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Summary1

When comparing soil baseline measurements with resampled values there are four2

main sources of error. These are: i) location (errors in relocating the sample site), ii)3

sampling errors (representing the site with a sample of material) iii) subsampling error4

(selecting material for analysis) and iv) analytical error (error in laboratory measure-5

ments). In general we cannot separate the subsampling and analytical sources of error6

(since we always analyse a different subsample of a specimen), so in this paper we7

combine these two sources into subsampling plus analytical error. More information8

is required on the relative magnitudes of location and sampling errors for the design9

of effective resampling strategies to monitor changes in soil indicators. Recently com-10

pleted soil surveys of the UK with widely differing soils included a duplicate site and11

subsampling protocol to quantify ii), and the sum of iii) and iv) above. Sampling vari-12

ances are estimated from measurements on duplicate samples — two samples collected13

on a support of side length 20 m separated by a short distance (21 m). Analytical14

and subsampling variances are estimated from analyses of two subsamples from each15

duplicate site.16

After accounting for variation caused by region, parent material class and land17

use, we undertook a nested analysis of data from 196 duplicate sites across three18

regions to estimate the relative magnitude of medium-scale (between site), sampling19

and subsampling plus analytical variance components for five topsoil indicators: total20

metal concentrations of copper (Cu), nickel (Ni) and zinc (Zn), soil pH and soil organic21

carbon (SOC) content. The variance components for each indicator diminish by about22

an order of magnitude from medium-scale, to sampling, to analytical plus subsampling.23

Each of the three fixed effects (parent material, land use and region) were statistically24

significant for each of the five indicators. The most effective way to minimise the overall25

uncertainty of our observations at sample sites is to reduce the sampling variance.26
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Introduction27

Soil monitoring activity is increasing because regulatory authorities recognise the need28

to detect whether significant changes are occuring in properties of soil — and their29

ability to fulfil soil functions — due to a variety of anthropogenic drivers. The basic30

aim of soil monitoring is to quantify changes in selected soil properties or indicators31

over time, and to make inferences regarding these changes. When we resample the soil32

we want to compare the baseline and resampled data in order to estimate change.33

When we compare a baseline measurement of the soil with the resampled value34

there are various sources of error. A sample site is the small local area for which we35

obtain a single value of the soil property of interest. This might be a single core but36

more typically it is a larger area, e.g. a square of sides 20 m, and we sample this by37

collecting several cores which are aggregated and then subsampled to obtain material38

for analysis. To resample we return to the site and then repeat this procedure. There39

are various sources of error in the estimate of change at a sample site that is given by40

the difference between the baseline and resample values. First, there is location error. If41

we have not returned exactly to the original sample site then spatial variation between42

the two sites actually sampled will contribute uncertainty to our estimate. Second,43

there is what we may call sampling error. If we repeatedly resampled a site (at the44

same time), by the same procedure, then our different sample averages (obtained with45

no further sources of error due, for example, to analysis) would vary due to sampling46

error. The magnitude of the sampling error depends on the sampling procedure; it47

decreases as we increase the number of cores that are aggregated and from which we48

take a subsample for analysis.49

The variance of these notional repeat sample averages is the sample error variance.50

In addition to this the material that we sample is thoroughly mixed, but subsampling51

for analysis introduces uncertainty too (different subsamples would have different val-52

ues). We call this the subsample error, which introduces subsample error variance. We53

know that multiple analyses of uniform material will not return exact results and the54
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variance of such multiple determinations is the analytical variance. Although separa-55

ble in theory, the subsample and analytical variance cannot be separated in practice.56

Analytical variance must be estimated by repeat analyses of uniform material, but soil57

is never entirely uniform and so the resampling and analytical variances will always be58

confounded.59

Two published studies from the UK have attempted to provide estimates of the60

magnitude of sampling variances at survey sites. First, the relative proportions of61

between-site, local (duplicate) and analytical variances for total concentrations of 2362

elements in topsoil from 21 sites with common soil parent materials across part of63

northern England were reported by Rawlins et al. (2002). They showed that the local,64

sampling variance differed considerably for each element. Second, a study published65

by Defra, (the Department for Environment Food and Rural Affairs, in England and66

Wales) where sites from the National Soil Inventory were revisited and samples collected67

at short intervals of 10 and 50 m (Defra, 2003). Based on analyses at ten sites, the68

authors concluded that there were significant differences between samples taken at these69

intervals from the original target site for some of the parameters measured, including70

SOC, pseudo-total Pb and Zn determined by aqua regia extraction.71

Both these studies, particularly the latter, have sample sizes much too small72

to make confident general statements about the importance of different sources of73

error in determining soil properties. However, their results, while only indicative, are74

interesting, and provided a motivation to study the problem more thoroughly.75

The sampling protocol adopted by the UK Geochemical Baseline Survey of the76

Environment (G-BASE) project and the recently completed Tellus soil survey of North-77

ern Ireland includes a procedure for quantifying both sampling (short-scale) and an-78

alytical variances at 1 in every 100 locations in its systematic, unaligned sampling79

design.80

Data are available on topsoil properties (including five soil indicators) at 196 sites81

across three large regions of the UK, comprising a diverse range of soil, mean annual82
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rainfall, parent material and land use types. In such grid-based surveys, it is inevitable83

that location and sampling errors will be conflated.84

After accounting for variation caused by region, parent material class and land85

use, we have undertaken a nested analysis to determine the relative magnitude of86

subsampling plus analytical and sampling variance components for five, tier-one topsoil87

indicators identified in the UK (Environment Agency, 2006). These are total metal88

concentrations of copper (Cu), nickel (Ni) and zinc (Zn), soil pH and soil organic89

carbon (SOC) content. We present the results of our findings and comment on their90

implications for the design and implementation of soil monitoring.91

Methods92

Study region and surveys93

The three regions (Figure 1) comprise a diverse range of soil parent materials and soil94

types; further details of the soil types in Northern Ireland are provided by Cruickshank95

(1997), whilst the soils in the study regions of England are described in three regional96

bulletins (Soil Survey of England and Wales, 1983a-c). The major soil types in each97

of the three regions are summarized in Table 1. The larger proportion of peat soils in98

Northern Ireland compared to the two regions in England reflects the wetter environ-99

ment of the former, where average mean annual rainfall for the vast majority of the100

region is greater than 1 m, with a minimum of around 0.75 m.101

For the soil surveys, a systematic, unaligned strategy was adopted in which one102

sample was collected from a random location in every other 1 km square of the British103

or Irish National Grids, subject to the avoidance of roads, tracks, buildings, railways,104

electricity pylons, and disturbed ground. One in every 100 of these sites was randomly105

selected and designated a duplicate sampling site at which the following sampling106

protocol was adopted. The dominant land use was recorded at each duplicate sampling107

location.108

At each sampling site, including those selected for duplicate sampling, five in-109

cremental soil samples were collected using a Dutch auger at the corners and centre110
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of a square with a side of length 20 m and combined to form a composite sample of111

approximately 0.5 kg. At each of these five points, any surface litter was removed and112

the soil sampled to a depth of 15 cm into the exposed soil. In the case of organic-rich113

soil, 5 cm of surface litter was removed and the soil samples were collected from a114

depth range of 5 – 20 cm. This composite sample is referred to as duplicate A (DUP115

A). At each of the duplicate sites, another composite sample was collected from one of116

four squares with the same support. These squares are illustrated in Figure 2. Notice117

that the centres of each of them are 21 m from the centre of the square for the original118

sample. The second sample square (1 of a possible 4) was selected randomly, and the119

same sampling procedure adopted; this composite sample is referred to as duplicate B120

(DUP B).121

All samples of soil were air-dried in a dedicated temperature controlled oven at122

30 ◦C for 2–3 days, disaggregated and sieved to <2 mm. The samples were coned and123

quartered and each split into two sub-samples. The two samples from the DUP A124

site were labelled DUP A and SUB A, whilst the samples from the DUP B site were125

labelled DUP B and SUB B. From each of the four sub-samples, a 50-g sub-sample126

was ground in an agate planetary ball mill. The total concentrations of Ni, Cu and127

Zn were determined in each sample by wavelength and energy dispersive XRFS (X-128

Ray Fluorescence Spectrometry). The samples were prepared for analysis by grinding129

12 g of sample material and 3 g of Elvacite 2013 (n-butyl methacrylate copolymer,130

Dupont & Co.) in an agate planetary ball mill for half an hour. The mixture was then131

pressed using a 25 tonne load into pellets with a thickness of 40 mm. The coefficients132

of variation for a soil sample standard were: Ni (0.6 %) Cu ( 1%) and Zn (0.8 %).133

Soil pH and SOC were only determined on a subset of 114 sites (a total of 456 sam-134

ples) from two of the regions; East Anglia and Northern Ireland. Soil organic carbon135

was estimated in each sample using loss-on-ignition analysis by heating a sub-sample to136

450 ◦C for eight hours and multiplying the mass difference by 0.58 (Broadbent, 1953).137

The coefficient of variation for this method for 174 replicate analyses of a sample stan-138
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dard was 3.6 %. The pH of each sample was measured using a glass electrode and139

Orion 720A meter. To 10 g of the <2 mm sample, 25 ml of 0.01 M calcium chloride140

solution was added, the samples were magnetically stirred for one minute and then left141

to settle for 15 minutes. Prior to recording the pH value, the suspension was stirred.142

Digital layers of the 1:50,000 maps of bedrock geology and superficial deposits143

of England, part of DigiMap GB (British Geological Survey, 2006) were combined in144

a GIS to form a series of parent material polygons. The parent material code for any145

position on the landscape can be found by assigning the code of any superficial deposit146

present, or where absent, the code of the bedrock geology. We devised a simple, seven-147

fold parent material classification for all soil parent material types. In a GIS we used148

a spatial join procedure to associate each soil sampling observation with the relevant149

code of the parent material polygons (see Figure 3).150

Data analysis151

Our data are collected according to a balanced nested sample design. Within every152

randomly selected sample location there is a pair of Duplicates (DUP A and DUP B),153

and from each duplicate two subsamples are taken and analysed. Differences between154

the subsamples (within a duplicate) are due to the sources of uncertainty that we call155

analytical and subsampling error. Differences between duplicates within a site are due156

to repeating the sampling procedure with a small shift in the position of the sampled157

square. In this study we assume that this represents sampling error (although it will158

be slightly inflated by the 21-m shift). We require an analysis to estimate the variances159

that these different sources of uncertainty will contribute to our values for each site.160

There are two kinds of sources of variation in our data. Random effects arise161

because they may be regarded as random processes due to our sampling. Coning162

and quartering is regarded as a way of randomly subsampling material, the random163

selection of one of four possible second squares to sample at each site is a random source164

of variation (sampling error variation), and the random selection of sites for this more165

detailed investigation introduces what we shall call medium-scale spatial variation —166
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it is variation within the land uses, parent materials and regions. The second source167

of variation arises from fixed effects which we chose to sample, including land uses,168

parent materials and regions. They do not enter into our sampling in a random way,169

but because we chose to sample them.170

Let us consider one of our observations. It is subsample k of duplicate j at site i171

randomly selected from sites in landuse c, parent material b within region a. Because172

of our random sampling we regard that observation as a random variable Za,b,c,i,j,k. We173

can write an expression for this variable,174

Za,b,c,i,j,k = µa,b,c + Qi + Ri,j + Si,j,k, (1)

where µ is the overall mean of the variable for landuse c within parent material b175

within region a, Qi is the difference between the mean for the ith randomly located176

site and the mean µa,b,c, Ri,j is the difference between the mean for duplicate j within177

site i and the mean for site i, and Si,j,k is the difference between subsample k within178

duplicate j and the mean for duplicate j. The last three terms in the equation (shown179

as upper-case letters) are random variables, all of mean zero, and each with a variance.180

We assume that these variances are uniform for all observations, and denote them by181

σ2
Q, σ2

R and σ2
S. They are respectively the medium-scale spatial variance, the sampling182

variance and the subsampling+analytical variance that we want to estimate.183

We estimated the fixed effects and the variance components for each random184

effect using residual maximum likelihood. If we denote the m variance components by185

σ2
l , l = 1, 2, . . . ,m then we may write a covariance matrix for the observations V given186

by187

V =
m∑

l=1

σ2
l UlU

T
l , (2)

where Ul is a design matrix for the lth fixed effect. If we have n observations, and at188

level l of the nested structure there are nk units then Ul is a n× nk matrix, and if the189

gth observation is in the jth unit at level l then the element in the jth column of row190

g in Ul is 1 and all the rest in that row are zero.191
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Let X denote the design matrix for the fixed effects. This can be constructed in192

various ways, and since our samples are all nested in a balanced way within the fixed193

effects categories (i.e. all values from a particular site correspond to the same land use,194

parent material and region), the precise fixed effects model that we construct from these195

has no effect on our estimates of the variances. For consistency with Equation (??),196

if there are p unique combinations the regions, parent materials and land uses, then197

X is an n × p matrix. If the gth observation corresponds to the jth out of these p198

combinations then the element in the jth column of row g in X is 1 and all the rest in199

that row are zero.200

We can now write the log residual likelihood function corresponding to our model.201

This is a function of our data, conditional on the specified model, but with the fixed202

effects filtered out so that the variance component estimates do not depend on them.203

This reduces bias in the variance estimates (see Webster et al., 2006). The residual log204

likelihood is205

`R = −1

2

(
lnV + ln

∣∣∣XTV−1X
∣∣∣ + zTPz

)
, (3)

where z is the vector of data values and P is206

P = V−1 −V−1X
(
XTV−1X

)−1
XTV−1. (4)

We estimate the variance components numerically by finding the values which, when207

used to compute V by means of Equation (??), maximize Equation (??).208

We examined summary statistics of the data; the three metals and organic carbon209

data had skewness coefficients > 1 and so we transformed them by taking natural210

logarithms to stabilize their variances, as is recommended in standard texts such as211

Webster & Oliver (2007). In practice we might subsequently need to back-transform212

estimates to the original units. However, for our present purpose, to investigate the213

relative magnitudes of different sources of uncertainty, the results on appropriately-214

transformed data are most reliable. The pH data were not transformed. We then215

found the REML estimates of the variance components using the vcomponents and216
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reml directives in GenStat (Payne et al., 2008). This also returns standard errors for217

the variance components (root mean-square errors of the estimates). It also computes218

Wald tests on the fixed effects, which allows us to test the null hypotheses that, for219

example, the mean values do not differ between regions, landuses or parent materials.220

Results and their interpretation221

Summary statistics for the five topsoil indicators are shown in Table 2 by region and222

for all regions combined. The median metal concentrations (Cu, Ni, and Zn) in the223

topsoil of Northern Ireland are larger than those of the two English regions, which224

reflects the occurrence in Northern Ireland of soils derived from basaltic bedrock and225

superficial deposits over this lithology. The soils of Northern Ireland also have larger226

median SOC concentrations and lower median pH values than those of East Anglia227

due to a combination of factors including parent material, climate and land use.228

The importance of the the three fixed effects (region, parent material and land229

use) on the five soil indicators is highlighted in Table 3. With the exception of land230

use and topsoil Zn concentrations (P-value=0.056), the test statistics for our null hy-231

potheses are all significant (P-values < 0.05 ) for each fixed effect and soil indicator.232

The regional effect partly reflects the variations in the two other fixed effects (parent233

material and land use), although the differing climates and elevations for the three234

regions are also likely to exert an influence, particularly for soil organic carbon and235

pH.236

The variance components for the three random effects are shown in Table 4. In237

each case the standard errors are an order of magnitude smaller than their respective238

variance components. The variance components for each indicator diminish by about239

an order of magnitude from medium-scale, to sampling, to analytical plus subsampling240

variance. In the case of Cu, the magnitude of the variance components are somewhat241

different to this general rule. The sampling variance of Cu is only three times smaller242

than the medium-scale variance, whilst the analytical plus subsampling variance is243

about 30-times smaller than the sampling variance. However, in common with the other244
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indicators, the difference between the medium-scale and analytical plus subsampling245

variance for Cu is around two orders of magnitude. Further work would be required to246

explain the larger sampling variances for Cu in relation to those of Ni and Zn.247

Discussion248

Results from the duplicate sampling protocol described in this study provide the first249

comprehensive estimates of local, sample error variance for five topsoil indicators at250

the regional scale. It should be borne in mind that the sample error variances are251

somewhat inflated because of the shift in location of 21 metres in one of four possible252

directions (see Figure 2). This could be thought of as an approximation to the location253

error. Further work is required to determine the relative magnitudes of locational error254

and sampling error which are needed for effective resampling strategies of soil inventory255

sites (Lark, this volume). This would require more detailed sampling on the support of256

the cores that are aggregated to form the site sample to characterize spatial variability257

over the scales of the location error.258

Our analyses confirm that the sampling error variance is substantially more im-259

portant than the analytical and subsampling error (Ramsey, 1998), if we resample the260

soil to detect change with the field procedures used in the G-BASE and Tellus surveys.261

If, for some reason, we needed to reduce the overall uncertainty of our observations at262

sample sites, (e.g. to reduce the confidence intervals for estimates of change to accept-263

able levels) then the most effective way to do this is not by improving our analyses or264

subsampling protocols, but by doing all that we can to reduce the sampling variance.265

This could be done by increasing the number of cores that are collected and bulked for266

each site.267

Conclusion268

Our findings show that sampling error variances for five of the eight minimum269

soil indicators identified for England and Wales (Environment Agency, 2006), across270

contrasting regions of the United Kingdom, are about an order of magnitude larger than271

the combined analytical and subsampling variance, and an order of magnitude smaller272

11



than the variance within the regions, parent materials and land uses. This shows that273

the largest reductions in estimation variance for means within these groups would be274

obtained by increasing the number of sample sites, and the next largest reductions by275

increasing the number of cores that are aggregated at each sample site.276

Further work is needed on the effects of location error, and to investigate similar277

sources of uncertainty in other soil indicators.278
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List of Figures and Captions329

Figure 1 Soil survey regions: a) Northern Ireland, b) Humber-Trent and c) East330

Anglia.331

Figure 2 Sampling protocol at each duplicate survey site. The support of the original332

survey site is shown as a solid black line, with five auger holes (filled discs) at the333

corner and centre of a square with side length of 20 metres. These five samples are334

combined to form a composite sample (duplicate A; DUP A). The sample support335

of four possible locations for the duplicate sample, separated by one metre from336

the support of DUP A, are shown as dashed lines. One of these four supports337

was randomly selected at each duplicate site, and five auger holes combined to338

form a composite sample (duplicate B; DUP B).339

Figure 3 Location of the 196 duplicate sample sites across the three study regions340

shown in Figure 1 classified by: a) land use, and b) parent material. The fre-341

quency of each class is shown in parenthesis. Scale 1:2,000,000; grid coordinates342

are Latitude-Longitude.343
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Table 1 Major soil types across the three regions (%).344

East Anglia Humber-Trent Northern Ireland

Gleys Soils 29.5 52.7 54
Brown Soils 36.9 35.8 5.5
Lithomorphic Soils 6.2 4.4 0
Podzolic Soils 0.2 0 1.4
Peat Soils 2.6 3.1 14
Pelosols 12.2 2.9 17.8

345
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Table 2 Summary statistics of five topsoil indicators including transforms to natural346

logarithms for all regions combined and each of the regions. Metal concentrations are347

mg kg−1 and SOC is % .348

Natural logarithms

Mean Median St dev. Skewness Mean St dev. Skewness

Three regions (n=776)

Cu 27.3 19.4 25.8 2.7 3.0 0.8 0.2
Ni 33.4 22.0 39.3 2.9 3.1 0.9 0.2
Zn 89.5 66.2 180.6 11.5 4.2 0.7 0.7
a SOC 1.8 5.5 0.9 2.6 1.8 0.9 0.4
a pH 5.41 5.20 1.32 −0.31 1.77 0.2 -0.2

Humber-Trent (n=260)

Cu 19.7 17 9.9 0.9
Ni 23.6 20 17.5 3.7
Zn 91.9 77 97.5 5.9
SOC nd nd nd nd
pH nd nd nd nd

East Anglia (n=216)

Cu 15.9 14.5 8.9 2.3
Ni 18.8 17.7 10.5 0.7
Zn 56.0 56.6 25.9 1.0
SOC 2.9 2.4 2.0 2.5
pH 6.8 7.1 0.9 −1.76

Northern Ireland (n=300)

Cu 42.2 34.3 34.9 1.52
Ni 52.4 31.7 55.4 1.6
Zn 111.6 75.5 273.0 8.1
SOC 13.4 7.7 13.6 2.1
pH 4.7 4.8 0.87 -2.4

349

a sample size of 516 for two regions; nd – not determined350
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Table 3 Wald test results from sequential addition of three fixed effects to the model:351

a) regions, b) parent material and c) land use.352

Wald Statistic P-value

a) region
ln Cu 55.8 <0.001
ln Ni 27.0 <0.001
ln Zn 14.2 0.001
ln SOC 256.3 <0.001
pH 353.4 <0.001

b) parent material
ln Cu 26.2 <0.001
ln Ni 20.5 0.003
ln Zn 13.5 0.04
ln SOC 100.7 <0.001
pH 33.3 <0.001

c) land use
ln Cu 54.1 <0.001
ln Ni 53.5 <0.001
ln Zn 17.1 0.056
ln SOC 63.9 <0.001
pH 95.9 <0.001

353
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Table 4 Variance components and standard errors (in parenthesis) for the three ran-354

dom effects for each of the five soil indicators.355

Medium-scale, spatial Sampling Analytical + Subsampling

ln Cu 0.317 (0.04) 0.099 (0.010) 0.003 (22.2× 10−5)
ln Ni 0.531 (0.057) 0.017 (0.002) 0.003 (20.3× 10−5)
ln Zn 0.348 (0.039) 0.029 (0.003) 0.001 (80.0× 10−6)
ln SOC 0.181 (0.027) 0.024 (0.003) 0.002 (21.5× 10−5)
pH 0.326 (0.048) 0.048 (0.007) 0.004 (34.0× 10−5)

356
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