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1.0 INTRODUCTION

It is well known that when waves are superimposed on a steady tidal
current, greatly enhanced sediment transport rates result owing to both stirring
effects 1induced by vortex shedding and the high instantaneous bed shear stresses
generated in the very thin wave boundary layer, DYER (1986). Although wave
motion by itself cannot produce net sediment transport, (except a minor flux
termed Stokes' drift), it is extremely effective in placing sediment into
suspension where relatively weak currents can produce considerable net transport.
Despite the significance of combined wave/current boundary layer processes in
sediment transport, laboratory and field data representing the wide range of
naturally encountered conditions are sparse and inconclusive and generally the
calculation of the net sediment flux is based on inappropriate current-only
transport equations with a resulting underestimation of net transpert. It is
therefore desirable to extend work on sediment transport in combined wave/current
situations so that more physically realistic prognostic models can be developed.
A research program to achieve these objectives is funded by the Ministry of
Agriculture, Fisheries and Food and is undertaken collaboratively by Hydraulics
Research Ltd., The Proudman Oceanographic Laboratory and University College North

Wales.

Initial work was undertaken during September 1986 using the STABLE rig
(HUMPHERY, 1987) on an area of non-erosive gravel South West of the Isle of
Wight. Useful data regarding the wave/current/sediment interactions on an
immobile sea bed were obtained. In order to obtain data regarding
wave/current/sediment interactions on an erosive bed STABLE was redeployed on an
active sandbank off the North West tip of Lundy on 30.09.87 (Figure 1). An
initial sidescan survey of this area (WILKINSON & WAINWRIGHT, 1983) showed the
bank shallowing from South East to North West with no distinguishable bedforms
present. Subsequent surveys by ship echo sounder and diving reconnaissance,
however, have indicated the presence of large-scale low amplitude bedforms and
ripples covering significant portions of the bank. It therefore appears that the
area 1is subject to modification (probably during storms) and is thus a
sufficiently dynamic environment for the present study. The instrumentation used
in this deployment is summarised in Table 1. Instrument interrogation and data
recording 1s controlled by a programmed dual function Sea Data Logger and

integral d.c. power supply (HUMPHERY, 1987).
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The purpose of this short investigation has been to quantify the basic
physical and dynamic properties associated with sediments at the Lundy deployment
site. Such data will be required 1in subsequent analysis of the acoustic

backscatter signals and the hydrodynamic data.

1.1 Sample collection

During deployment of STABLE, divers collected two surface sand samples from
areas close to the rig. Shipek grab samples of the bed material were also taken
at four sites close to STABLE. In addition, approximately 30 grab samples were
collected en masse as the vessel drifted away from STABLE. For convenience these
5 1 G2, G3 and G4 (grab
samples}) and BLK (bulk sample) respectively in the following analysis and

samples are referred to as S1 and S, (surface samples), G

discussion.

By examination of the sediment mineralogy using a polarizing microscope it
was found that the majority of mineral grains were composed of quartz with small
amounts of feldspars, zircon, tourmaline and shell fragments (see 2.2). The mean

density of samples was found to be 2.642gcm—3.

2.1 Grain size analysis by dry sieving

Grain size analysis by dry sieving was performed on all samples at
Liverpool University. After thorough washing in distilled water to remove salt,
samples were oven dried at 110°C for 24 hours. Sub-samples weighing
approximately 100 grams were then obtained using a riffel box and sieved for 3
hour using a mechanical sieve shaker and an appropriate sieve nest. Sieved
fractions were weighed to an accuracy *0.01 gram and the results plotted in the
form grain size (@= -Log.,d,mm) versus cumulative percent (probability scale).
The characteristic asymptotic grain size distribution curves are shown in Figure
2.

The mean (d), standard deviation (Od), skewness (SKd) and kurtosis (Kud)
associated with each cumulative/phi plot were calculated by substituting

appropriate values from the graphs into the following formulae (FOLK, 1974).



Graphic mean, d = (#16 + #50 + #84)/3 ()

Inclusive graphic standard deviation, o

[ #84-816 ] N [ ¢95—¢5]

7 e (2)
Inclusive graphic skewness, SKd =
[ 216+884-2850 1+ #5+895-2850 ] (3)
2(#84-816) 2(#95-25)
Inclusive graphic kurtosis, Ku, = 295-25 (4)

d 2.44(@T75-825)

A summary of these statistics is presented in Table 2 and indicates that
sediment from the sea bed near the STABLE deployment site may be classified as a
very well sorted fine sand (d = 2.008 , 250um) characterised by a near
symmetrical size distribution and strongly leptokurtic kurtosis. Such statistical

properties are typical of a very well sorted, unimodal sediment.

2.2 Total carbonates

Visual 1inspection of the various sieve fractions indicated the presence of
shell fragments. Quantification was obtained by the following analysis. A 15%
solution of hydrochloric acid was added to 60g of each sediment sample. Although
visible effervescence stopped after approximately two hours the samples were

continuously agitated for 12 hours to ensure that all carbonates were completely

dissolved. Samples were then washed in distilled water and oven dried at 110°C
for 24 hours. The percentage of carbonates by weight in each sample was then
determined, (Table 3). The mean size distribution associated with a carbonate

free sample was then found by dry sieving a sample prepared by combining all the
HCl treated sediments (Figure 3). In addition the percentage of total carbonates
present 1in each sieve fraction was also found using a representative sample

(Figure 4).

2.3 Roundness and sphericity

As the roundness and sphericity of grains significantly influence their

hydraulic behaviour, a visual assessment of these properties was undertaken using
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the descriptive indices suggested by KRUMBEIN & SLOSS (1963). In general, the
relatively coarse particles consisting of marine faunal materials (predominantly
shell fragments), were characterised by high angularity (0.1 to 0.3) and low
sphericity (0.3 to 0.5). The significantly smaller quartz grains, however, were
found to be sub-rounded/rounded (0.6 to 0.9) and characterised by relatively high
sphericity (0.8 to 0.9). A sketch of typical faunal fragments and quartz grains
is shown in Figure 5. These observations indicate that the hydraulic behaviour
associated with the majority of grains within a given sample is unlikely to

deviate significantly from that of spheres, (see 3.1).
2.4 Material in suspension

Suspended sediment samples were taken at 5 fixed heights during a 35 minute
period of maximum ebb tide flow. The sampling apparatus consisted of an array of
drogue nets (100um sieve cloth) attached to a stainless steel rod. Substantial
lead ballast ensured the apparatus remained vertical on the sea bed. The mouths
of the drogues were held open by semi-rigid plastic rings which swivelled on the

rod thus allowing the drogues to align themselves with the current.

On recovery, collected material was simply washed out of the drogues and
stored for subsequent analysis. Samples from all the drogues contained a large
portion of organic material (largely marine algae). This was removed prior to
analysis using hydrogen peroxide. Only the bottommost trap (27.5cm above bed)
contained sufficient sediment for dry sieve analysis (2.1). The statistical
properties of the grain size distribution were found to be: d:1.980;<5d:0.2060;
SKd:O.232; and Kud:0.961 (Figure 6). Although only small amounts of material
were 1in suspension during the relatively calm weather on 30.09.87, the results
show that the grain size distribution closely resembles those in Figure 2.
During storm conditions, therefore, it is highly probable that all grain sizes

are present in the water column.

Figure 7 shows the height distribution of suspended material during drogue
deployment and shows that only very small amounts of material were present at
heights above 0.5m in the flow conditions on that day. It was not possible to
calculate net suspended sediment transport rates using this data as nothing is
known about drogue collection efficiency. The deployment did, however, prove the

feasibility of this technique for measuring net suspended sediment flux and
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further work to produce a practical design for use in marine conditions is

currently being undertaken.
3.0 DYNAMIC PROPERTIES
3.1 Grain size distribution and settling velocity using a settling column

The grain size and settling velocity distribution for each of the seven
samples was determined using the settling column facilities at UCNW Menai Bridge.
Data collection and analysis was automated and the errors associated with
non-uniform sample introduction and wall effects were largely eliminated by

correction factors in the processing software.

The grain size distribution estimates for each sample are shown in Figure
8. These data were obtained from the settling velocity values by assuming the
grains to be spherical (see 2.3) and grain density to be 2.65gcm_3. Also
included are the distribution statistics (mean, sorting (standard deviation),
skewness and kurtosis, from FOLK, 1974) and the classificatior of the sediment
according to WENTWORTH (1922). Close agreement is found between these results

and those obtained by dry sieve analysis (2.1).

The mean characteristic settling velocity distribution for surface and grab
samples are shown 1in Figure 9. These graphs show that although mean settling
velocity for the whole sample ranged between 1.8cms"1 and 9.2cms_1, the mean
settling velocity range associated with 80% of the sample by weight was only
2.9<:ms-1 to 3.8cms”| for the surface samples (Figure 9a) and 2.9cms"1 to
4.1cms—1 for the grab samples (Figure 9b). In both cases these results reflect
the considerable hydraulic similarity of grains. These data are in good
agreement with data from LANE (1938), ENGELUND & HANSEN (1967), MOTLOVY &
SYLVESTER (1979) and BABA & KOMAR (1981).

3.2 Entrainment and suspension threshold

Experiments to determine the entrainment and suspension threshold for Lundy
sand were carried out wusing the tilting flume at The Civil Engineering
Department, University of Liverpool. Three bed configurations were examined: (a)

Flat bed; (b) asymmetrical ripples; and (c) symmetrical ripples. Measurements of
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the three orthogonal flow components (u',w',v') were taken close to the bed using
a LASER dopplef anemometer (LDA) sampling at 100Hz. The resulting data were used
to compute mean Reynolds stresses at threshold and at different degrees of
transport intensity. In addition, a miniature discoidal electromagnetic current
meter (BECM) was used to measure mean flow velocity above the LDA at mid-water,

(Figure 10a).
(a) Flat bed

After careful levelling of the sediment bed and removal of any entrapped
air the current velocity was increased. At threshold, entrained particles were
illuminated by the LASER beams and were clearly visible as small bright flashes
of 1light. The onset of such flashes was considered to represent the threshold
condition for the sediment bed and thus the subjectivity normally associated with

visual assessment of threshold conditions was reduced to an acceptable level.

Shell fragments were the first particles to move on the bed and these
tended to roll and slide downstream. At slightly higher velocities, infrequent
sporadic motion of both shell fragments and sand grains was recorded. Such
movement often ceased a short distance downstream (<5cm). Further increases in
velocity resulted in greater amounts of entrainment until ripple formation began

and grains entered into suspension.

In runs 1 to 4 (Table 4), LDA measurements were taken at 0.2cm above the
bed. It was found, however, that during the 20 second recording period of run 4,
up to 65% of the flow records were unusable owing to sediment flux blocking the
LASER beams. To overcome this the bed was re-flattened and the LDA repositioned
at 5mm above the bed for runs 5 and 6. It was then possible to obtain a suitable

data set for flow conditions during intense bedload transport (Table 4).

N.B. Velocity profiles taken at near threshold flow conditions showed that the
constant stress layer extended to at least 10mm above the bed and thus
assumptions made regarding the relationship between Reyncld stress and bed shear

stress remain valid.
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(b) Asymmetrical ripples

Ripple formation described above was allowed to proceed for § hour in a
steady current and gave rise to a series of asymmetrical ripples (Figure 10b).
Following reduction in the flow velocity to below threshold the LASER
intersection point was relocated 5mm above the crest of a ripple in the centre of
the flume. Measurement of u', w' and v' were then taken at 3 levels of
entrainment intensity using the LDA, (Table 4). In this case, 95% of LDA

measurements were valid even during the most intense transport stage (Run 9).

(c) Symmetrical ripples

During the deployment of STABLE the divers observed fairly symmetrical
ripples on the backs of other larger low amplitude bedforms. Using the wave
generator 1in the flume it was possible to produce a near symmetrical series of
vortex ripples with wavelength (=10cm) and amplitude (=3cm) closely resembling
those recorded in the field (Figure 10c). The wave generator was then switched
off and the LDA was positioned 5mm above the crest of a ripple in the centre of
the flume. The procedure described in 3.2(a) was then followed and flow

component measurements taken at two levels of entrainment intensity (Table 4).
3.3 Threshold results

Results of threshold runs 1 to 11 are given in Table 5. Shields criterion
and grain Reynolds number were calculated by assuming: grain density 0:1.65gcm—3;
fluid density p :1.0gcm'3; g=981.0cms‘2; median grain diameter dSO:O..025cm; and

-6 , -1

kinematic viscosity Vv =1.16x10 m?s . The ECM U*T values were calculated from

U50 values using the Von Karman-Prandtl Law by assuming ZO for the flat bed to be

1/3Od50 (:8.3x10_4cm). The results are in good agreement with U*T
1

from LDA measurements of Reynolds stress, (-u'w')?.

values derived

Figure 11 shows Shields criterion versus grain Reynolds number and includes
published and experimental threshold data. The curve over this range of grain
Reynolds number 1is given by MILLER et al. (1977) and is based on data for sand
given by KRAMER (1935), CASEY (1935) and USWES. The experimental data plot as a
diagonal 1line across the face of Shields curve with minimum and‘maximum(DT/Re*

values associated with threshold and suspension conditions respectively.
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Experimental data associated with a moderate degree of bed motion agree well with
published data despite uncertainty regarding entrainment criteria. It may also

be noted that for a similar degree of entrainment, U values associated with the

*T
rippled beds are lower than those for the flat bed. This is considered to be the
result of higher incident instantaneous shear stresses brought about by enhanced
flow turbulence over ripples and by the greater degree of particle exposure to

flow on the ripple crests, (DAVIES & WILKINSON, 1978).
4.0 SUMMARY

The following physical and dynamic properties were determined for sediment

collected in the vicinity of the STABLE deployment site, Lundy.

1. Approximately 86% of the sediment by weight is composed of quartz grains.
Other constituents include: faunal fragments (predominantly shell);
feldspar; zircon; and tourmaline.

2. Mean sediment density was found to be 2.642gcm—3

3. The sediment was classified as a very well sorted, unimodal fine sand with

graphic mean grain size equal to 2.00¢ (250um).

4. Total mean carbonate content (largely shell) was found to be 12.4% by
weight.
5. The degree of roundness assoclated with shell fragments and mineral grains

was found to be 0.2 and 0.8 respectively whilst the sphericity of shell

fragment and mineral grains was 0.4 and 0.8 respectively.

6. Similar grain size distributions were found for both suspended and static

bed sediment.
7. The mean settling velocity was determined to be 3.35cms—1

8. Sediment entrainment threshold for a flat bed, asymmetrical ripples and

symmetrical ripples was found to be 1.30cms_1, 1.28cms_1 and

1.16cms™! respectively.
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Instrumentation

Data

Four open toroidal electromagnetic
current meter heads

{a) 1 at 80cm )

(b) 2 at 40cm )

{c) 1 at 10cm )

Measurement of orthogonal flow

components

(a) u',w!'

(b) u'y, w', v
(c) u'y, w'

Compass, pitch and roll sensors

Rig orientation (correction data
for orthogonal flow components)

Acoustic backscatter probe

Suspended sediment concentration
in various cells above the sea bed

Nunny sediment sampler

Mean suspended sediment
concentration during 12 day
deployment

Camera and flash

Bedform monitoring

Shrouded current rotor

Mean horizontal current

Current direction sensor

Mean flow direction

Pressure transducer

Tidal fluctuations

Thermistor

Sea temperature

Table 1:

STABLE instrumentation, Lundy deployment
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Sample d50 Od SKd Kud
S1 2.02 0.140 0.097 0.984
82 2.02 0.141 -0.224 1.070
G1 1.99 0.297 0.397 2.930
G2 2.15 0.209 -0.093 1.877
G3 1.92 0.134 -0.319 1.434
G4 1.96 0.149 -0.155 2.273
BLK 1.97 0.174 0.119 1.615

MEAN VALUE 2.00 0.178 -0.025 1.740

Table 2: Grain size distribution statistics (@ units)

Sample % carbonates by weight
S1 10.7
52 11.2
G1 11.9
G2 1.5
G3 13.2
GA 16.1
BLK 12.3
MEAN VALUE 12.4

Table 3: Carbonate component analysis
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Figure 8 (continued)
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Figure 9. Mean grain size and settling velocity distributions:

(a) Surface samples; and (b) Grab samples
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Figure 10. Bed configuration for threshold experiments: (a) Flat bed;
(b) Asymmetrical ripples; and (c) Symmetrical ripples
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