concentration in order to
allow for so-called hindered settling. This phenomenon is observed if floc
concentrations reach a critical value and there is interaction via differential
settling. Beyond this critical concentration, the effective settling velocity is
reduced (van Rijn [1993]). In order to allow for this modification in wj ;, we
have implemented the following formula due to Oliver [1961]:

we; = (1—2.15-¢cg,) - (1 —0.75 - c}*) - w) (49)

s,i*

In equation (49), c4, is a dimensionless ratio of the local instantaneous floc
concentration ¢; and a certain maximum concentration ¢} i.e. ¢y, = éi/ ¢;.
w? is the corresponding settling velocity in clear water.

Another observed phenomenon which has to be included in the model
is the influence of floc concentration on the density of seawater. Because
of this, high floc concentrations can affect the hydrodynamics of the flow.

High floc concentrations near the bed establish sharp concentration gradients

20



and corresponding vertical density gradients, especially when turbulence is
weak. Because of this, turbulent motion in the bottom layer may eventually
be suppressed (Sheng & Villaret [1989]), so that within the boundary layer
further erosion due to turbulent motion will stop. This sharp density gradi-
ent will be eventually breaked up by a subsequent sufficient increase in near
bed horizontal velocity components. In the model this process is considered
using the following formula (e.g Sheng & Villaret [1989]).

Pm = Cp; - ps+ (1 —cg;) - p (50)

In equation (50), pr, is the modified density, p; is the sediment density and
cg; the normalised SPM concentration. p denotes the density of sea water.

The source and sink terms ;" and ] in (1) are defined as the rate of
change of the considered floc size class: ‘

=[6p)t and O = [8t(7)i]_a ‘(51)

o ha hannsma affontive anly

dul.ld Call D€ DECoIlie eucciive vililly lf CJ.
classes get in contact or external forces (e.g. due to shear
particles of the considered floc size class.
Three mechanisms are generally considered to be responsible for particle-
particle contact (Jackson [1995]): The Brownian diffusion, laminar and tur-
bulent shear and differential sinking. On these occasions of particle-particle
contact or the acting of external forces particles can aggregate or disaggre-
gate, respectively (e.g.Kigrboe et al. [1994]).

Under the assumption that only single particles will collide the rate of
change of the I’th floc size class due to coagulation in a general form is given
by (e.g. Jackson [1995], Malcharek [1995]):

r+
=
a

tress) act on the

w

e o]
O] = % > aijBididi — di Y cabadi, (52)

i+j=l i=1

The first term in the above equation represents the rate at which colli-
sions of particles of floc size classes i and j occur to form a new particle of
floc size class I. The second term expresses the rate of loss of particles ¢,
due to the collision. f;; is denotes the probability of collision of particles ¢
and j and q; is the probability that they stick together after colliding.

Accordingly the rate of loss of the I’th floc size class ¢; due to mechanical

erosion (e.g. shear stress) of particles can be described as follows (e.g.
Malcharek [1995]):
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o0 oo 00 o0
B:h]™ = —medi+ D mviidi — bk D OuBadi + D vad; Y 0i;Biidi-
j=l+1 i=1 j=l+1 i=1
(33)
Here the first term on the right of the above equation describes the loss of
floc size class | due to disaggregation by the action of shear stress, the second
term on the right the increase of floc size class ! due to the fragmentation
of particles of the floc size class j containing flocs of bigger size, v;; and vy
expresses the probability that the fragmentation of a bigger floc will create
a smaller floc of floc size class I. The third and the fourth term on the right
represent the gain and loss of particles of floc size class [ due fragmentation
by collision of particles of floc size classes 7 and j and ¢ and [ respectively.
6;; and 6;; denote the probability that a particle of floc size class [ or j will
break up due to the collision with a particle of floc size class 7. Again §;
and (;; expresses the probability that particles of floc size classes ¢ and [
and ¢ and j respectively will collide.

2.3 SPM Model (Version B, non-cohesive material)

This version of the model is designed to simulate erosion and sedimentation
dynamics of non-cohesive material in shallow waters (i.e. depth < 30m)
with strong tidal currents. The non-cohesive material is assumed to interact
with the bed so that it is both eroded from the bottom and deposited on the
sea floor. This requires a bottom boundary condition permitting material
flux at the bed. The following conditions are implemented (i denotes the
1’th SPM fraction):

1. Free Surface Boundary Condition:

- v -
[‘ﬁiws,i - —tazqs,] =0. (54)
) Té: 2=0
2. Bottom Boundary Condition:
— v < . .
|:¢iws,i - _taz(i’z] = Jsi t Jeji- (55)
T¢: z2=—H

where j, ; is calculated using a formula given by Krone [1962]:
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. u.
i = PbiWs,i (1 - (u_;bj)z) for up <wuy;,
otherwise.

w; ; is calculated according to (49), uj denotes the bottom friction ve-
locity (in ms™1), ¢p; = ¢(2p,,t) is the bottom SPM concentration and
u} ; is a critical bottom friction velocity beyond which no deposition is
pc;ssible. For values of u; smaller than uj; sedimentation is enabled.

je; is calculated in accordance with Partheniades [1963]:

up—ug ;
. M, | ==}, up > uj;,
Jeji = Ui et
b

0, otherwise.

Here, M, is a constant with M, = 0.0001, u; represents the critical
bottom friction velocity which must be exceeded to enable erosion of
sediment from the bed. In both the deposition and erosion cases the
values of uj;; and ug; were chosen to be 0.028 ms~!. This corresponds
to sinking velocities greater than 0.0005 ms~* which is the case in our
investigations.

In this model (version B) the bed thickness and water level are not time
invariant so that the spatial domain of integration is also variable as it is
adapted to the actual water depth each time step. In the present model
version, the water depth function H(t) is given as

H(t) = he(t) + ho(t) + H

where 0
h¢(t) = Agcos (T—Zt + <pa)

with h¢(t) denoting the tidally induced deviation of sea surface from the the
undisturbed water depth H [m]. Ag is the M> tidal amplitude, T the M;
tidal period, ¢g the phase of the M, tide and ¢ the time in seconds. hy(t)
is the time dependent bottom thickness in meter.

3 Numerical Solution

3.1 General Aspects

Special emphasis has been placed on model development in order to obtain
a fast, robust and highly efficient code so that at least one annual cycle
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can be simulated on a personal computer in reasonable runtime. A 63 day
simulation (time step = 600s) on a 66 MHz 486-DX2 processor takes about
10 minutes. The same task run on an IBM RISC 6000 is completed in about
1 minute.

3.2 Discretization in Space and Time

The discretization of the diffusion equations in (1) is conducted using a
three-point, two-layer finite-difference scheme on a staggered grid based on
the methods of Baumert & Radach [1992] and Burchard & Baumert [1995).
For improved spatial resolution in the near-bed region, the vertical axis 1s
discretized with a non-equidistant grid. The horizontal pressure gradients
in (1) are forced by the M, and S, tidal signals at the given geographical
position according to equations (4) and (5).

3.3 Numerical Treatment of the Boundary Conditions

In this section the approximations used for the boundary conditions are
described in a general form. Both kinds are used in this model boundary
conditions of the first (44)-(46) and of the second kind (48)-(55). First the
boundary condition of the second kind are dealt with, after that the bounaary
condition of the first kind is shown.

For all state variables with the exception of the SPM equation (the fea-
tures of the SPM equation are described in chapter 3.5) the underlying
differential equation reads in a general notation:

3,:Y =0, (v0,Y) + ¥(z,1) (56)

Y denotes the state variable under consideration, v the turbulent viscos-
ity and ¥(z,t) represents a general source function. The corresponding free
surface and bottom boundary conditions are formulated in a general form
as

— v8,Y |,y = Lo(t) — Kolt) Y1, (57)

and

V8,V |,y =Lu(t) = Ku) Y], n | (58)
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respectively with given relations v(z,t), Ko(t), Lo(¢) and Kg(t), Ly (t) and
the unknown function Y'(z,t). v is found in both equation (56) and the
boundary conditions (57) and (58). '

To formulate an approximation for these boundary conditions, let the
not necessarily uniform discretization step between the grid points i+ 1 and
i be defined as h; := z;—2;—; with¢ = 2..M and M the number of gridpoints.
zi+1 and z; represent the depth of the < + 1 and ¢ gridpoints respectively.
Please notice that the indexing in this model is performed from the bottom
to the surface, thus the discretization step at the free surface is given by
hy := zpr — zp—1 with the corresponding step at the bottom boundary
hg := 2o — z;. Here index 1 denotes the bottom value and index M the
surface value of the variables under consideration and in the following * "’
indicates unknown values on the new time level.

In a general form, the used tri-diagonal equation reads:

ai-ﬁ+1—ci-f’}+bi-17i_1+di=0 (59)

where the indices ¢ — 1,4 and i + 1 refer to the corresponding grid point
numbering with i = 2,..., M — 1. The coefficients a;, b;, ¢; and d; are known
on the old time level. Their values depend on the applied discretization
scheme. Here we used a fully implicit three point, two layer finite-difference
scheme, which results in (7 is the integration time step and ¢; :=¢p + 7):

T T
a; = _V(i“%)ﬁg’ b,; = —V('H'%)E?’ c = 1—-a,~—b,~ and di = Yi+\Il7;-T.
(60)
At the boundaries (59) takes the form:
At the surface (z=0):
—CM YM + bpr - ?M—l +dy =0 (61)
and at the bottom (z=-H):
a1 Vi—c;-Ya+di =0 (62)

In order to get suitable descriptions of the coefficients in (61) and (62) we
discretize (57) and (58) in space only, to get the following approximations
of second order:

At the free surface:

?M—l — ?M

. h
=Lo— KoV — 22 (8,Y|pe — Tnr)  (63)
huy 2

~Y(-3)
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and at the bottom:

Yi-Y; ~  hy
V) TR Ly —Kg¥1—-— (8:Y]1 — ¥1). (64)
The time domain is, in accordance with the approach adopted for the
differential equations, discretized fully implicit. Thus, the following approx-
imations are valid:
At the free surface:

Yim—Yy 2 Va1 — Yur 5
MM (v T KoV ) + Ty (65)
and, at the bottom:

Vi-vi 2 V- Yo 5
- _E(-—um%), = +Lg — Kg¥1) + 01, (66)

Rearrangement of equations (65) and (66) gives the following expressions for
the boundary conditions of the second kind as a second order approximation:
For the free surface

\
Y = s¥u-1+m
W, 1T
K1 = i;g—z)—/al
M > (67)
g1 = (YM+2TL,3,I+T‘I’M) /51
2v 1.7
e— (M-5) 2K,
61 .— 1+ h?u.f + h}\(/JIT )

with the corresponding coefficients cpr, basr and dps calculated as:

2v T
(M—35)
S S T

N

M
cM = o1 = l—bM+2TK131 ¢ (68)
dy = pm-6 = YM+%J&I+T\I‘M
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The bottom boundary condition results in:

Vi = kYo +po
2v T
Ko = —(—1’%';%2—/52
2 > (69)
Ha = (Y1+'2—%;11+7'\I/1)/52
2v T
R

with the corresponding coefficients a;, ¢; and d; calculated as:

3

2v T

( )
ay = —-Fi2-52 = —-—1’-%%—
o = & = l-m+ar (70)
d = pg-b = Y1+'2—I;11211+7'\I/1.)

In terms of (67) and (69) the used boundary conditions of the first kind
read as follows:

For the free surface

A A
Yy = m
kK1 = 0
' L (71)
mo= Yy
o = 1, |
from which follows, that car = 1, byr = 0 and dy = Y5
For the bottom boundary one obtains
A 3\
Yi =
Ko = 0
2 > (72)
p2 = Y10
o = 1, ]
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with a; = 0, ¢; = 1 and d; = Y and Y} and Y denoting always known
values of Y at the surface and the bottom boundary, respectively.

Equations (67)-(72) are part of a linear system, the solution of which
gives the values of state variable Y throughout the water column.

3.4 Numerical Treatment of the TKE-Equation

In order to improve the numerical stability of the discrete algorithm we
described (43) by a continuous function, rather than by a stepwise function. In
relation to the general discrete form (67) the conditions in (43) are equivalent .
to the statements that (note that the discrete form of the TKE-equation
boundary condition is a first order approximation of (43) and ¢ denotes the
time)

by =kyor or k=1 and wm =0 if ky>ul /&G

and

lAcMzuzz/‘/c,i or k1 =0 .and u1=u:2/,/c# if kum <=u;2/\/c—u.

This behaviour can be approximated asymptotically by the following rela-
tions for x; and pi:

=k* 2 and =1 il
MEE R T T T

whith &* = u}’ /,/Gs.

3.5 Numerical Treatment of the SPM Equation

On discretization of the SPM equation, one has to consider the magnitude of
the cell Peclet number. This is defined as the ratio of the advective (sinking)
term to the diffusive flux term of SPM (Pe; = -“ith). For smaller cell Peclet
numbers (i.e. < 2) central differencing of the advective term is a reasonable
approach. However, for bigger cell Peclet numbers (>2), an upwind scheme
is necessary in order to maintain stability of the solution. For these rea-
sons, the SPM budget equation in the model was defined using the control
volume approach applying a power law interpolation scheme as described
by Patankar [1980]. This scheme takes care of both smaller and larger cell
Peclet numbers. Since upwind schemes are highly diffusive (which becomes
especially evident in regions of low physical diffusion), the advective term
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was discretized using the hybrid linear/parabolic approximation (HLPA)
scheme proposed by Zhu [1991]. This approach constitutes a higher order
upwind scheme and exhibits much reduced numerical diffusion. Note that in
the following, we use ¢ instead of &, but still refer to the ensemble averaged
variable. In this chapter the discretizised SPM equation is described in a
general form, thus we omit the index indicating the SPM fraction. Here in
case of the SPM equation the coefficients in (59) are given by:

ai =D,y - A(|Pe;yy|) + mex [-F 4,0] (73)
b= D,_s - A(|Pe,_y|) +max [F,_1,0] (74)
hi+ h;_
0 __ -1
(3 2 . (75)
ci=a,-+bi+c?+ (FH-% _Fi—%) (76)
where
Vt.i1 Fi:tl
— ! E . — . = 2
Di:t% hzi% ’ Fz:!:-;- wsii% and Pezi% Dz:t% (77)
The applied power law as published by Patankar [1980] is
A(JX]) = max ((1-0.1- |X])°,0) (78)

with which the corresponding terms in equations (73) and (74) can be ob-
tained.

If Fz+% >0
F* . = n o _ 4n ¢? - ?—1 e
i+l = ’Yi+l(¢i+1 #7) - an (79)
2 2 i+l T Pil1
with

o Fi+§ i QR + BT — 207 < |dP1 — ¢
+2 0 otherwise

If Fi+% < 0 then

F*, = n n ¢?+1 - ¢?+2 \
i+l - 71,_*.1(4)1, - ¢1,+1) no__ AT (80)
2 z ¢ 42
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with

Yirl = Fop o 3|67 + i, — 260 <[6] —
vty 0 otherwise

Corresponding expression for F; , follow from (79) and (80) with 7 — 1=
2
(i — 1) + 5. Finally

di=c - ¢} +F - Fy (81)

The coefficients given by equations (73)-(76) and (81) are always known at
the old time level. Dz:t 1 and F; il denote the diffusive and convective fluxes
of material respectwely The second and third terms on the right hand
side of equation (81) can be regarded as an antidiffusive correction to the
upwind scheme (Zhu [1991]). The power law scheme used here (equation
(78)) requires a significant amount of computing time. However, it provides
the most accurate solutions, closest to the analytical solutions.

4 Results and Discussion

In order to validate the discretization schemes (especially for the SPM equa-
tion), tests were conducted to compare the results of specific model runs
with analytical solutions and also measured data. These tests have been
carried out for both model versions A and B. For a comparison with mea-
surements, we have used the data obtained during the FLEX’76 experiment.
This dataset consists of measured temperature profiles for an assessment of
the model’s performance and also the meterological information required as
model input.

In future, the model will be tested using the new datasets from the
PROMIX’96 experiment in the Sylt-Rgmg Bight and the Holderness exper-
iments. These datasets will permit detailed insight into the model’s ability
to simulate microstructure properties of turbulent flow dynamics.

4.1 Model Results against Analytical Solutions

For these model tests, three different analytical solutions of the stationary
SPM advection/diffusion equation were considered. Against each of these
scenarios, we tested three different numerical schemes : the upwind scheme,
the hybrid scheme derived by Spalding [1972] and the power law scheme.
The three test cases consisted of:
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1. Constant sinking velocity ws, and constant turbulent viscosity ui,.
Thus, we have the following analytical relation for ¢

—Wsg 2 .
¢(z) = a+be "o (82)
with
b=i—ge—_—_-%9 and a=¢¢—b

where ¢z and ¢o denote the SPM concentration at the bed and surface
respectively. The water depth (H) was chosen as 20 m with 10 grid-
points in the vertical. Sinking velocity and turbulent viscosity were set
to ws, =-0.6 ms~! and 14, = 2 m?s™! respectively. These assumptions
lead to a constant Pe = —6. These specific values were chosen in order
to enable us to distinguish differences in the behaviour of the applied
discretization schemes. It is clear from Figure 1 that the closest fit to
the analytical solution is provided by the power law scheme.

2. In the case of exponential behaviour for turbulent viscosity (v¢(z) =
1,e?) and sinking velocity (ws(z) = —ws,e*) the analytical solution
for ¢ is given by

wsq?

#(2) = ae™* +be *io (83)

with the coefficients

poe H — ¢n

—wsH
eH—e “o

b= and a=¢y—b

In this case ws, =-18 ms™! and v, =3 m?s™! respectively, leading to a
cell Peclet number of Pe = —12. As with the previous case, the power
law model scheme provided exhibited the smallest deviation from the
analytical solution. A comparison of the various results is shown in
Figure 2.

3. Assuming a depth dependent sinking velocity and turbulent viscosity
with ws(2) = —ws, (2 + 1) and »(2) = vy, (2 + 1), we get for ¢
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= vt
#(2) 152 +b(l+2) “to (84)
with
b= ¢H(1 tt-H;),‘,_ ¢0 and a= ¢0—b
0~ Wso
(1+H) " -1

The surface values were set to ws, =-1.0 ms™! and 1y, =2 m2s~!
respectively. In this case the cell Peclet number is not constant.

Figure 3 shows that, as before, the power law scheme is the most appropriate
for the considered advection/diffusion equation.

4.2 Model Results Against Measured Data

In order to validate the model against measured data, simulations at the site
of the Fladenground Experiment [1976] (FLEX’76) were carried out. The
FLEX’76 dataset contains both the meteorological data required for the
model forcing as well as measured temperature profiles which can be used
to validate the model results (see Burchard & Baumert [1995]). In addition
to comparison of the isopleth diagrams for the temperature field, the rms
error of temperature over the upper half of the water column serves as a
useful measure of the model’s performance. Both of the isopleth diagrams
(figures 4 and 5) and the computed rms error of 0.23 show that the model
has been well designed and implemented. These results are comparable with
those of other authors (e.g. Burchard & Baumert [1995]). All of the well
known events (the onset of stratification on the 110th day and the storm
around the 134th day) observed during FLEX’76 are reproduced by the
generic model.

As soon as the required data is available, further applications of the 1-d
model will be carried out at the site of the Holderness experiments.

4.3 Results of SPM Simulations

In order to test the two SPM modules used in versions A and B, we have
constructed suitable test cases for each approach.
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4.3.1 Results for Version A (cohesive sediments)

For this particular version of the model, the SPM population was assumed to
consist of flocs of diameter 40 y m with a sinking velocity of 1.5- 10~3ms™!
and density of 1005 kgm™3. The initial floc concentration was set to 0.1
kgm~3. The vertical grid was uniform with 120 grid points and a water
depth of 145m (corresponding with the FLEX’76 dataset). The integration
timestep for the run was set to 150secs and the tidal forcing was configured
such that on springs the currents peaked at around 1.2ms™!.

Figure 5 shows the model results for two tidal periods. Floc concentra-
tion is shown in sub-diagram 5d. The isopleths display a clear tidal signal.
Figure 5e shows contours the cell Peclet number i.e. the ratio of convective
and diffusive fluxes. Near to the boundaries, convective processes dominate
whereas diffusive processes are more important in the interior of the water
column. A similar feature can also be identified from the TKE, dissipation
rate and eddy viscosity contour plots. There is a clear tidal signal in the
TKE results with the strongest variation found in the near bed region. It
is this turbulent energy that is resulting in the transport of SPM into the
interior of the water column.

4.3.2 Results for Version B (non-cohesive sediments)

A shallow tidal channel with a mean depth of 15m was chosen as the test case
for this version of the model. Varying depth (and layer thickness) is included
in the model to incorporate a tidal range of approximately 2m and variable
bed thickness due to bottom exchange processes. The SPM population
was assumed to be sand with a grain diameter of 100 x m, sinking velocity
10~2ms~! and a density of 2650 kgm™3. The non-regular grid was chosen
for increased resolution in the near bed region. Tidal velocities peaked at
3ms™1.

The model results (Fig. 6) cover two adjacent tidal periods and clearly
display the fundamental dynamics of the system. The onset of resuspension
of bed material triggered by strong tidal action is clearly visible. Due to the
effects of high SPM concentration on the water density, the continuous re-
suspension and subsequent upward diffusive transport of this material leads
to relatively sharp density gradients close to the bed. As with the previous
run, the cell Peclet number results (Fig. 6e) indicate that convection is dom-
inant near the boundary whereas diffusion becomes the important process
in the interior of the water column.
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5 Technical Aspects

At present, the model is coded using Borland’s Pascal 7.0 package. It subse-
quently runs on an IBM compatible personal computer under DOS (version
3.2 or better). A second model version is designed for use on UNIX machines
(e.g. IBM-RISC). To compile the code on an IBM-RISC machine requires at
least the IBM-AIX XL Pascal compiler (version 1.1). For both these model
versions, the run parameters are specified using corresponding control files.
These control files (CONTROL.DAT) assume the following format:

North Sea { Comment, up to 12 Characters ... }
2 { 1: Save single point time series; 2: 1 plus profiles }
FLEX____ { Name of the forcing data file; 8 Char,; (Ext,:’dat’ implied)}
dxe.t { Grid file name (8 Char. + 3 Char. extension) }
63 { Number of days for which forcing data exist }
68.55 { Latitude in degree }
150.0 { Water depth [m] }
120 { Number of grid points used }
600.0 { Integration time step [s] }

1 . { Flag: 0 - run without SPM, 1: run with SPM }

{ blank }

-0.275 { Phase of the M2-tide }
-0.275 { Phase of the S2-tide }
4.0e-05 { Amplitude 1 of the M2-tide }
5.0e-05 { Amplitude 2 of the M2-tide }
4.0e-~05 { Amplitude 1 of the S2-tide ¥
5.0e-05 { Amplitude 2 of the S2-tide }
435000 { Lag netween model time and tidal phase }
{ blank }

2650 { Density of sediment [kg/m"3] }
-0.001 { Sinking velocity [m/s} }
2650 { Maximum concentration [kg/m"3] }
0.1 { Start value of concentration [kg/m~3] }

Three additional lines are included in the control file for use with model
version B:

0.028 { Critical bottom frict. vel. for sediment }
0.030 { Critical bottom frict. vel. for erosion }
1.0 { Max. depth of erosion [m] }

The first line in the forcing data file contains the initial water tempera-
ture, which is considered to be homogeneous. This is followed by the external
forcing data at one hour intervals. Table 2 describes the form of the external
forcing datasets.
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The data is assumed to be valid at a height of 10m above the sea level
and are taken as the mean values above the sea surface.

The model results are saved in three files which have the same name
as the forcing data file but have differing extensions. The file with exten-
sion *.TIM contains single point time series, whereas those with extensions
* PRF and *.PR2 contain timeseries of profiles of selected parameters. Pa-
rameter profiles are saved from surface to bed. In addition to the velocity
components, temperature, salinity and density, the model output includes
information regarding the turbulent flow field. The microstructure parame-
ters are listed in Table 3.

Each of the three output files starts with a header which contains spec-
ified information for the model run. An example of such a header is given
below

North Sea
Latitude = 58.9160 degrees north
Water depth = 150.0 m
Forcing = FLEX____. DAT
DT = 600.0 s
t H T_s T_1/2 T.b
(4] @l [C] [l [c]
1.003 0.9 6.13 6.21 6.22
2.005 0.0 6.07 6.15 6.16
etc.

In this file, the first column is the time in days, the second contains the
top layer mixed depth [m] and the third to fifth columns record the surface,

Column Parameter Unit
1 East—West component of wind stress m2s?
2 North—South component of wind stress m2s~2
3 Global radiation Jm—2s71
4 Net turbulent heat flux at the sea surface | Jm™2s7!

Table 2: Columns of the forcing dataset
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depth-mean and bottom temperatures respectively.
All of the above mentioned model data can easily be processes and vi-
sualised using customary PC graphics tools.
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| Symbol | Name [ Unit | Calculation | Comment
vt Eddy viscosity m?s~! Ve =cp 4"—;— Turbulent viscosity
C: Cox number - C; = &TVI%T Ratio of turbulent to molec-
ular heat conductivity
Ex Local Ekman number - Ep = f—",—}: Ratio of the friction to the
Coriolis term
lps Batchelor scale for [m] lps = 4 "—?—-?- Length scale for the smallest
salinity possible haline inhomogenei-
ties
2
lBT Batchelor scale for [m] lpr = 1| "—?L Length scale for the smallest
temperature possible thermal inhomoge-
neities
Ik Kolmogorov length [m] Iy =+ ~";3- Lenght scale of the smallest
scale not dissipated eddies
b Eddy length scale {m] I = {—%— Lenght scale of the energy
containing eddies
lo . [m] lo=+/%3 Maximum vertical extension
Ozmidov length scale of turbulent eddies
Re Local turbulent - Re = -‘{,kTTL Measure of the dynamical
Reynolds number condition (turbulent or la-
minar)
Rep Buoyancy Reynolds - Rep = o5z Measure of the dynamical
number condition (turbulent or la-
minar)
‘R Stability ratio - Rs = (i: %:%)El Measure of he local ther-
mohaline stability. +1(-
1): salinity or (temperature)
stabilised.
Rf Flux Richardson - Rf = :% Measure of the stratification
number stability
Rg Gradient Richardson - Rg = —m%sy Measure of the stratification
number ) stability
Tm Makro time scale of {s] Tm =5 Time scale of tubulent
turbulence eddies
Tx Kolmogorov [s] Tk = I\}S—E Time scale of the smallest
micro time scale of not disspated eddies
L turbulence

Table 3: Micro structure data, which are included in the model output. D,
and D, are the molecular diffusion coefficient for heat and salinity respec-

tively [m?/s],

H,, is the water depth in m and o4 and B; are the thermal

and saline expansion coefficents [1/C] and salt [1/psu], respectively.
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Fig. 1: Model results against analytical solution. Stationary solution
with constant turbulent viscosity v, and sinking velocity L

(a) The vertical concentration profiles and (b) the abs. error between
model results and analytical solution.
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Fig. 2: Model results against analytical solution. Stationary solution
with an exponential dependency of the turbulent viscosity v,

and sinking velocity Wem

(a) The vertical concentration profiles and
(b) the abs. error between model results and analytical solution.
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Fig. 4 : a) Isopleth diagram of measured temperatures and b) Isopleth diagram
of simulated temperature distribution for FLEX'76 in °C.
Calculated with model version A .
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Fig 5: Isopleths diagrams of simulated a) TKE, b) dissipation rate of TKE,
c) turbulent viscosity, d) SPM concentration and ¢) the cell Peclet number.
Calculated with model version A.
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