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22 Abstract 
 
23 

 
24 1.   Deciduous woodlands are a key habitat for the diversity of invertebrates within 

 
25 the primarily agricultural landscape of lowland Scotland.  Little is known, 

 
26 however, of the contribution that within site heterogeneity plays in 

 
27 maintaining invertebrate diversity within these habitats.  We consider how 

 
28 habitat heterogeneity affects the beech leaf-mining weevil Rhynchaenus fagi 

 
29 L. (Curculionidae, Coleoptera) and its associated polyphagous parasitoids. 

 
30 2.   This was done by investigating host density and parasitism rates of the weevil 

 
31 as it fed on 88 beech trees (Fagus sylvatica L. (Fagaceae)) occurring in 

 
32 patches within a birch woodland. We aimed to assess how patch site, isolation 

 
33 and patch quality influenced parasitism rates and parasitoid diversity. 

 
34 3.   Herbivore leaf-mine abundance was greatest where beech trees were located 

 
35 on the edge.  Parasitism rates were also affected by the location of the host 

 
36 insect at the woodland edge and interior. Depending on parasitoid species 

 
37 identity, parasitism rates showed independent, direct, and inverse responses to 

 
38 the density of leaf-mines.  Parasitism rates showed direct and inverse 

 
39 responses to the patch sizes of beech trees, while overall parasitoid diversity 

 
40 was negatively correlated with patch size. 

 
41 4.   Heterogeneity in the location of the beech trees within this birch woodland 

 
42 plays a key role in determining local patterns of parasitism rates and parasitoid 

 
43 diversity. It is suggested that within site variation in the area of high quality 

 
44 resource patches, represented by the beech trees, was key to structuring these 

 
45 parasitoid communities. Niche separation was promoted by individual species 

 
46 capacity to locate host insects in this spatially complex habitat. 

 
47 
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49 

 
50 Introduction 

 
51 

 
52 Semi-natural deciduous woodland are an integral component of Scottish 

 
53 lowland landscape and represent key habitats for a verity of invertebrate taxa 

 
54 (Woodcock et al., 2003a; Woodcock et al., 2003b; Vanbergen et al., 2006).  These 

 
55 woodlands are often situated predominantly within areas arable or improved 

 
56 grassland, and represent long-lived habitat features that can provide important refuges 

 
57 many invertebrates in an otherwise intensively managed landscape (Petit & Usher, 

 
58 1998; Vanbergen et al., 2005). While agro-forestry also represents a major 

 
59 component of forest cover in Scotland, such forests are predominantly composed of 

 
60 non-native conifers and represent low quality habitats for the majority of native 

 
61 woodland invertebrates (Watt et al., 1998). 

 
62 While the availability of deciduous woodlands has been shown to be a key 

 
63 components to the maintenance of invertebrate diversity within agricultural 

 
64 landscapes (Woodcock et al., 2003a; Vanbergen et al., 2005), little is known about the 

 
65 role that within site heterogeneity plays in the maintenance of insect populations. 

 
66 This study aims to assess the effect of heterogeneity in habitat structure on the 

 
67 diversity and numerical response of a suite of polyphagous hymenopteran parasitoids 

 
68 utilizing a monophagous leaf-mining beetle host. Habitat complexity is known to 

 
69 affect the capacity of parasitoids to disperse between host populations and so is of 

 
70 great importance in determining their population structure (Kareiva, 1987; Cronin & 

 
71 Strong, 1999).  For example, reduced rates of parasitism for some parasitoids have 

 
72 been recorded in spatially complex habitats (Gols et al., 2005).  How these factors 

 
73 contribute to determining species abundance and overall diversity is an important 
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74 factor in understanding the role of deciduous woodlands within agricultural 
 
75 landscapes for maintaining invertebrate diversity. 

 
76 In this study, populations of the beech leaf-miner - Rhynchaenus fagi - and its 

 
77 associated parasitoids were sampled from small patches of beech trees distributed in 

 
78 discrete clumps throughout a predominantly birch woodland (Betula spp. 

 
79 (Betulaceae)).  As tertiary trophic levels are often more susceptible to habitat 

 
80 fragmentation than secondary consumers (Kareiva, 1987; Tscharntke & Brandl, 

 
81 2004), we assessed the impacts of beech tree isolation and patch size on the 

 
82 parasitoids of R. fagi.  This reflects the assumption that patch size will affect both the 

 
83 probability of local extinction, with smaller populations generally being at greater risk 

 
84 (Pimm et al., 1988; Cronin, 2003). In addition to the impact of patch size and isolation 

 
85 we also investigated the role that R. fagi host density and environmental conditions 

 
86 associated with these patches has on both rates of parasitism and overall parasitoid 

 
87 diversity.  We predict that: 1) small and isolated parches of beech trees would provide 

 
88 refuges for the host insect R. fagi from its parasitoids, resulting in low levels of 

 
89 parasitism and parasitoid diversity; 2) This response would be modulated by the 

 
90 location in relation to major environmental gradients (e.g. the woodland edge) and 

 
91 patch quality in terms of R. fagi host density. 

 
92 

 
93 Methods 

 
94 

 
95 Study site 

 
96 

 
97 The study site was undertaken within a single deciduous woodland (0.28 km2) 

 
98 stand in Banchory, Aberdeenshire, Scotland (57°04’N, 2°32’W).  The woodland was 

 
99 dominated (>80% of the total area) by two species of birch (Betula pendula Roth and 
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Betula pubescens Ehrh.) with occasional patches of Scots pine (Pinus sylvestris L.). 

Grasses, particularly Holcus spp., Festuca spp. and Deschampsia spp. occurred 

throughout the understorey.  Interspersed into this birch woodland were 88 beech trees 

(Fig. 1), the host-plant of the monophagous leaf-mining weevil R. fagi. The woodland 

was surrounded by either Scots pine dominated plantation, or adjoining the North- 

East edge of the woodland plantation that had been clear felled in 1998.  Within a 2 

km radius of the study site there were no other patches of deciduous woodland. 

 
 
 
Tri-trophic system 
 
 
 
 

Rhynchaenus fagi is a univoltine leaf-mining weevil which feeds as larvae 

exclusively on beech trees, although adults will feed on a variety of plants (Bale & 

Luff, 1978). Adult weevils over winter primarily within leaf litter (Bale, 1984) until 

mid-March, when the majority of adults will migrate to beech trees just prior to bud- 

burst.  Eggs are laid in the leaf mid-rib from where a linear blotch-mine develops, 

within which the larvae feed on both the palisade and spongy parenchyma (Nielsen, 

1966).  From oviposition to emergence of the weevil takes approximately 30-35 days, 

with adults appearing towards the end of June (Bale & Luff, 1978). Rhynchaenus fagi 

is recorded as host to ten species of chalcid wasps (Askew & Shaw, 1974) as well as 

at least one braconid (Day & Watt, 1989). 
 

The three dominant species of hymenopteran parasitoids reared from R. fagi in 

this study were all polyphagous species recorded as utilising leaf-mining insects on a 

variety of deciduous trees, including Salix spp. (Salicaceae), Quercus spp (Fagaceae), 

Fagus spp. (Fagaceae) and Betula spps (Betulaceae) (Askew & Shaw, 1974; Rott & 

Godfray, 2000).   Pnigalio longulus (Zett.) (Eulophidae) and Chrysocharis nephereus 

(Walker) (Eulophidae) are common parasitoids of many species of leaf-mining insects 
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including moths (Lepidoptera:  Eriocraniidae, Gracillariidae and Nepticulidae), 

sawflies (Hymenoptera: Tenthredinidae) and weevils (Coleoptera: Curculionidae) 

(Askew & Shaw, 1974).  Both species are likely to be multivoltine (Raske, 1978; 

Pschorn-Walcher & Heitland, 2000). Colastes braconius Haliday (Braconidae) is a 

multivoltine species (Wharton, 1993) known to parasitize a wide range of leaf-mining 

hosts, including both moths and weevils (Day & Watt, 1989; Rott & Godfray, 2000). 

Both P. longulus and C. braconius have ectoparasitic larval stages, while C. 

nephereus is an endoparasite (Rott & Godfray, 2000).  All three species are idiobionts 

with clutch sizes of one (Rott & Godfray, 2000).  Records for all three of these 

species suggest that they are normally associated with woodland habitats, although 

may be found on trees in more open situations where their hosts are present (Askew & 

Shaw, 1974; Day & Watt, 1989; Casas, 1990; Rott & Godfray, 2000; Jordano, 2003). 

In addition to the R. fagi hosts considered in this paper, leaf-miners of the Eriocrania 

spp. (Lepidoptera: Eriocraniidae) and Phyllonorycter spp. (Lepidoptera: 

Gracillariidae) were also found on birch trees within the woodland.  This leaf-mining 

insects would also have provided potential hosts for these parasitoids (Askew & 

Shaw, 1974). The densities of both of these moth species were, however, much lower 

than those of the R. fagi on beech trees. Other than the birch and beech trees no other 

species of broad leafed trees were found within the woodland.  The understory 

vegetation was dominated by grasses which do not support hosts of these parasitoids 

(Askew & Shaw, 1974; Rott & Godfray, 2000). Previous studies in Scottish beech 

woodlands have also found these same three species of parasitoids on R. fagi (Day & 

Watt, 1989). 

 
 
 
Host-plant variables 
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For each of the 88 beech trees present within the woodland the following 

measurements were taken.  Tree trunk diameter at breast height (DBH) and canopy 

diameter (mean of 2 measures per tree) were measured for each of the 88 beech trees 

in the woodland.  The individual canopy diameter of each tree was then used to 

calculate the canopy area of beech habitat patches (PATCH).  Such patches were 

represented by both individual trees and clumps of trees whose canopies overlapped 

to provide a continuous patch of beech canopy to dispersing R. fagi.  As some beech 

trees occurred on the edge of the woodland adjoining areas of clear-cut coniferous 

plantation forestry, trees were categorised as being either woodland edge or interior 

(EDGE). During winter 2005, so that tree foliage would not interfere with satellite 

reception, geographical co-ordinates of each tree were obtained with a GPS (Garmin 

12). Using the latitude and longitude of each tree the Euclidean distance between trees 

was calculated. The Euclidean distance to the nearest neighbouring beech tree (DIST) 

was then included in models as a measure of tree isolation (Hanski et al., 1994). 

 
 
 
Insect sampling 
 
 
 
 

Sampling was carried out between 15-18/6/2005, towards the end of R. fagi 

larval development at this site (pers. obs. BAW).  A branch was excised from both the 

North and South aspect of each of the 88 beech trees at a height of between 1.5 and 

4.0 m off the ground.  The proportion of leaves mined by R. fagi was calculated based 

on a random sample of 100 leaves from each tree, 50 leaves taken from one of two 

randomly chosen branches. 

A sub-sample of ten randomly chosen leaves, each containing a single 

occupied R. Fagi leaf-mine, were removed from both the North and South aspect of 

each tree (20 leaves per tree, 1760 leaves in total).  In all cases mines were checked to 
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confirm that they contained larvae of R. fag by holding the mines up to direct sunlight. 
 
The sub-samples from each tree (n = 10 x 2) were placed into plastic pots covered 

with fine netting and subsequently kept in an open-air insectary adjacent to the 

woodland.  This maintained a similar temperature and humidity regime to that of the 

adjoining woodland.  Every two days the leaves were checked and emerging adult R. 

fagi and parasitoids were removed and transferred to 70 % alcohol.  Inspection of the 

mines continued for a 4-week period after the last emergence of either the host or 

parasitoids.  All parasitoids were subsequently identified to species and compared to 

reference material at the Hope Entomological Collection, Oxford. 

As R. fagi leaf-mines were collected over a relatively short period (four days) 

this may have led to an underestimation of parasitism rates, particularly where 

parasitoid species attacked late instars in their host’s development.  As all three 

parasitoids of this study were idiobionts and so associated with later instars of larval 

development this was a potential bias in the sampling method (Rott & Godfray, 2000; 

Grabenweger, 2003). However, underestimation of parasitism rates were likely to be 

minimal as the collection of R. fagi leaf-mines coincided with the latter stages of 

larval development towards the end of June (Bale & Luff, 1978). 

 
 
 
Statistical analyses 
 
 
 
 
 

The data from the North and South branches of each tree were combined for 

analyses.  Percentage herbivory of beech by R. fagi (leaf-mine abundance per 100 

leaves) and percentage parasitism of R. fagi (parasitoid count per 20 leaves) were 

modelled with generalised linear mixed models (GLMM) with Binomial error 

distribution and Logit link (SAS, 1999).  The influence of four fixed effects on 
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percentage herbivory by R. fagi were considered: 1) the position of beech trees within 

the woodland interior or at the woodland edge (EDGE); 2) the diameter at breast 

height of individual beech tree trunks (DBH); 3) the canopy area of R. fagi habitat 

patches (isolated beech individuals or clumps of beech trees with overlapping 

canopies) (PATCH); 4) distance to nearest neighbouring beech tree (DIST).  Also 

considered was the two–way interaction between EDGE*DBH, EDGE*DIST, and 

EDGE*PATCH. 

 
Similar models were constructed for the parasitism rates caused by each of the 

three parasitoid species.  In addition to the main effects and interactions described 

above, percentage parasitism of R. fagi by each parasitoid species was also correlated 

to the main effect of host insect density (MINES), count of other potentially 

competing parasitoid species per tree (either P. longulus, C. braconius or C. 

nephereus) and the interaction of MINE density with tree position (EDGE*MINE). 

Host insect density of the R. fagi mines provided a measure of the habitat quality of 

the beech trees for the parasitoids.  Note that the abundance for each parasitoid 

species was not included as a covariate in the analysis of its own parasitism rates.  The 

interactions of DBH, DIST, PATCH and MINE with EDGE were intended to account 

for variation in environmental conditions associated with the edges of woodlands, e.g. 

greater daily variation in temperature (Murica, 1995; Tscharntke & Brandl, 2004).  In 

all analyses percentage herbivory or parasitism rates were treated as proportions. 

 
To consider overall changes in the diversity of the parasitoid assemblage 

Shannon-Wiener diversity (Krebs, 1999) of the parasitoids was correlated to the same 

fixed effects used in the models above for the assessment of parasitism rates by the 

individual parasitoid species.  Note that the counts of individual parasitoid species 

were not included in this model as explanatory variables as they were used to derive 
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the Shannon-Wiener diversity measure. This final model used a normal distribution 

with an identity link function. 

In all GLMMs the random categorical variables fitted were ‘patch’ (n = 43) 

and ‘tree’ (n = 88), which accounted for overdispersion at the observation level. 

Solution of fixed effects (EDGE, PATCH, DBH, MINES, DIST, P. longulus, C. 

braconius, C. nephereus) and interactions with EDGE were estimated by residual 

maximum likelihood (REML). Denominator degrees of freedom were estimated using 

Satterthwaite’s approximation (Littell et al., 1996).  Main effect and interaction terms 

were added step-wise to models with elimination of the least significant term until the 

most parsimonious model was found.  Where an interaction term was found to be 

significant its component main effects were not deleted, even if individually non- 

significant. F-ratios adjusted for other significant model terms (SAS Type 3 tests) and 

are reported for all main effects and significant interactions. Partial residual plots were 

constructed to show the evidence for the effect of particular covariates, after 

controlling for random and other significant fixed effects in the model, and include a 

fitted line to show the slopes of the relationships. 

 
 
 
Results 
 
 
 
 

A total of 88 beech trees were sampled within the overall Betula dominated 

woodland, of which 15 trees were found to be present on the woodland edge in one of 

three patches.  Sixteen patches, containing two or more beech trees, were present 

within the Betula dominated woodland, with the largest patch comprised of nine trees 

covering an area of 1265.6 m2. From the 1,760 leaf-mines returned to the insectary 

10.0 % yielded R. fagi adults (n = 176). Assuming the parasitoid larvae were solitary 
 
(Askew & Shaw, 1974), 31.0 % of mines were parasitized (551 parasitoids) by one of 
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four species of hymenopteran parasitoid. This left 59.0 % of the mortality of the 

insectary reared R. fagi unexplained. Of the four parasitoids, three species represented 

95 % of the total parasitoid abundance: P. longulus (n = 225 individuals); C. 

nephereus (n = 182); and C. braconius (n = 129).  The remaining parasitoid (Pnigalio 

soemius (Walker) (Eulophidae)) was represented by only 15 individuals, and was 

excluded from subsequent analyses, with the exception of the calculations of 

Shannon-Wiener diversity. 
 
 
 
 
Host-plant location, quality and patch size 
 
 
 
 

Percentage herbivory by R. fagi on beech trees was greater at the woodland 

edge compared to trees in the woodland interior (Fig. 2, Table 1).  The proportion of 

leaves with R. fagi mines was not correlated with any other measured parameter 

(DBH, PATCH, and DIST, see Table 1). The location of the beech tree at either the 

woodland edge or interior influenced the parasitism rate of R. fagi differently 

according to parasitoid identity (Fig. 3, Table 1). P. longulus parasitism was greater at 

the woodland edge, while C. braconius parasitism rate was higher in the woodland 

interior (Fig.3, Table 1). C. nephereus parasitism rate was also higher in the interior, 

but this was not statistically significant after controlling for other effects (Fig.3, Table 

1). 
 

Individual beech tree trunk diameter (DBH) was positively correlated (GLMM 
 
slope estimate: 0.8750) with proportional parasitism of R. fagi by C. nephereus (Table 
 
1). An interaction between DBH and tree location for C. braconius parasitism rate 

showed a positive correlation with DBH for trees at the woodland edge and negative 

for trees within the interior (Fig. 4). The parasitism rate by P. longulus was 

uninfluenced by tree trunk diameter (Table 1). 
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The canopy area (PATCH) of the beech tree patches – the host-insect resource 
 
– was a predictor of proportional parasitism for two of the three parasitoid species. 

Pnigalio longulus was positively (Table 1, Fig. 5a) and C. nephereus negatively 

correlated (Table 1, Fig. 5b) to patch canopy area, while C. braconius parasitism rate 

was not affected by canopy area (Table 1).   While the area of patches was an 

important determinant of parasitism rates, tree isolation, as defined by the Euclidean 

distance (DIST) to the nearest neighbouring beech tree, had no influence on the 

parasitism rate of any of the parasitoid species (Table 1). 

 
 
 
Host-parasitoid interactions 
 
 
 
 

Proportional parasitism by C. braconius was positively correlated with host- 

insect mine density (MINE) (Table 1, Fig. 6a), while C. nephereus parasitism rate was 

density-independent (Table 1).  Furthermore, P. longulus parasitism showed an 

interaction between host insect mine density and beech tree location (MINE*EDGE: F 

(1, 81) =11.50, p = 0.001, Fig. 6b). For trees in the woodland interior the slope of the 

response to host- insect mine density did not differ from zero (b = -0.01 t = -0.15 p = 

0.87).  However, for trees located at the woodland edge there was a negative 

correlation between P. longulus parasitism and host mine density (b = -1.06, t = -3.09 

p < 0.05).  Proportional parasitism by each of the three parasitoid species was not 

correlated with the density of the other parasitoid species in the assemblage (Table 1). 

Therefore, there was no evidence of direct interactions between parasitoid species 

using the same host resource influencing parasitism rates in the three parasitoid 

species considered here. 
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Parasitoid diversity 
 
 
 
 

Shannon-Wiener diversity of the parasitoid assemblage was negatively 

correlated with the canopy area of the beech tree patches (F 1, 16 = 7.22, p = 0.02; Fig. 

5c). Parasitoid diversity was not affected by EDGE, DBH, DIST, MINES or any of 
 
the interaction terms with EDGE. 
 
 
 
 
Discussion 
 
 
 
 

The density of leaf-mines on the host trees was unexpectedly high, particularly 

at the woodland edge, where c. 78 % of leaves was found to be mined.  Previous 

studies have shown that 75-85% of leaves present in the lower stratum of the canopy 

(the area sampled in this study) have some form of phytophagous invertebrate 

damage, although this comprised damage from all species of leaf-chewing and leaf- 

mining insects (Phillipson & Thompson, 1980). It is possible that the high abundances 

of R. fagi in these Scottish woodlands may be due to the reduced impact of top down 

control resulting from a comparatively impoverished fauna of parasitoids in this 

Northern part of the UK (Askew & Shaw, 1974).  It should be noted, however, that 

while this parasitoid fauna may be species poor it was comparable in size to that 

found in previous work in other Scottish woodlands (Day & Watt, 1989).  While there 

is some potential that competitive release from parasitoids may explain the high 

densities of R. fagi in this woodland (Kareiva, 1982), rates of parasitism are known to 

be highly variable between years for this species (Day & Watt, 1989). 

 
 
 

High levels of mortality of the R. fagi larvae were not explained by parasitism, 

and indeed 59.0 % of the mortality remained unexplained.  Previous work has, 
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however, shown that R. fagi is highly susceptible to mortality resulting from 

phenological asynchrony with its host plant beech (Nielsen, 1968).  Specifically, if 

egg laying does not occur soon after bud burst this limits subsequent development of 

the leaf-mines and so increases mortality rates.  In addition to this factor, low 

temperatures in May have also been shown to result in high levels of mortality for R. 

fagi, although this effect has been more clearly demonstrated in Ireland than in 

Scotland (Day & Watt, 1989). 

 
 
 
Isolation and patch size 
 
 
 
 

The isolation of beech trees within the woodland was not found to have any 

effect on R. fagi density, its subsequent parasitism or the overall diversity of the 

parasitoids.  This finding contradicts first prediction that small and isolated patches of 

beech trees would provide refuges from parasitism rates for R. fagi.  Small patches of 

beech trees were, however, found to provide refuges from high parasitism rates from 

the parasitoid P. longulus.  This finding concurs with other studies that have 

demonstrated that a reduction in habitat patch area will reduce rates of parasitism for a 

number of parasitoid species (Roland & Taylor, 1997; Doak, 2000; Cronin, 2004). 

Higher rates of parasitism, however, were also found within small patches for the 

parasitoid C. nephereus, while overall parasitoid diversity was found to decrease as 

patch size increased.  This effect may have been caused by a number of different 

processes. For example, intrinsic differences in the ability of parasitoids to colonise, 

disperse and locate new hosts may have driven these responses to patch size (Kareiva, 

1987; Hanski, 1999). Alternatively, competition or interference from P. longulus may 

have resulted in searching behaviour by C. nephreus that gave the appearance of a 

species targeted smaller patches. There was, however, no direct evidence that P. 
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longulus had a negative effect on C. nephereus, although this was based on rates of 

parasitism only.  It was possible that interspecific competition between C. nephereus 

and P. longulus occurred during the process of searching for the R. fagi host (Sato, 

1995; Wieber et al., 1995). 
 

Other studies have shown that several smaller habitat patches may support 

more species that larger patches of an equivalent combined size, a response that is 

attributed in part to the quality of the surrounding habitat matrix within which these 

patches are situated (Tscharntke et al., 2002).  All the parasitoids were polyphagous 

and so could have utilised leaf-mining insects on other tree species in the woodland 

(Askew & Shaw, 1974; Rott & Godfray, 2000). It may be the case that the more 

widely dispersed smaller patches occurred in areas of woodland that provided higher 

quality resources in terms of alternative host insects.  Indeed, the fact that all the 

parasitoids reared from the R. fagi host were polyphagous and so could utilise 

alternative hosts on other tree species makes any response to patch size unexpected. 

In particular, moth larvae of the leaf-mining genus Phyllonorycter spp. (Lepidoptera, 

Gracillariidae) were present throughout the woodland on birch trees. Phyllonorycter 

spp. represented potential alternative hosts for both C. nephereus and the braconid C. 

braconius (Rott & Godfray, 2000). However, while the Phyllonorycter spp. did 

represent potential alternative hosts for the parasitoids, the density of R. fagi leaf- 

mines on the host trees (beech) remained several orders of magnitude greater than 

those of Phyllonorycter spp. on birch trees (AJV, BAW pers.obs).  Therefore, it may 

be the case that R. fagi leaf-mines on their host (beech) represented a locally super- 

abundant resource for these parasitoids, rather than the only host resource that they 

could use within the woodland. 

 
 
 
Environmental gradients and patch quality 
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High quality habitats for the parasitoids were considered to be trees with high 

densities of the host insect R. fagi.  As the second prediction suggested this did 

influence rates of parasitism, although the directions of these responses were not 

consistent between parasitoid species.  Density-dependent parasitism of R. fagi was 

found for C. braconius, while parasitism by C. nephereus was density independent, 

and that of P. longulus was dependent on the location of the beech trees at either the 

woodland edge or interior. The aggregation of parasitoids to patches of high host 

density has been shown to contribute to temporal stability in host–parasitoid 

interactions (e.g. Hassell & May, 1973).  Such density dependent effects in parasitism 

rates have been suggested to be caused by species-specific searching behaviour 

resulting in increased attraction to, and residency time in, areas of high host density 

(Hassell, 1978; Stiling, 1987; Doak, 2000).  Patterns of inverse density-dependence 

may reflect longer handling times during host location and oviposition (Waage, 1983; 

Visser et al., 1999), or the occurrence of interference reducing parasitoid efficiency in 

exploiting high density patches (Stiling, 1987; Taylor, 1993).  Overall in this study, 

the different parasitoid responses to host density broadly reflect the suggestion by 

Stirling (1987) that direct and inverse dependence occur in 25 % and 23 % of host- 

parasitoid interactions respectively. 

The importance of underlying environmental gradients in structuring the 

parasitoid assemblages were apparent in the form of interactions between parasitism 

rates and the location of beech trees at the woodland edge or interior.  For example 

parasitism by P. longulus was density independent on host trees in the woodland 

interior, whereas at the woodland edge R. fagi experienced inverse density-dependent 

parasitism.  Overall rates of parasitism also differed for P. longulus and C. braconius 

between woodland edge and interior. In addition, C. braconius parasitism rates were 
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correlated with tree trunk diameter, a factor that provided an indirect index of tree 

age, health and size (Thomas, 2000).  This response, however, was influenced by the 

location of beech trees at the woodland edge or interior.  These responses concurred 

with the second prediction that underlying environmental gradients present within the 

woodland would alter the interaction between secondary and tertiary trophic levels. 

In this case the environmental gradients were the result of edge effects at the interface 

between the woodland and the clear cut areas of plantation forestry.  Such an interface 

would result in local variation in environmental conditions, such as ambient 

temperature, timing of bud burst (and so host availability) and leaf nutritional quality 

(Murica, 1995). 

 
 
 

The findings of this study must be considered within the context of some 

methodological issues.  As emergence, rather than dissection, was used to define 

parasitism rates, the direct assessment of multi- and superparasitism, as well as 

whether species were primary or hyperparasitoids was not possible.  However, as the 

biology of all three parasitoids used in this study was known (e.g. Askew & Shaw, 

1974;  Rott & Godfray, 2000) the ambiguity introduced by this limitation of the 

methodology is thought to be of limited importance.  It was also possible that as no 

dissections of the larvae in leaf-mines were used over wintering parasitoids may have 

been missed in this study.  Species of Pnigalio, have been recorded as over wintering 

in the mines of their hosts (Raske, 1978). However, given that the mines of the R. fagi 

occur early in the season a long period is available for these multivoltine parasitoids 

to find alternative hosts (Pschorn-Walcher & Heitland, 2000).  Given this length of 

time it was thought unlikely that many of the parasitoids would have over wintered 

within R. fagi leaf-mines. 
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Conclusions 
 
 
 
 

Deciduous woodlands play an important role in supporting invertebrate 

biodiversity in the agricultural landscape of lowland Scotland (Woodcock et al., 

2003a; Woodcock et al., 2003b; Vanbergen et al., 2006).  The responses of the 

parasitoid species associated with R. fagi to effects of host insect density, habitat 

patch area and the spatial location of the host-plant has demonstrated that the structure 

of these woodlands will potentially play a role in determining their contribution to 

landscape scale biodiversity effects.   Areas of high quality resources within these 

woodlands, here represented by patches of beech trees with their super-abundant leaf- 

miner R. fagi, will influence the spatial distribution of parasitism and parasitoid 

diversity, even for polyphagous species. In addition we have shown that 

environmental gradients though these woodlands will also modify the pattern of 

assemblage structure for these parasitoids.  Habitat heterogeneity within woodlands is 

therefore likely to promote niche separation between the parasitoid species that show 

different functional responses to local patterns of patch quality and size.  This 

variation in parasitism rates and parasitoid diversity indicates the complex and 

variable nature of responses by parasitoids to spatial habitat structure and host density 

in natural environments. 
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Table 1.  The effect of beech tree position (EDGE), host insect (R. fagi) density (MINES), beech trunk diameter (DBH), beech patch area 

(PATCH), Euclidean distance to nearest neighbouring beech tree (DIST) on percentage R. fagi herbivory and proportional parasitism of R. fagi 

by three parasitoid species. Also tested is the influence on parasitism rates of the count of other parasitoid competitors in the assemblage (C. 

braconius (n) P. longulus (n) C. nephereus (n)). Summary results of F-tests from GLMM with binomial error distribution and Logit link where: 

ndf = numerator degrees of freedom; ddf = denominator degrees of freedom; F = value of F-statistic; P = probability value. Model simplification 

was by step-wise removal of the least significant term, with interactions dropped before main effects; NS = Non-significant at P<0.05; - = where 

a model term was not included in a model, see methods section. 
 
 
 
 
 
 
 
 

R. fagi C. braconius P. longulus C. nephereus 
(% herbivory) (% parasitism) (% parasitism) (% parasitism) 

  F (ndf, ddf)  P  F (ndf, ddf)  P  F (ndf, ddf)  P  F (ndf, ddf)  P   
 

EDGE 14.04 (1, 77) <0.001 5.32 (1, 82) 0.02 10.69 (1, 13) 0.002 NS >0.05 
MINE - - 7.29 (1, 82) <0.001 10.79(1, 81) 0.001 NS >0.05 
C. braconius (n) - - - - NS >0.05 NS >0.05 
P. longulus (n) - - NS >0.05 - - NS >0.05 
C. nephereus (n) - - NS >0.05 NS 0.77 - - 
DBH NS >0.05 NS >0.05 NS 0.07 5.47(1, 48) 0.02 
PATCH NS >0.05 NS >0.05 27.72 (1, 11) <0.001 25.56(1, 36) <.001 
DIST NS >0.05 NS >0.05 NS >0.05 NS >0.05 
DBH*EDGE NS >0.05 4.10 (1, 82) 0.05 NS >0.05 NS >0.05 
PATCH*EDGE NS >0.05 NS >0.05 NS >0.05 NS >0.05 
DIST*EDGE NS >0.05 NS >0.05 NS >0.05 NS >0.05 

  MINE*EDGE  - NS >0.05 NS >0.05 NS >0.05 24 
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Figure captions 

 
Fig. 1. ArcGIS map of the study site, showing the dispersion and location of the individual 

beech trees (closed symbols) in the birch-dominated woodland (shaded grey polygon). 

Fig. 2 Mean (± SD) proportional herbivory by R. fagi on beech trees according to the location 

of the trees in the woodland edge or interior. 

Fig. 3 Mean (± SD) proportional parasitism of the three dominant parasitoids of the beech 

leaf-miner R. fagi according to beech tree position in the woodland interior and edge. 

Fig. 4 Partial residual percentage parasitism of R. fagi on a linear predictor scale by C. 

braconius in response to beech tree trunk diameter at either the woodland edge or interior. 

Fitted line from GLMM with parasitism modelled as the proportion of parasitoids per sub- 

sample of twenty leaves using a binomial error distribution and Logit link function. 

Fig. 5 Partial residual percentage parasitism of R. fagi on a linear predictor scale by (a) P. 

longulus, (b) C. nephereus and (c) overall parasitoid Shannon-Wiener diversity in response to 

beech patch canopy area (m2). 

Fig. 6 Partial residual percentage parasitism of R. fagi on a linear predictor scale in response 
 
to host mine density (Ln R. fagi + 1) for (a) C. braconius and (b) P. longulus.  The graph for 

P. longulus also indicates the interaction between host mine density and the position of beech 

trees on the woodland edge or interior. 
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Fig. 5 
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Fig. 6 
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