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Abstract 14 

Precambrian sedimentary successions are difficult to date and correlate.  In the 15 

Scottish Highlands, potential correlations between the thick, undeformed siliciclastic 16 

‘Torridonian’ successions in the foreland of the Caledonian Orogen and the highly 17 

deformed and metamorphosed siliciclastic Moine succession within the Caledonian 18 

Orogen have long intrigued geologists. New and detailed mapping of the 19 

Neoproterozoic A ‘Mhoine Formation (Morar Group, lowest Moine Supergroup) in 20 

Sutherland has discovered low strain zones exhibiting well-preserved sedimentary 21 

features. The formation comprises 3-5 kilometres of coarse, thick-bedded psammite 22 

with abundant nested trough and planar cross-bedding bedforms, defining metre-scale 23 

channels. Palaeocurrent directions are broadly unimodal to the NNE-ENE. We 24 

interpret the A ‘Mhoine Formation as high-energy, braided fluvial deposits.  The A 25 

‘Mhoine Formation and the unmetamorphosed, Neoproterozoic Applecross-Aultbea 26 

formations (Torridon Group), are similar in terms of lithology, stratigraphical 27 

thickness, sedimentology, geochemistry, detrital zircon ages and stratigraphical 28 

position on Archaean basement.  Depositional age constraints for both successions 29 

overlap and are coeval with late-Grenvillean orogenic activity.  Detrital zircons imply 30 

similar source regions from the Grenville Orogen. The Morar and Torridon groups 31 

can thus be correlated across the Caledonian Moine Thrust and are best explained as 32 

parts of a single, large-scale, orogen-parallel foreland basin to the Grenville Orogen.  33 

 34 
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(end of Abstract) 35 

 36 

The interpretation, correlation and age-control of Precambrian clastic sequences are 37 

hampered by a lack of biostratigraphical control.  Post-depositional tectono-38 

metamorphic events may have obscured or destroyed sedimentological evidence and 39 

subsequent plate motions may have transported formerly adjacent source and sink 40 

regions over long distances.  In addition, some controlling geomorphical factors such 41 

as rates of weathering and erosion were different in the Precambrian compared to 42 

more modern-day processes (e.g. Eriksson et al. 2001).  Over the last decades, the 43 

application of detrital zircon dating has provided a means to constrain the maximum 44 

age of deposition and the provenance of the detritus of such sequences (Froude et al. 45 

1983; Nelson 2001; Cawood et al. 2004) and the database of such dates is growing 46 

fast (e.g. Cawood et al. 2007).  However, correlations based solely on detrital zircon 47 

ages may be equivocal and in this study we use lithostratigraphy, sedimentology, 48 

geochemistry and published detrital zircon geochronology to interpret and correlate 49 

Neoproterozoic siliclastic sequences in Northern Scotland.   50 

The metamorphosed Morar Group in the Northern Scottish Highlands occurs 51 

east of the Caledonian (Silurian) Moine Thrust and is the structurally lowest part of 52 

the Moine Supergroup. It comprises several kilometres of siliciclastic rocks (mainly 53 

psammite), has a large (>2000 km2) outcrop area and is generally regarded as shallow 54 

marine in origin (e.g. Glendinning 1988; Holdsworth et al. 1994, Strachan et al. 55 

2002).  56 

West of the Moine Thrust, the unmetamorphosed Torridon Group represents a 57 

similarly widespread, thick and monotonous siliciclastic sequence. It is interpreted to 58 

be of mostly fluvial origin (Nicholson 1993; Stewart 2002).  A number of workers 59 

have suggested that the ‘Torridonian’ (the informal stratigraphical parent of the 60 

Torridon Group) and the Moine Supergroup may be equivalent (Peach et al. 1907; 61 

1913; Peach & Horne 1930; Kennedy 1951; Sutton & Watson 1964; Johnstone et al. 62 

1969; Nicholson 1993; Prave et al. 2001).  However, such a correlation has generally 63 

not been accepted and the two sequences are formally regarded as distinct (Clough in 64 

Peach et al. 1910, p.46; Gibbons & Harris 1994; Stewart 2002; Trewin 2002; Friend 65 

et al. 2003; Cawood et al. 2004).   No thorough discussion or review of a potential 66 

correlation has been published since Kennedy (1951). 67 
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Here, we present new sedimentological and geochemical data for the Morar 68 

Group in the Northern Highlands of Scotland.  These and other published data are used to 69 

compare and contrast the Morar and Torridon groups and to discuss possible basin 70 

interpretations.  It is concluded that they represent a single foreland basin to the Grenville 71 

Orogen.   72 

 73 

Geological Setting  74 

Moine Supergroup - Morar Group 75 

The Moine Supergroup occurs east of, and structurally above, the Caledonian 76 

Moine Thrust and north of the Great Glen Fault (Figure 1).  After deposition, it was 77 

subjected to a number of tectonometamorphic events that have been the subject of some 78 

debate (Tanner & Bluck 1999 and references therein). The most common model involves 79 

an extensional event at c. 870 Ma, followed by Knoydartian (820-740 Ma) and 80 

Caledonian (470 - 460 Ma and 430 – 400 Ma) orogenic events (Strachan et al. 2002).   81 

Sedimentary structures, especially in pelitic and semipelitic lithologies, are generally 82 

deformed, obscured or obliterated by greenschist- to amphibolite-facies metamorphism 83 

and deformation.  A number of ductile thrust faults disrupt the stratigraphy (Johnstone et 84 

al. 1969; Barr et al. 1986; Holdsworth et al. 1994).  Within the outcrop of the Moine 85 

Supergroup are several Lewisianoid basement gneiss inliers with late Archaean protolith 86 

ages that are broadly similar to Lewisian gneisses west of the Moine Thrust (Friend et al. 87 

2007).   88 

The Moine Supergroup has been divided into three groups: the Morar, 89 

Glenfinnan and Loch Eil (Johnstone et al. 1969; Holdsworth et al. 1994; Soper et al. 90 

1998).    91 

The Morar Group, the lowest and westernmost group (Figure 1, 2),  is dominated by 92 

psammite with minor pelitic, semipelitic and pebbly layers.  Estimates of 93 

stratigraphical thickness in the literature (e.g. Holdsworth et al. 1994) are poorly 94 

constrained because of structural complexities. In Morar in the Western Highlands, 95 

the Group comprises four formations; these are in ascending order the Basal Pelite, 96 

Lower Morar Psammite, Morar Striped and Pelite and Upper Morar Psammite 97 

formations (Johnstone et al. 1969; Holdsworth et al. 1994). Locally, the base of the 98 

Basal Pelite Formation is marked by a thin, highly deformed basal meta-99 

conglomerate,  showing an unconformity with the Lewisianoid basement and it is now 100 

generally accepted that the Morar Group was deposited uncomformably upon 101 
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Lewisianoid basement (Peach et al. 1910; Ramsay 1957b; Holdsworth et al. 1994; 102 

2001).   Previously, sedimentary structures have only been studied in detail in the 103 

Upper Morar Psammite Formation (Glendinning 1988) and include tabular and trough 104 

cross-bedding in co-sets up to 0.5 m thick.  Coarse-grained to gravely psammite 105 

locally displays cross-beds > 0.5 m thick.  Most palaeocurrents are unidirectional to 106 

the north or north-east, but bipolar ‘herring-bone’ cross stratification and dunes and 107 

ripples with mudstone drapes are present locally.  Glendinning (1988) interpreted the 108 

Upper Morar Psammite as a tidal, shallow-marine deposit but noted that the unit is 109 

unusually immature (arkosic) compared to other shallow-marine shelf deposits, and 110 

that a fluvial origin of these sediments could not be discounted.   111 

In contrast, in the Northern Highlands north of Glen Oykel (Figure 1, 2), the 112 

Morar Group stratigraphy is rather simple.  It is dominated by the psammitic A ‘Mhoine 113 

Formation (Figure 2), outcropping over c. 1500 km2 (Figure 1, 3).  The A ‘Mhoine 114 

Formation comprises several kilometres of psammite.  A highly deformed pelitic / 115 

conglomeratic unit is intermittently present on or slightly above Lewisianoid Gneiss 116 

inliers (Mendum 1976; Holdsworth et al. 2001).  The relationship between the A’Mhoine 117 

Formation and the Altnaharra and Glascarnoch Formation above the Achness Thrust 118 

(Figure 3) remains unclear.   119 

The Morar Group is structurally overlain by the semipelite-dominated 120 

Glenfinnan Group, but the contact is generally marked by the ductile Sgurr Beag 121 

Thrust (Figure 1) and the original relationship between the two groups is unclear.  The 122 

close association of Glenfinnan Group rocks and basement inliers suggests an original 123 

unconformable relationship (Holdsworth et al. 1994; Soper et al. 1998), and the group 124 

may represent a distal, lateral equivalent to the Morar Group.  However, Morar Group 125 

rocks on the Ross of Mull appear to pass stratigraphically upward into Glenfinnan 126 

Group rocks; the section is, however, locally highly deformed and the field 127 

relationships are not unequivocal (Holdsworth et al. 1987).  The Glenfinnan Group 128 

preserves few sedimentary structures and its depositional environment is unclear.  The 129 

stratigraphically overlying psammite-dominated Loch Eil Group (Roberts et al. 1987) 130 

contains locally abundant sedimentary structures including unidirectional and bipolar 131 

‘herring-bone’ cross-bedding and wave ripples and has been interpreted as a shallow 132 

marine shelf deposit (Strachan 1986).  133 

 134 

Torridon Group 135 
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The Torridon Group occurs west of the Caledonian Moine Thrust and in thrust sheets 136 

within the Moine Thrust Zone (Figure 1, 3).  The Torridon Group is generally 137 

unmetamorphosed and undeformed, except for gentle tilting. The Torridon Group was 138 

mostly deposited upon an exhumed land surface of Archaean Lewisian Gneiss with 139 

palaeo-relief up to 600 m (Peach et al. 1907; Stewart 1972).  Locally, the group 140 

unconformably overlies the Mesoproterozoic Stoer and Sleat Groups, described 141 

elsewhere (Stewart 2002; Rainbird et al. 2001; Kinnaird et al. 2007).    Including its 142 

inferred offshore extent, the Torridon Group currently occupies an area of c. 80 by 143 

200 km (Stewart 2002).  However, Torridon Group rocks also occur in the highest 144 

thrust sheets in the Moine Thrust Zone (e.g. Ben More Thrust Sheet and Kinlochewe 145 

Thrust Sheet; Peach et al. 1907; Butler 1997; Krabbendam & Leslie 2004; see also 146 

Figure 3), so that prior to Caledonian thrusting the Torridon Group must have 147 

extended some 50 – 100 km farther east (Elliot & Johnson, 1980, Butler & Coward 148 

1984).  The succession is c. 5-6 km thick but the top of the sequence is not exposed 149 

(Stewart 2002) because the group is unconformably overlain by Cambro-Ordovician 150 

sandstone.   151 

The Torridon Group has been divided (base to top) into the Diabaig, 152 

Applecross, Aultbea and Cailleach Head formations (Stewart 2002).  The Diabaig 153 

Formation comprises breccia, conglomerate, siltstone and sandstone. Cobble breccia 154 

or conglomerate infill palaeo valleys and are rich in vein-quartz clasts.  The siltstones 155 

have been interpreted as lacustrine (Stewart 1988).  The Diabaig Formation is absent 156 

in the Cape Wrath area in the north, occurs intermittently in Assynt and thickens to c. 157 

200 m on Skye.  The Applecross and Aultbea formations, two very similar sandstone 158 

formations, form the bulk of the Torridon Group, totalling c. 4-5 km in thickness. The 159 

contact with the underlying Diabaig Formation is sharp, locally erosional and may 160 

represent a disconformity (Kinnaird et al. 2007). The Applecross Formation consists 161 

predominantly of coarse to very coarse red sandstone in beds 0.1 - 5 metres thick. 162 

Pebble conglomerate and siltstone/mudstone beds occur locally.   The Aultbea 163 

Formation comprises mainly fine to medium-grained sandstone and minor mudstone. 164 

Flat bedding, planar cross-bedding and trough cross-bedding are common in both 165 

formations (Stewart 2002; Nicholson 1993).   Soft-sediment deformation structures 166 

are locally abundant (Selley et al. 1963; Owen 1995) and affect beds up to 5 m thick.  167 

Palaeocurrents are broadly eastward, but vary between NE and SE (Williams, 1969a; 168 

Nicholson 1993; Williams 2001).  The pebble fraction of the Applecross Formation 169 
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consists mostly of vein quartz or gneiss but also contains up to 30% of ‘exotic’ clasts 170 

(quartz-fuchsite schist, orthoquartzite, metaquartzite, microgranite, rhyolite, chert and 171 

red jasper) that cannot be linked to underlying rock units (Peach et al. 1907; Gracie & 172 

Stewart 1967; Williams 1969b). The formations are interpreted as alluvial braid plain 173 

deposits (Nicholson 1993; Stewart 2002), although Williams (2001) suggested an 174 

alluvial ‘mega fan’ environment.    175 

 176 

SEDIMENTOLOGY OF THE MORAR GROUP IN THE NORTHERN 177 

HIGHLANDS 178 

Well-preserved sedimentary structures are only rarely present in Moine rocks but are 179 

observed in several low strain zones within the A ‘Mhoine Formation in the Ben Hee 180 

area (Cheer 2006) and Glen Cassley (BGS, unpublished data) (Figure 3).  The 181 

structure of the Ben Hee – Glen Cassley area is dominated by kilometre-scale, west-182 

facing and west-verging folds, alternating with regional-scale ductile thrusts, all 183 

developed under greenschist- to lower amphibolite-facies metamorphism, presumed 184 

to be of Scandian (Silurian) age (Cheer 2006).  The folds (Figure 3) trend roughly 185 

north-south, have shallow plunging axes and are near-cylindrical over many 186 

kilometres.  The folds have highly-sheared gently east-dipping long limbs, some of 187 

which are ductile thrusts (e.g. Ben Hope and Achness thrusts; Figure 3). Inbetween 188 

these thrusts are low-strain zones, commonly in the steep to vertical short limbs of the 189 

large-scale folds.  Such limbs are up to 500 m thick and many kilometres wide across 190 

strike (cross-sections on Figure 3). In these zones, strata have been rotated c. 80 - 191 

100° to sub-vertical attitudes, but nevertheless show undeformed sedimentary 192 

structures (Figure 4). A modest fabric is locally present in rare semipelite or gritty 193 

units (Figure 4a), but most exposures of psammite show a complete lack of any 194 

tectonic fabric.   Low strain zones with well-preserved sedimentary structures were 195 

found in two thrust sheets, above and below the Ben Hope Thrust (Figure 3) 196 

commonly on large, glacially polished outcrops.    197 

 198 

Constraints on stratigraphical thickness 199 

The stratigraphical thickness of the A ‘Mhoine Formation is well constrained 200 

between River Cassley and Carn nam Bò Maola [NC 462 095] (Figure 3).  Here, a 3 201 

km long section exposes subvertical strata that strike NNW-ESE and consistently 202 
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young to the west; this equates to 3 km of stratigraphical thickness (Figure 3, cross-203 

section B-B’).  To the west in the Allt na Faile [NC 432 080], the strata are folded 204 

over c. 500 m section distance.  West from this, another 3 km long section of steep to 205 

moderate dipping strata stretches west as far as Beinn an Eòin Bheag [NC 375 055], 206 

possibly adding another 2-3 km to the total stratigraphical thickness (cross-section B-207 

B’ on Figure 3).    Neither the stratigraphical top nor base of the A ‘Mhoine 208 

Formation occurs in this section but it is clear the formation has a stratigraphical 209 

thickness of at least 3 km, and possibly more than 5 km.   210 

 211 

Lithology 212 

The dominant lithology of the A ‘Mhoine Formation is a fine to coarse 213 

quartzo-feldspathic psammite (grain size varies between 0.5 – 3 mm) with rare layers 214 

of pelite and semipelite. The psammites contain 80 – 90 % quartz, 3 – 8% alkali-215 

feldspar and  <4% plagioclase and biotite, with accessory opaques (derived from thin 216 

section study). Gritty beds (Figure 4a) are common, particularly in the lower parts of 217 

the sequence (e.g. east of Carn nam Bò Maola), with clasts up to 30 mm. Pebbles are 218 

mainly well-rounded (vein?) quartz with subordinate clasts of feldspar and rarer 219 

quartzofeldspathic gneiss and/or granitoid.  Semipelite layers become more common 220 

(c. 5% of section) at higher levels in the west near Beinn an Eòin Bheag, defining an 221 

overall fining upward trend.   Overall, the formation is exceptionally uniform and no 222 

distinct marker beds have been found.  223 

 224 

Sedimentary structures 225 

Observed sedimentary structures include isolated channels, nested channels, planar 226 

and trough cross-bedding, planar stratification and abundant soft-sediment 227 

deformation structures (Figures 4 and 5).  Trough cross-bed sets, typically 0.1 – 1 m 228 

deep, infill channels up to several metres deep and 3 – 15 m wide. The sets occur as 229 

nested stacked units (co-sets) up to 8 m thick (Figure 4b-d). Gravel/pebble lags occur 230 

in the bases of larger channels whilst heavy mineral bands (up to 10 mm thick) are 231 

locally preserved along the bases of smaller channels. Planar cross-stratification 232 

(Figure 4c) makes up as much as one third of exposures and occurs as sets and co-sets 233 

that are laterally truncated by overlying channels or display migration toward channel 234 

thalwegs away from channel margins.  Planar cross-bedded co-sets range in thickness 235 

from 0.1 m to 1 m. Both planar and trough cross-bedding locally display a fining 236 
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upward trend along foresets; coarser grain sizes (in places pebbly) define bottomsets 237 

whereas topsets are characterised by finer grain sizes (fine sand to semi pelite). Soft-238 

sediment deformation affected c. 20-30 % of the well-preserved outcrops (Figure 4e, 239 

f).  Features include dewatering ‘pipes’ 0.2 – 2.5 m in height, typically confined to 240 

single beds, and oversteepened to overturned cross-bedding that can affect cross-241 

stratified strata up to 5 m thick; in almost all cases, overturning is towards the east or 242 

NE, i.e. in the sediment transport direction. Slumping is developed locally and 243 

typically on decimetre scales but can incorporate up to 10 m of stratigraphy, involving 244 

single beds or groups of beds.  245 

  Most bed contacts are erosional and vertical trends are difficult to ascertain. 246 

However, it is apparent that the channelised, trough cross-bedded units tend to display 247 

a decrease in grain size (at least as coarse-tail fining) and scale of co-sets upward 248 

from an erosive base (Figure 4d). Large outcrop surfaces reveal that the planar cross-249 

bed sets display lateral migration directions that are typically at high angles to the 250 

scooped-shaped bounding surfaces of the channels. Planar stratification and/or finer-251 

grained facies occupy a stratigraphical position either in the topmost portions of the 252 

flared margins of the channels or along the tops of planar cross-bed co-sets.   253 

Channel orientations typically trend approximately east-west and the infilling 254 

trough cross-strata indicate overall sediment transport was generally to the east to 255 

NNE (Figures 4b-d).  Only few channels are exposed in 3D; however, planar-cross 256 

bedded strata at Carn Mor (Glencassley area) consistently indicate unidirectional 257 

palaeo-currents to the east or NE (Figure 4c).   258 

 259 

Sedimentological interpretation 260 

The A ‘Mhoine Formation consists of metamorphosed sandstones and pebbly 261 

sandstones exhibiting a wide range of structures formed by bedload traction. The 262 

grain size distribution combined with the decimetre- to metre-scale trough and planar 263 

cross-bed sets imply high flow velocities in channels deep enough to permit 264 

development of metre-scale bedforms (i.e. dunes).  High flow velocities are also 265 

indicated by (i) sigmoidal shaped foresets and the asymptotic toes of metre-scale 266 

trough cross-bed sets, (ii) the presence of flat stratification in coarse to pebbly grain 267 

sizes (upper flow regime plane beds), (iii) the syn-depositional shearing that 268 

steepened or overturned metre-scale foresets and (iv) the overall coarse grain size of 269 

the psammites.  The channel-fills commonly display a sequence of sedimentary 270 
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structures that decrease in scale, and fine upwards, indicating progressive channel 271 

abandonment. The arrangement of channelised beds in nested and stacked units 272 

several metres thick, which display fining upwards in both grain size and bedform 273 

scale, is a characteristic facies of braided fluvial environments (Collinson 1996; Miall 274 

1985, 1992). A fluvial setting is also supported by the unidirectional palaeocurrents 275 

displayed by the planar and trough cross-beds which consistently show NNE-ENE 276 

directed sediment transport.   277 

Planar and trough cross-bedding orientated at high angles to the channel 278 

margins are interpreted as laterally accreting bars. By contrast, bedforms showing 279 

migration parallel to the trough and channel axes are interpreted as downstream-280 

migrating bars (e.g. Cant & Walker 1978; Miall 1992; Smith 1970).  These facies are 281 

arranged in 20 – 50 m thick packages in which coarser-grained, channelised and 282 

trough cross-bedded units dominate the lower portions, with planar stratified and 283 

relatively finer grained units (including thin semipelitic intervals) characterising the 284 

upper parts. We interpret these decametre-scale patterns as recording lateral variation 285 

between channelised braided fluves and bars, interfluve areas and intermittent more 286 

widespread sheetfloods.  287 

The A ‘Mhoine Formation lacks well-developed vertical grain size and 288 

bedding thickness trends. This absence is typical for pre-land-plant braid plain 289 

settings (Schumm 1968; Cotter 1978). In contrast, metre to decametre-scale 290 

‘cyclicity’ is what characterises parasequence development of shoreline and marine 291 

shelf settings whether tide, storm or fluvial dominated (e.g. Johnson & Baldwin 1996; 292 

Reading & Collinson 1996; Walker & Plint 1992). In summary, the evidence indicates 293 

that the A ‘Mhoine Formation records fluvial deposition in a high-energy braided 294 

fluvial setting. 295 

 296 

Geochemistry 297 

Whole-rock and stream sediment geochemical data have been used to argue for and 298 

against a correlation between the Moine and ‘Torridonian’ rocks (Kennedy 1951; 299 

Stone et al. 1999; Stewart 2002).  However, no modern whole-rock analyses are 300 

available for the A ‘Mhoine Formation in the study area.  A series of samples from 301 

the A ‘Mhoine Formation were collected for whole-rock geochemical analysis as part 302 

of this project The samples come from a section from Glen Cassley to Carn nam Bò 303 

Maola and represent c. 2 km of the stratigraphical succession (Figure 3, cross-section 304 
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B-B’); the data are presented in Table 1 and Figure 6 and discussed in more detail 305 

below.  The samples plot as arkosic to sub-arkosic, with an overall trend to more sub-306 

arkosic (mature) compositions higher up in the stratigraphy (Figure 6).   The samples 307 

indicate a mineralogical immaturity in accordance with the textural immaturity and 308 

the suggested fluvial depositional setting.   Overall there is remarkably little 309 

geochemical variation between the samples, attesting to the lithological monotony of 310 

the A ‘Mhoine Formation.  311 

 312 

DISCUSSION 313 

Correlating the A ‘Mhoine and Applecross-Aultbea formations  314 

The Torridon Group was deposited in a fluvial environment characterised by braided 315 

rivers flowing from the west (Stewart 2002).  Since the Moine Thrust has an overall 316 

WNW-directed transport direction, restoration of the thrust would place the Morar Group 317 

‘downstream’ from the Torridon Group, so that a correlation between the two groups is a 318 

distinct possibility. We suggest a correlation between the Applecross/Aultbea Formation 319 

(Torridon Group) and the A ‘Mhoine Formation (Morar Group) as represented in the area 320 

north of Glen Oykel (Figures 1, 3). 321 

 322 

General position, lithology and sedimentology 323 

The Morar and Torridon groups both unconformably overlie Archaean – 324 

Palaeoproterozoic basement of comparable age (Stewart 2002; Holdsworth et al. 1994; 325 

Kinny et al. 2005; Friend et al. in press).  Both sequences have a basal conglomeratic 326 

facies, together with siltstone/pelite and sandstone/psammite, which occurs intermittently 327 

above the unconformity.  Both sequences are several (>3 to 5 km) kilometres thick and 328 

are typified by monotonous, coarse to very coarse (meta)sandstone with local pebble lags 329 

and some finer grained sandstone and minor muddy/pelitic layers becoming more 330 

frequent at higher stratigraphical levels. The two sequences lack marker horizons of 331 

different lithologies. 332 

Sedimentary structures in both the Applecross-Aultbea and A ‘Mhoine formations 333 

are comparable in style, scale and frequency:  metre-thick cross-stratified beds, 334 

unidirectional trough cross-bedding and nested channels 1-5 m deep.  Soft-sediment 335 

deformation structures are common and include metre-scale contorted bedding, 336 

oversteepened to overturned cross-beds, small-scale sag-structures involving heavy 337 

mineral bands, and these structures are typically confined to single beds  (this study; 338 
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Selley et al. 1963; Selley 1969; Owen 1995; Nicholson, 1993; Williams, 1970, 2001; 339 

Stewart, 2002 for the Torridon Group). Both deposits are fluviatile, and were rapidly 340 

deposited in a high-energy, braid plain environment (this study; Williams 1969a; 341 

Nicholson 1993, Williams 2001; Stewart 2002).  342 

 343 

Age of deposition 344 

The youngest U-Pb age on detrital zircons from the A ‘Mhoine Formation, dated 345 

at 1032 ± 32 Ma (Friend et al. 2003), is within error of the youngest detrital zircon ages 346 

of 1060 ± 18 Ma and 1046 ± 26 in the Applecross and Aultbea formations respectively 347 

(Rainbird et al. 2001). Rb/Sr ages from mudstone from the Applecross Formation are 994 348 

± 48 Ma and 977 ± 38 Ma and have been interpreted to date diagenesis (Turnbull et al. 349 

1996).  The Glenfinnan and Loch Eil groups are intruded by the c. 870 Ma West 350 

Highland Granite Gneiss Suite (Friend et al. 1997; Millar 1999) and this date is generally 351 

taken as the minimum age of Moine Supergroup.  Thus, deposition of the Torridon Group 352 

occurred after ~1050 Ma and probably around c. 980 Ma, whilst deposition of the Morar 353 

Group occurred sometime between  ~1030 and ~870 Ma, so that the age constraints 354 

overlap.  It is likely that both the Applecross/Aultbea and the A ‘Mhoine Formations 355 

were deposited between c. 1000 and 950 Ma.  356 

 357 

Detrital zircon ages 358 

Detrital zircon data from the Torridon, Morar and adjacent groups, obtained by Rainbird 359 

et al. (2001), Friend et al. (2003) and Cawood et al. (2004), are summarised in Figure 7. 360 

The detrital zircon age pattern of the A ‘Mhoine Formation (Friend et al. 2003) shows a 361 

sharply defined dominant cluster at c. 1650 Ma, minor clusters at c. 1800 Ma and c. 1400 362 

Ma and a few analyses between 1400 and 1000 Ma. Additionally, c.8 % of analysed 363 

grains were Archaean in age. The detrital zircon age patterns of the Loch Eil and 364 

Glenfinnan groups (Friend et al. 2003; Cawood et al. 2004) differ considerably from the 365 

Morar Group pattern: most zircons are younger than c. 1500 Ma and there is no clearly 366 

defined 1650Ma cluster.  367 

Similarly, the detrital zircon age patterns of the Applecross Formation and the 368 

Aultbea Formation both show a sharply defined cluster at c. 1650 Ma and a smaller 369 

cluster at c. 1800 Ma (Rainbird et al. 2001).  Some Archaean grains (25% and 15% 370 

respectively) occur, as well as a small, broad cluster between c. 1200 and 1000 Ma.  In 371 

contrast, the underlying Stoer Group shows a dominant Late Archaean detrital zircons 372 
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population (Figure 7f), with a peak at 2900 – 2700 Ma and the youngest zircon is c. 1740 373 

Ma (Rainbird et al. 2001).   374 

Overall, the detrital zircon age patterns of the Morar and Torridon groups have 375 

more in common (including the same dominant peak at c. 1650 Ma) with each other than 376 

with the sequences with which they are normally associated.  377 

  378 

Geochemistry 379 

Stone et al. (1999) noted broad geochemical similarities between the ‘Torridonian’ and 380 

the Moine Supergroup, based on regional stream sediment geochemistry (Institute of 381 

Geological Sciences, 1982).  In contrast, Stewart (2002) noted that boron concentrations 382 

in stream sediment over the Moine are 2 – 5 times lower than in the Torridon Group, and 383 

discounted a correlation on that basis.  However, boron is a highly mobile element and 384 

can be depleted by a factor of 2 or more during medium-grade metamorphism (Moran et 385 

al. 1992).  Therefore, significant boron depletion can be expected in the Morar 386 

metasediments and boron (and other fluid-mobile elements) should not be used to 387 

compare and contrast unmetamorphosed and metamorphosed rocks.  Virtually all other 388 

elements analysed for stream sediment geochemistry in Sutherland show very similar 389 

values for the Torridon and Morar groups (Institute of Geological Sciences, 1982). 390 

 The analysed whole-rock geochemistry of the A ‘Mhoine Formation psammites 391 

is compared in Table 1 with analyses from sandstones of the Applecross – Aultbea 392 

formations (van de Kamp & Leake 1997; Stewart & Donellan 1992) and Sleat Group 393 

(Stewart, 1991).    Generally, the arkosic Sleat Group rocks contain more Al, Fe, Ca and 394 

Na, with concomitantly less Si; on the log (Fe2O3/K2O) / log (SiO2/Al2O3) plot (Herron, 395 

1988) they plot close to the wacke field (Figure 6); these rocks are clearly less mature 396 

than the Morar and Torridon group rocks.  The A ‘Mhoine Formation and Torridon 397 

Group rocks are quite similar, and plot in overlapping fields (Figure 6).  The range of 398 

SiO2, TiO2, Al2O3, Fe, MgO and K2O within the Morar samples overlaps with those from 399 

the Torridon, similarly so for most trace elements.    Calcium and strontium are both 400 

higher in the A ‘Mhoine Formation (Table 1); this would suggest a higher component of 401 

calcic over sodic and potassic feldspar in the detritus; alternatively albitisation may have 402 

selectively affected the Torridon Group. The Torridon group sandstones are all arkosic, 403 

whilst some A ‘Mhoine Formation rocks are subarkosic.  Also, the Chemical Index of 404 

Alteration (CIA = Al2O3 /( Al2O3  +  CaO+ Na2O + K2O; Nesbitt & Young, 1982) is 405 

somewhat lower for the A ‘Mhoine Formation. Overall, the small differences between the 406 
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A ‘Mhoine Formation and the Applecross and Aultbea formation rocks can be well 407 

explained by better sorting and slightly higher maturity of the A ‘Mhoine Formation, as 408 

this tends to lower the CIA by removing more clay from the sand (Nesbitt et al. 1996). 409 

Better sorting is expected if the Morar Group was deposited farther downstream from the 410 

Torridon Group. There are no significant differences between the geochemistry of the 411 

Applecross, Aultbea and A ‘Mhoine formations, and geochemistry can certainly not be 412 

used to discount a correlation (cf. Stewart 2002). Overall, we conclude that the 413 

Applecross-Aultbea Formation and the A ‘Mhoine Formation can be correlated, without 414 

much lateral variation, across the Moine Thrust.   415 

 416 

Detritus provenance 417 

Williams (2001) and Stewart (2002) suggested the Lewisian Gneiss Complex as a source 418 

area for the Applecross Formation, whilst van de Kamp & Leake (1997) and Rainbird et 419 

al. (2001) suggested the Grenville Orogen as the main source.   For the Moine 420 

Supergroup as a whole, Friend et al. (2003) and Cawood et al. (2004, 2007) suggested a 421 

more general Laurentian provenance.  All suggested source areas lie to the west, 422 

consistent with the dominant palaeocurrent directions. 423 

Broadly speaking, the Laurentia craton (and the Lewisian Gneiss) is dominated by 424 

Late Archaean rocks with subordinate c. 2100 – 1800 Ma Palaeoproterozoic orogenic 425 

belts (e.g. Torngat, Trans-Hudson see Figure 8).  Only some of these belts produced 426 

juvenile crust, others mainly reworked Archaean crust (Hoffman 1988), so that 427 

Palaeoproterozoic felsic igneous rocks are relatively rare. A large belt of juvenile crust 428 

dated between 1800 – 1700 Ma (Yavapai and Mazatzal Province and Ketilidian – 429 

Makkovik belt) lies south and southwest of the Archaean craton.  In Labrador, abundant 430 

Mesoproterozoic anorogenic magmatism occurred between 1460 and 1420 Ma and 431 

between 1350 and 1290 Ma (Nain Plutonic Suite).  Most of these latter plutons lie north 432 

of the Grenville Front.   433 

The Grenville Orogen in North America comprises several Meso-434 

Palaeoproterozoic terranes that were amalgamated, reworked and exhumed between 1100 435 

– 950 Ma.  About 50% of the currently exposed rocks of the Eastern Grenville Orogen 436 

are of igneous origin (Figure 8), but only a small proportion are syn-Grenville granitoids 437 

(Gower et al. 1991; Rivers 1997 and Gower & Krogh 2002).  The bulk of the felsic 438 

igneous rocks are older and include Pre-Labradorian 1780 – 1710 Ma granitic 439 

orthogneisses and large volumes of Labradorian (1710 – 1600 Ma) calc-alkaline igneous 440 
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rocks in the northern part of the orogen.  The latter include the 600 km long, c. 1650 Ma 441 

Trans-Labrador batholith.  In contrast, the southern part of the Grenville Orogen is 442 

dominated by Pinwarian granitoid intrusions (1520 - 1460 Ma) and the Adirondian 443 

anorthosite-mafic-granite suite (1200 – 1130 Ma).  In eastern Canada, the main Grenville 444 

orogenic activity spanned the period between 1080 and 970 Ma, whilst syn- to post-445 

orogenic granitic plutonism occurred between c. 1025 to 920 Ma.  Ar/Ar cooling ages 446 

suggest significant uplift and erosion between 980 and 930 Ma (Haggart et al. 1993).   447 

From the aerial extent of magmatic rocks, it is possible to predict in a qualitative 448 

manner what age ranges of detrital minerals would be expected from either the Grenville 449 

Orogen or from Laurentia outwith the Grenville Belt, bearing in mind that high-level 450 

parts of the orogen are missing, having already been unroofed.  Two such ‘predictive’ 451 

detrital mineral age patterns for the Grenville Orogen and the Laurentian cratonic interior 452 

are shown in Figure 7g, h.   453 

The dominant c. 1650 Ma cluster of the Applecross, Aultbea and Morar zircons 454 

can be confidently linked to the Trans-Labradorian batholith (see also Rainbird et al. 455 

2001), on the northern side within the Grenville orogen, (Figures 7, 8).  The ~1200 - 1000 456 

Ma cluster is derived from the Grenville orogen itself.  The c. 1800 Ma cluster in the 457 

Torridon Group is most likely derived from the Ketilidian – Makkovik belt; it is highly 458 

unlikely that they are derived from the ‘Laxfordian’ c. 1850 Ma intrusions within the 459 

Lewisian Complex since these intrusions are minor (<2 %) in aerial extent compared to 460 

Archaean gneisses.   461 

Noteworthy is also the scarcity (and absence in case of the Applecross Formation) 462 

of zircons dated between 1600 and 1250 Ma.  Igneous rocks in this age bracket are 463 

common in Labrador and Greenland in the foreland of the Grenville Orogen, but are rare 464 

in the northern part of the orogen itself.  This would suggest that during deposition of the 465 

basins, the immediate foreland of the Grenville orogen was covered and not available as a 466 

source area (Figures 7,8; see also Cawood et al. 2004, 2007).  An exception is the small 467 

c. 1450 Ma cluster in the A ‘Mhoine Formation.  If this cluster is significant it may 468 

correlate with the Pinware terrane (see also Cawood et al. 2004), and relate to occasional 469 

southward stream capture across a drainage divide in the Grenville orogen.    470 

The relatively minor, variable component of Archaean age argues against the 471 

Lewisian Gneiss or the Laurentain Craton as the main source.  Nevertheless, the 8 – 25% 472 

Archaean grains must have come from the cratonic interior, as little or no Archaean 473 

material appears to be incorporated into the Grenville Orogen (Figures 7, 8).   In the 474 
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lowermost Applecross Formation, some Archaean grains may be of Lewisian origin 475 

because the high (100-600m) palaeorelief means that Lewisian hills remained exposed 476 

while the first few hundred metres of Applecross sandstones were being deposited.   477 

 Overall, the Grenville Orogen is likely to have provided the bulk of the detritus of 478 

the Torridon and Morar Group, with a small input from the Makkovikian-Ketilidian and 479 

the Archaean Laurentian Foreland.  A general Laurentian source outwith the Grenville 480 

Orogen, let alone a Lewisian Gneiss source, is not compatible with the detrital zircon age 481 

patterns (see also Cawood et al. 2004, 2007).  482 

 483 

Basin interpretation 484 

If the Morar and Torridon groups can be correlated and were deposited in the same 485 

basin, what was its setting? Previously, the Torridon and Morar groups have been 486 

interpreted as separate rift basins (Stewart 1982; Williams 2001; Stewart 2002 and 487 

references therein; Soper et al. 1998) but this interpretation is problematic.   488 

 Rift sedimentation and subsidence is primarily controlled by episodic faulting 489 

and basin subsidence. This results in alternating periods of quiescence and 490 

progradation of coarse clastic sediment into finer-grained and commonly lacustrine 491 

basinal settings. The net result is a stratigraphical framework replete with lateral and 492 

vertical facies changes, e.g. the Tertiary extensional basins in the Death Valley region, 493 

USA (Wright & Troxel 1999), the Suez Rift (Jackson et al. 2006) and the Jurassic 494 

basins of the North Sea (Underhill 1998). In addition, volcanic, evaporitic and 495 

lacustrine deposits are common in rift-basins. The Torridon and Morar groups exhibit 496 

none of these features.  In fact, few, if any rift basins (particularly half grabens) are 497 

characterised by >5km vertically and >200 km horizontally similar siliciclastic 498 

sediments (see also Nicholson, 1993; Prave 1999; Cawood et al. 2004).    499 

The detrital zircons show a distal, rather than proximal source.  Continental 500 

rift-basins typically have a proximal source, with commonly a large age difference 501 

between the youngest age of detritus and the onset of sedimentation (e.g. Stoer Group, 502 

Figure 7f, Rainbird et al. 2001).   503 

The Minch Fault (Figure 1) has been invoked as a large-scale basin-bounding 504 

fault to the suggested Torridon rift basin (Williams 1969b, 2001, Stewart 2002).  505 

Williams (1969b, 2001) argued that the Torridon Group consisted of a series of 506 

alluvial megafans with their apexes near the Minch Fault.  Nicholson (1993), 507 

however, showed that the palaeocurrents do not support such fans.  Moreover, the 508 
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pebble content and the detrital zircon data do not match a detrital source in the Outer 509 

Hebrides (composed mainly of Archaean rocks).  Also, there is no evidence of syn-510 

depositional fault activity; nowhere along the basal Torridon unconformity, well 511 

exposed over several hundred kilometres, is there evidence for syn-Applecross-512 

Formation extensional faults.   513 

The abundance of soft-sedimentation deformation in the Torridon Group has 514 

also been used to argue for frequent seismic activity and hence rifting.  However, 515 

convolute bedding can be generated without seismicity by bed liquidisation during 516 

rapid deposition of water-saturated sand - in combination with a high water table 517 

(Selley et al. 1963; Selley 1969; Williams 1970; Nicholson 1993; Owen 1995; 518 

Williams 2001).  The lack of terrestrial vegetation during the Neoproterozoic would 519 

have exacerbated such conditions (e.g. Eriksson et al. 2001). 520 

 Nicholson (1993) and Cawood et al. (2004) suggested an intracratonic basin 521 

setting for the Torridon Group and Moine Supergroup, respectively. Intracratonic 522 

basins, however, are typically long-lived and slowly subsiding, are sensitive to 523 

environmental change and hence contain significant vertical facies changes, the 524 

Neoproterozoic to Palaeozoic Taoudeni Basin (West Africa) being a good example 525 

(Bertrand-Sarfati et al. 1991).  A major problem, therefore, is to provide sufficient 526 

accommodation space for rapid deposition of a 5 km of laterally and vertically 527 

uniform siliciclastic succession.  528 

  529 

Foreland Basin setting 530 

In contrast, there is a growing body of work that suggests that the Torridon Group was 531 

deposited as a non-marine molasse, in a foreland basin setting (Rainbird et al., 2001; 532 

Kinnaird et al., 2007). This model explains the distal provenance of the detrital 533 

zircons analysed from the Torridon Group. Deposition in a trunk river system in an 534 

axial, orogen-parallel foreland-basin setting, best explains the features observed in 535 

both the Applecross-Aultbea and A ‘Mhoine formations. The envisaged basin would 536 

be analogous to the modern-day Ganges basin, in that the preserved part of the basin 537 

would have been deposited in a braided river system flowing in front of, and generally 538 

parallel to, the orogen.  The position of the Grenville Orogen to the south (present-day 539 

orientation), and the easterly to north-northeasterly directed palaeocurrents fit such a 540 

palaeogeography.  An orogen-parallel foreland-basin setting is further supported by: 541 
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1) Age. Accepting that the age of deposition of the Applecross-Aultbea and A 542 

‘Mhoine formations is broadly equivalent, then the constraint for their deposition 543 

at between c. 1000 and 950 Ma overlaps with the last stages of the Grenville 544 

Orogeny.  The intrusion of late-orogenic granites, decompression metamorphism 545 

and metamorphic cooling in the Grenville Orogen all occurred between 1025 – 546 

950 Ma (e.g. Gower et al. 1991; Haggart et al. 1993; Gower & Krogh 2002; Cox 547 

et al. 2002); such processes are generally accompanied by overall unroofing of 548 

the orogen, resulting in the formation of an approximately coeval foreland basin.   549 

2) Sedimentology. The Applecross-Aultbea and A ‘Mhoine Formations comprise a 550 

c. 5 km thick sequence of alluvial-fluvial siliciclastic rocks deposited in a wide 551 

braid plain system.  The basin was characterised by large, relatively deep rivers, 552 

high peak run-off and rapid deposition.  Rapid deposition of a thick sequence 553 

requires rapid, sustained subsidence.  These are features typical for molasse-type 554 

foreland basin (e.g. Pfiffner 1986).  Foreland basins typically have subsidence 555 

rates 3 – 10 times faster than most rift basins, and can achieve 2-3 km of 556 

subsidence in less than 10 Ma (e.g. Homewood et al. 1986); this provides a good 557 

explanation for the deposition of a great thickness of high-energy clastic 558 

sediments over a wide area. 559 

3)  Provenance. The detrital zircon age patterns suggest that the Grenville Orogen 560 

was the main source of detritus; this detritus comprises both syn-orogenic and 561 

pre-orogenic material uplifted in the orogen (e.g. the c. 1650 Ma cluster).  Such a 562 

combination of syn-orogenic and pre-orogenic material is common in foreland 563 

basins, as shown by Hercynian and Alpine detrital micas in the North Alpine 564 

Foreland Basin (von Eynatten & Wijbrans 2003). Orogen-parallel foreland basins 565 

have a fore-bulge, so that part of the drainage and hence a minor component of 566 

the detritus originate from the cratonic interior.  This is consistent with the 567 

variable amount of c. 1800 Ma and Archaean grains present in the successions; 568 

this detritus most likely originated from the area north of the Grenville orogen, 569 

e.g. Ketilidian and cratonic parts of Laurentia.    570 

 571 

Many foreland basins show an evolution from deep-water clastic sedimentation (‘flysch’) 572 

during early orogenesis, followed by shallow marine and finally non-marine (‘molasse’) 573 

sedimentation (e.g. Pfiffner 1986; Miall 1995). The earliest sediments are commonly 574 

caught up in foreland-propagating thrust systems and are uplifted and eroded, thus having 575 
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a low preservation potential.  The younger and shallower ‘molasse’ sediment onlap far 576 

onto the foreland and parts of this ‘molasse’ system may thus escape subsequent 577 

thrusting, uplift and erosion.  It is this part of the foreland basin system that is preserved 578 

in the Morar and Torridon groups.  The 1080 – 1050 Ma Flinton Group in Eastern 579 

Ontario, Canada, may represent earlier, more varied and partially marine foreland basin 580 

rocks caught up in the Grenville orogen (Moore & Thompson 1980), but similar rocks 581 

appear not to be present in Scotland.  582 

 583 

Displacement on the Moine Thrust 584 

The Moine Thrust separates the Torridon and Morar groups, and the displacement 585 

along this major structure must be taken into account for their correlation or 586 

otherwise. The total displacement of the Moine Thrust Zone as a whole is generally 587 

assumed to be greater than 100 km (Strachan et al. 2002).  However, Torridon Group 588 

rocks occur in the highest thrust sheets, so that the Torridon basin must have extended 589 

considerably farther east with respect to the Foreland.  590 

Consequently, it is only the Moine Thrust itself and its associated mylonites 591 

that truly separate the Torridon and Morar groups.  The total displacement taken up 592 

by these structures is difficult to constrain.  It is more than 20 km, as evidenced by the 593 

down-faulted block of Moine Mylonites at Faraid Head (Peach et al. 1907) and must 594 

be sufficient to have emplaced medium-grade metamorphic rocks over 595 

unmetamorphosed rocks.  A reasonable estimate is probably c. 100 km.  596 

The broadly eastward palaeocurrents in the sediments are approximately co-597 

axial to the WNW-directed thrust transport direction and there is no evidence for 598 

major (>100 km) strike slip movement along the Moine Thrust or its trace.  Therefore 599 

the simplest original relationship between the Torridon and Morar Group is that the 600 

latter was deposited some 100 – 200 km downstream from the former.  Such a 601 

distance is in fact very small for braided river systems in sedimentary basins, which 602 

can easily measure >1000 km along their axis of flow, as seen in both ancient and 603 

modern examples (e.g. Bridge 2003; Smith & Rogers 1999).    604 

 605 

Regional implications  606 

We have shown that the Applecross-Aultbea formations and the A ‘Mhoine 607 

Formation are correlative parts of the same sequence, simply repeated by the Moine 608 

Thrust.  This invalidates the formal distinction between the Torridon Group and the 609 
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Morar Group and hence the Moine Supergroup (cf. Holdsworth et al. 1994; Trewin 610 

2002), and implies that the Proterozoic stratigraphical framework in Scotland needs to 611 

be revised.  One solution is to include the Torridon Group into the Moine Supergroup, 612 

but abandon the term Morar Group.  Alternatively, the term ‘Moine Supergroup’ 613 

could be abandoned, and the A ‘Mhoine Formation included in the Torridon Group, 614 

as the latter is better exposed.   615 

Correlations farther south in the Skye, Morar and Knoydart areas are also 616 

likely, but their details require further study, partially because the stratigraphy of both 617 

the ‘Torridonian’ and the Morar Group in these areas is more diverse (Ramsay & 618 

Spring, 1962; Sutton & Watson 1964; Holdsworth et al. 1994; Stewart 2002).  Sutton 619 

& Watson (1964) proposed the correlation Sleat Group = lower Morar Group and 620 

Torridon Group = upper Morar Group (Figure 2); this proposal deserves renewed 621 

attention.  Furthermore, it is unclear whether the A ‘Mhoine Formation correlates 622 

southward with the Upper or the Lower Morar Psammite Formation in Morar, since 623 

the intervening ground has never been mapped in detail. It is prudent to await the 624 

outcomes of further studies before erecting a revised stratigraphy in Scotland, while 625 

noting that the current framework is unsatisfactory.  626 

In addition, the ‘Hebridean Terrane’ and the ‘Northern Highlands Terrane’ 627 

(Bluck et al. 1992) share much of their pre- and post-Caledonian evolution and should 628 

be regarded as parautochthonous, and not as exotic to each other (Bluck et al. 1997; 629 

Oliver 2002).  The Moine Thrust is better regarded as the Caledonian orogenic front, 630 

rather than a significant terrane boundary.  631 

 632 

CONCLUSIONS 633 

 634 

The A ‘Mhoine Formation (Morar Group) in the Northern Highlands is characterised 635 

by c. 5 km of uniform psammite, devoid of marker horizons, and was deposited in a 636 

high-energy fluvial environment characterised by braided rivers flowing from the 637 

west.  The A ‘Mhoine Formation and the Applecross-Aultbea Formation (Torridon 638 

Group) are similar in terms of their age of deposition, sedimentology, stratigraphical 639 

position, geochemistry, detrital zircon age pattern, age constraints and overall 640 

sediment transport direction. The detrital zircon distributions in both groups show that 641 

they share a similar, distal source, namely parts of the Grenville Orogen, the final 642 

stages of which overlap the age of deposition.  It is therefore concluded that the 643 
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Applecross-Aultbea and the A ‘Mhoine formations are direct correlatives and formed 644 

part of an axial trunk fluvial system flowing in front of the Grenville Orogen, forming 645 

an orogen-parallel foreland basin.  This reinterpretation implies that the currently 646 

accepted Proterozoic stratigraphical framework for the Scottish Highlands is in need 647 

of revision. The two groups should be regarded as parautochthonous 648 

 649 
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 947 

Fig. 1.  Geological map of the Northern Highlands l.  Moine-undivided: includes the 948 

East Sutherland Moine (ESM), the Tarskavaig Moine (TM) and the Rosemarkie - 949 

Cromarty Moine Inliers (RC).  Other abbreviations: BHT = Ben Hope Thrust; CF = 950 

Coigach Fault; OIFZ = Outer Isles Thrust Zone; MT = Moine Thrust; NTZ = Naver 951 

Thrust Zone, SBT = Sgurr Beag Thrust.  Inset shows location of Figure 3. Modified 952 

after British Geological Survey (1989 a, b).  953 

 954 

Fig. 2.  Stratigraphy of the Torridonian sequence and Morar Group in Northern 955 

Scotland (all thicknesses are approximate; units higher than the Glenfinnan Group not 956 

shown).  (a) Torridonian sequence in NW Highlands; (b) Morar Group in Northern 957 

Highlands; (c) Torridonian sequence on Skye; (d) Morar Group in Morar.   Compiled 958 

after Holdsworth et al. (1994) and Stewart (2002). 959 

 960 

Fig. 3.  (a) Geological map of the Ben Hee and Glen Cassley area.  Areas with well-961 

preserved sedimentary structures are outlined.  (b) Schematic cross-sections through 962 

the Ben Hee - Cassley area.  The A’Mhoine Formation occurs west (below) the 963 

Achness Thrust, whereas the psammite east (above) the Achness Thrust are assigned 964 

to the Altnaharra Formation. 965 

 966 

Fig. 4. Photographs showing sedimentary structures within the A ‘Mhoine Psammite 967 

Formation in the Ben Hee and Glan Cassley area. 968 

(a) Slightly deformed gritty psammite showing coarse, gritty grain sizes and feldspar 969 

clasts.  Carn nam Bò Maolo [NC 4431 0904], BGS Photo 616530. 970 

(b) Nested co-sets of trough cross-beds in medium psammite (scale bar is 10 cm 971 

long). Sediment transport was broadly NNE directed.  Eastern slopes of Beinn an 972 

Eòin [NC 4087 0941], BGS Photo 616564. 973 

(c) Succession displaying interstratified nested trough cross-bed and plane-parallel 974 

sets at base overlain by planar cross-stratified sets (the topmost set is thinned due to 975 

erosion by the overlying trough cross-bed set) followed by large (metre-scale) trough 976 

cross-bed sets forming the upper part of the outcrop (map case is 30 cm high).  977 

Sediment transport associated with trough cross-beds was NNE to ENE and the planar 978 
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cross-strata display east-directed lateral migration. Carn Mor north of Strath Oykel 979 

[NC 4038 0453]. BGS Photo 616551. 980 

(d) Nested, m-scale co-sets of stacked trough cross-beds infilling an overall channel 981 

form. Note decrease in size of sets up to the base of next overlying channel (the 982 

erosive base of this channel is just to right of the ~1.8m geologist) [NC 440 389]. 983 

Soft-sediment deformation structures; note how each interval is erosionally truncated 984 

by overlying, undeformed stratification: (e) convolute bedding and oversteepened 985 

foresets in fine-medium psammite (compass is 9 cm wide) NW of Glencassley Castle 986 

[NC 4358 0807] BGS Photo 618131; (f) 2.5m scale dewatering pipes in coarse 987 

psammite, just below ~1.8m geologist [NC 4349 3899]. 988 

 989 

Fig. 5.  Sedimentary log of a typical section of the A ‘Mhoine Formation showing 990 

interstratified nature of trough and planar cross-bedding and planar stratification. 991 

Most bed geometries at outcrop scale are lens shaped and define nested channels 992 

having high width:depth ratios. Note that grain size indications, particularly for the 993 

finer size ranges, can only be qualitative due to metamorphic recrystallisation.  994 

Eastern slopes of Beinn Direach, Ben Hee Area [NC438 393]. 995 

 996 

Fig. 6. a)  Classification plot for sandstones and shales (Herron 1988) with samples 997 

from Morar, Torridon and Sleat groups.   b)  Al2O3 – K2O – CaO+Na2O diagram (top 998 

half only). Arrows indicate weathering trend from a granitic bedrock source and 999 

sorting trend (Nesbitt et al., 1996).   1000 

 1001 

Fig. 7.  Detrital zircon age patterns for (a) Loch Eil Group, (b) Glenfinnan Group and 1002 

(c) Morar Group (A ‘Mhoine Formation) (Friend et al. 2002; Cawood et al. 2004), (d, 1003 

e) Torridon Group (Rainbird et al. 2001), (f) Stoer Group, (Rainbird et al. 2001) and 1004 

(g) predicted detrital zircon ages for detritus derived from the Grenville Orogen 1005 

(based on data from Gower & Krogh 2002) and (h) Laurentia outwith the Grenville 1006 

Orogen (based on data from Hoffman 1988).  Note: inherited grains refers to zircons 1007 

from partial melts within the metasedimentary successions.  1008 

 1009 

Fig. 8.  Laurentia and Baltica in a possible Early Neoproterozoic reconstruction – note 1010 

that the exact position of Baltica is uncertain.  Only juvenile Palaeoproterozoic belts 1011 

are shown; belts of reworked Archaean rocks are not shown.  Position of Torridon and 1012 



Correlation of Torridon and Morar groups 

Page 32 of 32 32

Morar groups is shown.  Inset shows the Grenville Orogen in Eastern Canada.  After 1013 

Hoffman (1988), Winchester (1988), Rivers (1997) and Rainbird et al. (2001).  1014 

 1015 

Table 1. Chemical analyses of sandstones and psammites from the Torridon Group, A 1016 

‘Mhoine Formation and Sleat Group.  A 'Mhoine Formation samples are ordered 1017 

stratigraphically.  1018 

(1) BGS analyses; this study; (2) after van de Kamp & Leake (1997); (3) after Stewart 1019 

& Donnelan (1992); (4) after Stewart (1991).  CIA = Chemical Index of Alteration 1020 

(Nesbitt et al. 1996) 1021 
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Aultbea Fm Beinn na Seamraig 
Fm

Kinloch Fm

ZY294 ZY288 ZY289 ZY290 ZY291 ZY292 ZY293 General (2) Raasay (3) Coigach (3) Coigach (3) Skye (4) Skye (4)

medium-coarse 
psammite (high 
in stratigraphy)

medium-coarse 
psammite

coarse 
psammite

medium-coarse 
psammite

coarse, gritty 
psammite

coarse, gritty 
psammite

coarse 
psammite (low 
in stratigraphy)

Median    n = 7 n = 18 n = 10 n = 59 n = 25 n = 11 n = 16

Oxides as %

SiO2 81.8 84.71 87.93 86.16 85.66 86.71 84.12 85.91 82.82 85.27 82.9 82.55 75.43 76.65
TiO2 0.36 0.2 0.14 0.12 0.22 0.16 0.33 0.18 0.3 0.31 0.32 0.29 0.61 0.55
Al2O3 8.45 7.49 5.91 6.68 6.98 6.27 7.45 6.83 8.61 8.27 9.01 9.85 11.75 11.68
Fe2O3 + FeO 1.92 1.34 1.01 0.96 1.12 1.11 1.62 1.115 1.48 1.48 2.27 1.8 3.39 3.13
MnO 0.04 0.03 0.04 0.02 0.02 0.03 0.04 0.03 0.04 0.03 0.03 0.02 0.07 0.06
MgO 0.4 0.28 0.14 0.2 0.24 0.17 0.25 0.22 0.86 0.23 1.24 0.83 0.64 0.52
CaO 0.87 0.4 0.49 0.48 0.32 0.32 0.47 0.435 0.17 0.26 0.08 0.01 1.74 1.07
Na2O 1.8 1.4 1.15 1.22 1.03 1.14 1.24 1.185 1.38 1.94 1.78 1.52 2.34 2.61
K2O 3.02 2.82 2.51 3.07 3.15 3.04 3.37 3.055 3.46 2.86 3.06 4.06 3.89 3.6
P2O5 0.03 0.01 <0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.09 0.04 0.04 0.28 0.26
H2O 0.79

LOI 0.56 0.62 0.35 0.31 0.62 0.42 0.56
Total 99.37 99.39 99.77 99.32 99.45 99.47 99.58 99.93 100.74 100.73 100.97

Trace elements 
(ppm)

Ba 653 653 652 631 653 661 714 653 613 636 691
Ce 38 30 18 24 23 20 37 23.5 37 53
La 15 15 9 10 9 6 14 9.5 19 25
Ni 6 5 3 4 4 4 5 4 4 2
Rb 86 77 59 76 84 71 87 76.5 80 79 92
Sr 168 131 148 121 117 135 140 133 98 60 61
Th 5 4 3 3 4 4 5 4 6 7
Y 14 9 6 7 7 6 9 7 8 12
Zn 17 13 6 8 8 11 12 9.5 12 10 9
Zr 212 116 79 79 101 98 172 99.5 173 172 206

Na2O/K2O 0.60 0.50 0.46 0.40 0.33 0.38 0.37 0.39 0.40 0.68 0.58 0.37 0.60 0.73
SiO2/Al2O3 9.68 11.31 14.88 12.90 12.27 13.83 11.29 12.58 9.62 10.31 9.20 8.38 6.42 6.56

Rb/Sr 0.512 0.588 0.399 0.628 0.718 0.526 0.621 0.575 1.317 1.508
Ca2O/Na2O 0.483 0.286 0.426 0.393 0.311 0.281 0.379 0.367 0.123 0.134 0.045 0.007 0.744 0.410
CIA 0.60 0.62 0.59 0.58 0.61 0.58 0.59 0.60 0.63 0.62 0.65 0.64 0.60 0.62

Sleat Group
A 'Mhoine Fm (1)

Morar Group Torridon Group
Applecross Fm

Table 1.           Chemical analyses of sandstones and psammites from the Torridon group, A ' Mhoine Formation and Sleat Group. (1) BGS analyses; this study; (2) after van de 
Kamp & Leake (1997); (3) after Stewart & Donnelan (1992); (4) after Stewart (1991).  
A 'Mhoine Formation samples are ordered stratigraphically.  CIA = Chemical Index of Alteration (Nesbitt et al. 1996)
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