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Key outcomes/non-technical summary 
 
This report looks at model quality and uncertainty issues for climate change impact 
studies, with particular reference to the impact of climate change on flood frequency in 
the UK. It is a preliminary study in the sense that there is only limited sampling of the 
sources of uncertainty and there is no attempt to provide wide spatial coverage. It is 
intended to serve as a useful demonstration of how these issues may be tackled and to 
provide some initial indication of how to formulate a more comprehensive study to 
provide a demonstration of these issues for UKCIP08. 
 
Seven different sources of uncertainty are discussed:  

• Future greenhouse gas emissions, 
• Global Climate Model (GCM) structure, 
• GCM parameters and initial conditions, 
• Downscaling from GCMs (including Regional Climate Model structure), 
• Hydrological model structure, 
• Hydrological model parameters, and  
• Impact definition. 

Each of these sources of uncertainty is demonstrated for two example catchments in 
England, by propagation through to flood frequency impact. Multi-propagation (that is, 
propagation of more than one source of uncertainty at once) is not attempted. 
 
The results from single-propagation of each of the sources of uncertainty suggest that 
uncertainty from GCM structure is by far the largest source of uncertainty. However, 
this is due to the extremely large increases in winter rainfall predicted by one of the 5 
GCMs used (CCSR). Omitting the results for this GCM means other sources of 
uncertainty become more significant, although uncertainty from sources relating to 
modelling of the future climate is generally still larger than that relating to emissions or 
hydrological modelling. It is also shown that natural variability can play a significant 
role.  
 
The results presented here are certainly not conclusive as there is only limited 
representation of some of the sources of uncertainty. Additions may, but would not 
necessarily, increase the range of uncertainty from any source, though they would 
make the results more robust. In addition, more catchments need to be assessed to 
decide whether some sources of uncertainty are consistently more or less important, or 
are more/less important for certain types of catchment or for certain areas of the 
country. 
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1 INTRODUCTION 
 
There is uncertainty in the results of any modelling, of different types and from different 
sources. It is possible that some of this uncertainty can be reduced, through research or 
modelling improvements, but some cannot be reduced and it is unlikely that uncertainty 
can ever be completely removed. However, any individual source of uncertainty, if 
quantified in some way, can be propagated through to give an uncertainty in the end 
result. This propagation could be done individually, for each different source of 
uncertainty, (termed here “single-propagation”) or in combination with other sources 
(termed here “multi-propagation”, or known as a “cascade of uncertainty”). The sources 
of uncertainty in a climate change impact study are represented schematically in Figure 
1.1.  
 
 

 

Figure 1.1 Some of the sources of uncertainty in a climate change impact study.  
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Quantification and propagation of uncertainty could allow research to be targeted at 
specific areas where uncertainty is currently large but potentially reducible. In the case 
where modelling results are presented with some quantification of (currently 
irreducible) uncertainty included, it is then up to the user of the results to decide how 
best to take account of that uncertainty when planning or making decisions. 
 
Section 2 of this report considers the various sources of uncertainty which apply in the 
hydrological modelling of this project and discusses how some of them are being 
tackled (either within the project or elsewhere). Section 3 presents examples of the 
single-propagation of a number of these sources through to the impact of climate change 
on flood frequency, for two catchments in England. Multi-propagation is not attempted. 
Conclusions are given in Section 4.  
 
 



 

2 SOURCES OF UNCERTAINTY  
 
Two different hydrological models are currently being applied within this project. These 
are 

• a grid-based model, the Grid-to-Grid (or G2G) (Bell et al. 2003, 2004, 2005, 
2006), which is being developed for use within the Hadley Centre Regional 
Climate Model (RCM), as well as for offline work covering Europe (25 km 
grid) or the UK (1 km grid), and 

• the catchment PDM (Moore 1985, 1999, Kay 2003, Kay et al. 2003, 2006a,b), 
which is being used solely offline and helping to validate the G2G model (Bell 
et al. 2004). Within this project, the PDM was usually run with parameter 
values generalised from catchment properties, rather than specifically calibrated 
to the catchment, so that the model could be run for any catchment in the UK. 

 
Some of the uncertainty in results from these two models will be the same (e.g. that due 
to emissions, the Global Climate Model (GCM) etc) whilst some will be different (e.g. 
that due to hydrological model parameterisation). In this section, different sources of 
uncertainty will be discussed in more detail, with particular reference to how they relate 
to either hydrological model, where appropriate. The length of the discussion on each 
source is in no way indicative of their importance. The relative sizes of different sources 
of uncertainty are also discussed, as well as the applicability of model features or 
assumptions under future climates. 
 
 
2.1 Future greenhouse gas emissions 
 
Clearly, the future course of greenhouse gas emissions cannot be known. For this reason 
the IPCC produced a Special Report on Emissions Scenarios (SRES; IPCC 2000) 
describing four alternative ‘storylines’ for future emissions (referred to as A1, A2, B1 
and B2), based on four different sets of assumptions on global development over the 
next century. Within each of these storylines a number of specific emissions scenarios 
were described (40 in all), each representing a specific quantification of greenhouse gas 
emissions.  
 
The UK Climate Impacts Programme (UKCIP) selected one emissions scenario from 
each of the four SRES storylines, for their latest set of climate change scenarios for the 
UK (UKCIP02, Hulme et al. 2002). The selection was made so as to span the range of 
SRES scenarios well; for the A1 storyline, the highest emissions scenario was selected 
(A1F1). The emissions scenarios termed High, Medium-High, Medium-Low and Low 
in UKCIP02 correspond, respectively, to the SRES A1F1, A2, B2 and B1 emissions 
scenarios. However, the impact of these emissions on UK climate was only specifically 
modelled for a single scenario, that of A2 (Medium-High), using a three member 
ensemble of the Hadley Centre RCM HadRM3; the impact under the other three 
emissions scenarios was scaled from the A2 HadRM3 ensemble mean using the global 
temperature from the corresponding runs of the GCM, HadCM3. (Note that Murphy et 
al. (2004) question the effectiveness of this form of scaling to represent the range of 
potential impacts). 
 
The climate change work within this project has only used data from HadRM3H under 
the A2 emissions scenario, but recent work by CEH Wallingford for the Environment 



 

Agency looked at the impact of all four UKCIP02 scenarios on flood frequency for a 
number of catchments in Great Britain (Reynard et al. 2004). 
 
 
2.2 GCM – structure 
 
There are a number of GCMs, developed and run in various countries across the globe, 
and these produce different impacts of given emissions scenarios. Not only do they have 
different climate sensitivities (the change in global mean temperature under a doubling 
of CO2) but they show different patterns of change in temperature and precipitation. See 
Figures 24-27 of UKCIP02, for patterns of change in winter and summer temperature 
and precipitation across the UK, under 9 different GCMs. Information on changes in 
various climate variables under future emissions scenarios, from a number of GCMs, 
can be obtained from the IPCC data distribution centre (ipcc-ddc.cru.uea.ac.uk). 
 
Another potential source of uncertainty in GCM results, which can be defined as 
structural, is the effect of grid resolution (both horizontal and vertical). Increasing 
model resolution is likely to lead to more reliable results, due to less spatial averaging, 
but has a consequent increase in computing requirements. 
 
 
2.3 GCM – parameters and initial conditions 
 
GCMs require initial conditions, and patterns of change vary somewhat dependent on 
these. UKCIP02 used an ensemble of three runs with different initial conditions (see 
Figures 24-27 of UKCIP02), and presented results based upon the mean of these, to 
reduce the effect of initial condition uncertainty. Initial condition uncertainty is 
essentially a demonstration of natural climate variability. 
 
GCMs also use parameterisations, to deal with processes that occur on scales smaller 
than the grid resolution of the GCM (e.g. schemes to estimate the amount of cloud). 
Some of these schemes are well-constrained (by observations) but others are less well 
understood, hence the uncertainty due to parameterisation could be important. Murphy 
et al. (2004) investigate the effect of parameterisations on climate sensitivity through 
the use of a so-called ‘perturbed physics ensemble’ (with 53 members), for a version of 
the Hadley Centre GCM. They present two pdfs of resulting climate sensitivity; one 
which assumes each parameterisation is equally likely (5-95% range of 1.9-5.3°C, 
median 2.9°C), and one which weights the parameter sets according to a measure of 
how well they reproduce features of the climate in the recent past (5-95% range of 2.4-
5.4°C, median 3.4°C). 
 
ClimatePrediction.net is a large distributed computing experiment aiming to investigate 
the full range of potential climate change, by using the spare capacity of participants’ 
PCs throughout the world to produce very large initial condition and parameter 
ensembles. At present this experiment has produced over 150000 runs of a GCM with a 
simplified (slab) ocean component (HadSM3), and results (Stainforth et al. 2005) show 
a range of climate sensitivities more than twice that used in the IPCC TAR (IPCC, 
2001). Moreover, the regional patterns of change differ, not just for versions with 
different sensitivities but for versions with similar sensitivities (Stainforth et al. 2005). 
Climateprediction.net will move to the use of a fully coupled GCM in 2006, aiming 



 

eventually to produce the most complete probabilistic climate forecast for the next 
century. 
 
The climate change work within this project has only used data from an RCM nested 
within one current and one future run of the HadCM3 GCM. The above suggests that 
the use of ensemble runs would be desirable, to obtain a fuller range of possible 
impacts.  
 
 
2.4 Downscaling from GCMs 
 
The coarse spatial resolution of GCMs, and the greater uncertainty in their outputs at 
fine temporal resolution (especially for precipitation), means that they are generally not 
appropriate for finer scale impacts modelling, like flooding. This is particularly true of 
flood modelling in the UK, where even the largest catchments are smaller than a GCM 
grid box, and where local topography is vital in determining rainfall patterns. Spatial 
interpolation can be used to represent the outputs on a finer grid (Hulme and Jenkins 
1998), but this does not incorporate any extra information.  
 
The standard method used as an alternative to the direct use of GCM data is to derive 
proportional or absolute changes in mean rainfall from the GCM data and to apply these 
changes to baseline observed climate; sometimes called the delta change method. Such 
methods have been used to examine the potential impacts of future climate change on 
flooding (Crooks et al. 1996, Prudhomme et al. 2002, Reynard et al. 2001, Schreider et 
al. 2000). The changes are usually derived from monthly GCM time-series, so methods 
of applying the changes to daily (or even sub-daily) data are required. The method 
chosen affects the outcome of the subsequent hydrological modelling quite 
significantly, and there is no right or wrong answer to how it should be done. The 
straightforward application of monthly percentage changes to all observed daily or sub-
daily rainfall totals in the month means that no account is taken of changes in 
variability, which could mean that future changes are underestimated (Arnell et al. 
2003). A variation on applying the delta change method to baseline observed rainfall is 
its application to stochastic rainfall series, generated for the current climate using a 
stochastic rainfall model (Cameron et al. 2000).  
 
As well as rainfall, the hydrological models also require input time-series of potential 
evaporation (PE). As this is not a direct output of GCMs, these data need to be 
estimated from other variables output by the GCM. A frequently used form of PE is 
Penman-Monteith (Monteith 1965), which requires temperature, wind speed, net 
radiation and humidity data, but these are not always available (although they are from 
the Hadley Centre GCM), so substitutes may have to be used. Even when the required 
variables are available, the calculated monthly PE may not seem realistic (e.g. very 
negative values), possibly due to errors resulting from the coarse resolution of the 
GCMs. 
 
Another alternative is to use the GCM-derived changes to infer changes in the 
parameters of a weather generator, which can then be used to simulate rainfall time-
series under current and future climates for use as input to continuous hydrological 
models (Schreider et al. 2000, Tung 2001). However, such methods rely on the ability 
of the random element of the weather generator to simulate a wider range of conditions 



 

than may be available in the observed record used for model development. These 
methods can also be overly-influenced by any problems in the historical record, such as 
missing data. Another option is provided by statistical downscaling, in which 
relationships are developed between large-scale, GCM-generated atmospheric variables 
and observed rainfall series (e.g. Wilby et al. 2002). These regression relationships are 
then applied, using current- and future-climate GCM data, to generate long time-series 
of rainfall under current and future conditions, assuming the relationships remain valid 
under future conditions. Muller-Wohlfeil et al. (2000) use a combination of statistical 
downscaling and a weather generator, which they term ‘expanded downscaling’, to 
generate input for a spatially distributed hydrological model for a catchment in northern 
Germany. The combined method is developed to overcome the low variability seen in 
generated time-series, particularly for rainfall, when using statistical downscaling alone, 
but still relies on current relationships being applicable in the future.  
 
The recent advent of Regional Climate Models (RCMs) nested within GCMs (dynamic 
downscaling) has greatly improved matters, by providing more regional detail without 
an unreasonable increase in computing time. In 2002 UKCIP released a new set of 
climate scenarios for the UK, based on the ~50 km grid of HadRM3 (UKCIP02). These 
scenarios are now widely used in the UK for climate change impact studies, although 
they generally apply monthly proportional changes in the climate variables (delta 
change method, as for GCMs), to investigate impacts (e.g. Reynard et al. 2004, 
Cameron 2006).  
 
To date there has been little direct use of RCM data for impact studies, despite the fact 
that RCM rainfall is significantly better than that simulated by the GCM (Durman et al. 
2001, Huntingford et al. 2003). The work for this project was, as far as we know, the 
first of its kind (Kay 2003, Kay et al. 2003, 2006a,b). The RCM used in this project is 
the same as that for UKCIP02, but with a further improvement in the temporal and 
spatial resolution (hourly precipitation data on a ~25 km grid). The PE calculated from 
this RCM data was realistic when compared with PE from MORECS (Meteorological 
Office Rainfall and Evaporation Calculation System; Thompson et al. 1982, Hough et 
al. 1997), which also uses Penman-Monteith (Figure 2.1). 
 
An advantage of downscaling using either delta change or statistical methods over 
dynamic downscaling is the ease with which alternative emissions scenarios, or those 
based on alternative GCMs, can be applied: RCMs are relatively expensive in terms of 
computer power and data storage. Statistical methods also allow the easy use of longer 
time-series, to cover rarer events (higher flood frequency return periods), or multiple 
realisations (to cover natural variability).  
 



 

 
 

 

Figure 2.1 Percentage error in mean annual PE derived from RCM data (25km 
RCM driven with European re-analysis boundary conditions for 1979-
1993), compared to MORECS PE averaged over the same period (with 
interpolation from 40km MORECS grid to 25km RCM grid). 
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The EU-funded PRUDENCE project (http://prudence.dmi.dk) produced high-resolution 
climate change scenarios for Europe (for 2071-2100) based on the use of 9 different 
RCMs nested within a Hadley Centre GCM (HadAM3H). Some of these data have been 
obtained, in order to investigate the effect of RCM uncertainty on the impact of climate 
change on flooding. PRUDENCE also used the ECHAM GCM with some RCMs, and 
applied two different emissions scenarios in some cases, meaning that GCM and 
emissions uncertainty could also be investigated to some extent.  
 
In this project, further downscaling is required from the RCM grid resolution, either 
down to the catchment scale (for the PDM) or down to the 1km UK national grid (for 
the UK G2G). This is straightforward for the required PE inputs, but precipitation is 
much more affected by topography. A method was thereby devised which made use of 
Standard Annual Average Rainfall (SAAR) data, available on a 1km grid for the UK. 
This SAAR data indicates areas which receive consistently more rainfall than others, so 
is used to distribute the rainfall from the 25km RCM grid. Any errors in the gridded 
SAAR data will then affect the downscaled RCM data. 
 
 
2.5 Hydrological model – structure 
 
There are numerous hydrological models, each of which could be used to assess the 
effect of climate change on flows. No model is perfect in its representation of reality, 
and the choice of model must be based on, for instance, study aims, performance under 
current conditions for required catchments/areas, data requirements etc.  
 
The G2G model has been developed, within this project, specifically to be a grid-based 
model that can be used within the RCM, ‘online’. As such, it must be able to be run on 
the grid of the RCM (possibly with some sub-grid scale processing). The definition of 
the flow network on the appropriate grid is therefore a vital component of the model. 
Initial development of the model was based on a hand-corrected flow network for 
Europe and the UK, but such hand correction is very time-consuming. Recently, 
methods have been investigated to automatically define flow networks at the required 
grid scale, based on Digital Terrain Model (DTM) or river data on a finer grid, and 
these are proving to be a great improvement. However, they require careful definition of 
an appropriate land-sea mask beforehand, paying particular attention to estuaries and 
their inflow points.  
 
The PDM itself has a number of variations, but spatial generalisation (relating model 
parameters to catchment properties) was improved in parameter-sparse models (Lamb et 
al. 2000), so the parameter-generalised PDM used within this project is a simplified 
version with just five catchment-specific parameters; other parameters have fixed 
values. This will sacrifice some catchment-specific performance.  
 
 
2.6 Hydrological model – parameters 
 
Hydrological model parameters that require calibration (that is, adjustment until a 
satisfactory or best fit to flow observations is achieved) will be uncertain. A different 
method of fitting (manual, semi- or fully-automatic) or using a different measure of fit 
(objective function), that concentrates on different observed features (e.g paying 



 

particular attention to high or low flows), will likely result in different calibrated 
parameter values. This is particularly true where a number of parameters require 
concurrent calibration, if there is any sort of interdependence between them; often, a 
number of parameters sets will provide almost equally good fits to observations 
(equifinality). Performance may even appear to be insensitive to the value of a 
particular parameter (non-identifiability), at least with respect to a given objective 
function. 
 
An additional factor which could affect calibration performance is data quality, for both 
input data (rainfall and potential evaporation) and calibration data (observed flows). 
Data quantity is also important, as there must be a sufficient length of data, covering a 
range of flow regimes, for calibration to be effective. The calibrated parameters will 
thus differ to some extent according to the data used for calibration. 
 
The catchment PDM used in this project runs at an hourly internal time-step, and has 
hourly observed flow and rainfall data for calibration (although some missing hourly 
rainfall was infilled using daily totals with average hourly profiles). However, the G2G 
requires gridded rainfall inputs, and so only has observed rainfall data at a daily time-
step for the UK. These data are available on a 5km grid, and are downscaled to the 1km 
model grid for the UK using SAAR data, in the same way as for downscaling from the 
25km grid of the RCM. These data are used for calibration against daily mean flows for 
specific catchments, but first have to be disaggregated in time to go into the model at 
the 15 minute internal time-step (required for numerical stability). The simulated flows 
are then averaged up to a daily time-step to fit to observed flows. This disaggregation 
and averaging means that the calibration process is less able to model flows at smaller 
time-step lengths, such as hourly, although the effect will be more pronounced on some 
catchments (i.e. smaller or quicker-responding catchments) than others (i.e. catchments 
which are larger or more baseflow-dominated).  
 
A further complication with calibration of the G2G model is that, when run as an area-
wide model, its parameters either have to be identical over the region of interest (often 
the RCM domain), or derived via other data that are available over the region (e.g. 
topography, soils, land use, geology etc.). The latter development, of ways to fully 
parameterise the G2G using other data sets, is ongoing. Consequently, the model 
currently does not work as well in some areas as others: it performs better in regions 
where flows are very much driven by topography (e.g. Wales) and worse in regions of 
high baseflow (e.g. the South East of England). The G2G’s requirement for area-wide 
parameter values can be relaxed when it is run over smaller areas, with specific 
calibration to flows of individual catchments in those areas. This results in improved 
simulations, but generally, at the present level of model development, these are still not 
as good as the simulations using the parameter-generalised PDM (Bell et al. 2004). 
 
There are various ways in which calibration uncertainty can be systematically 
investigated, although the application of these in a grid-based model such as the G2G 
would be very difficult. For the catchment PDM, with its catchment-average inputs, 
such methods are more straightforward. One method, which has been applied on the 
form of model used here, is a variation on the statistical technique of jack-knifing. This 
involves the generation of a number of different calibrated parameter sets, each based 
on slightly different data: one whole year of observed flow data is ignored in the 
generation of each set (all input data are retained, to preserve the year-to-year water 



 

balance). Thus N years of data leads to N+1 calibrated parameter sets (one based on the 
use of all the data). The model can then be run with each of these parameter sets, and 
the spread of the results used to assess calibration uncertainty (note that the calculation 
of variance is slightly altered when jack-knifing is used, with a multiplier of (N-1)/N 
rather than 1/N (Shao and Tu, 1995)). 
 
When model parameters are estimated in some way from catchment properties, rather 
than through direct calibration, there is additional uncertainty from this generalisation. 
The latest work on spatial generalisation of the PDM, for flood frequency estimation at 
ungauged sites in the UK, also looked at uncertainty from this process, to provide 
uncertainty bounds on the generalised flood frequency curves (Calver et al. 2005). 
 
 
2.7 Impact definition 
 
When a flood frequency curve is fitted to point data (whether annual maxima or peaks-
over-threshold), there is uncertainty in the fit. This is particularly true where there are 
‘outlier’ events in the point series, or where a catchment’s flood events can be generated 
by very different processes (e.g. flash floods from heavy summer storms, groundwater 
floods from sustained autumn/winter rainfall, floods from snow melt). Also, the shorter 
the data series the flood frequency curve is based on, the more likely it is to diverge 
from average conditions, and instead over- or under-estimate flood frequency due to 
flood-rich or flood-poor groupings of years that occur due to natural climate variability. 
This could be a particular problem with the delta change method of downscaling, which 
is highly dependant on the variability and ordering of events within the (relatively short) 
baseline period. In particular, the sequencing of wet and dry seasons and years could 
have a significant effect on the flood frequency. The 30-year time-slices of the RCM are 
less prone to the latter effect, but the use of data from single RCM runs, rather than 
ensembles, means that the potential presence of outliers in simulations from either the 
current or future time-slice is more problematic. 
 
In the derivation of flood frequency, peaks-over-threshold (POT) are generally preferred 
over annual maxima, as they make more use of the data. However, the use of POT 
within the G2G model is difficult, as it is not straightforward to extract these data when 
the model is being run. This is because the threshold is defined implicitly through the 
extraction of an average number of peaks per year (often three, so 3T peaks would be 
extracted from T years of flows, but not necessarily three peaks from each year), and 
also because of the application of independence criteria for peaks. As annual maxima 
are much simpler to extract, this method has been employed within the G2G. Note that, 
whichever way the peaks are extracted, the flood frequency curve fitted to them is not 
intended for extrapolation to higher return periods, but simply to interpolate and smooth 
the point data; for T years of data the limit is a return period of approximately 2T years. 
 
The impact of climate change on flood frequency is often defined by the percentage 
change in a flood peak of a given return period, or sometimes by the change in the 
return period of a given flood magnitude. Whichever way it is defined, there is no single 
figure for the impact at any location as this is likely to differ by return period (or 
magnitude).  
 



 

The impact is also dependent on the time-horizon under consideration, as would be 
expected. However, not only is the dependence not necessarily linear, but the direction 
of change may not be consistent between time-horizons: Under a given emissions 
scenario, downscaling method, hydrological model etc., some catchments can show an 
increase in flood frequency to the 2050s but a decrease by the 2080s, or vice-versa 
(Reynard et al. 2004). This is likely to be due to the balance between increased winter 
rainfall and decreased summer rainfall, with higher temperatures, meaning higher soil 
moisture deficits which have to be refilled before flooding can occur. 
 
A further complication in the definition of the impact is the time-step or averaging 
period used to extract POT or AM: the flood frequency curve based on hourly 
instantaneous flows will differ from that based on daily or monthly mean flows, and so 
too might the percentage changes in these curves from current to future times-slices.  
 
 
2.8 Relative sizes of uncertainties 
 
No studies so far have propagated the full range of sources through to climate change 
impacts on flooding and compared the relative sizes. The work of Reynard et al. (2004) 
includes emissions uncertainty (4 UKCIP02 scenarios) and downscaling uncertainty 
(delta change, statistical and RCM), and finds that emissions uncertainty is less 
important than downscaling uncertainty. However, several studies have looked at the 
effect of different sources of uncertainty on precipitation, and greater uncertainties in 
precipitation might be expected to lead to greater uncertainties in flows. In addition, 
several studies have looked at the effect of some sources of uncertainty on the impact of 
climate change on water resources (monthly mean flows). 
 
Rowell (2004) used PRUDENCE data to compare the effect of different sources of 
uncertainty (emissions scenario, GCM, RCM, and initial condition ensemble) on 
changes in seasonal surface air temperature (SAT) and precipitation over the UK. For 
seasonal SATs it was found that uncertainty from GCM formulation was always the 
largest, followed by emissions, then RCM formulation. For precipitation it was found 
that the relative contribution of the four sources was more equal; although that from the 
emissions scenario was generally the lowest, the ordering of the uncertainties from the 
other three sources varied from season to season. It is reassuring that all the experiments 
consistently predict increased winter rainfall and decreased summer rainfall, but there is 
less change, and less consistency in direction of change, for spring and autumn rainfall. 
The changes in autumn rainfall, in particular, could be crucial for determining changes 
in (winter-dominated) flooding in the UK. 
 
However, it should be noted that uncertainty from GCM formulation is unlikely to 
represent the full range of possibilities in the latter work, as data from only two different 
GCMs (with the same nested RCM) was available for analysis. Similarly, emissions 
uncertainty will be underestimated as only data from the A2 and B2 scenarios was 
available. Studies of changes in global mean rainfall from different GCMs and 
emissions scenarios suggest that GCM-uncertainty dominates emissions uncertainty 
(Jenkins and Lowe 2003). 
 
Recent work looking at the uncertainty in the impact of climate change on water 
resources (monthly mean flows) in the UK suggested that GCM uncertainty (from 3 



 

GCMs) was the largest source of uncertainty, with downscaling uncertainty also 
significant. Hydrological uncertainty was found to vary significantly between 
catchments, so could be more significant for some than others. Emissions uncertainty 
was not found to be significant, but only two emissions scenarios (A2 and B2) were 
used and the time-slice under consideration was the 2020s; emissions uncertainty will 
be higher for later time-slices, such as the 2080s used in this project. The research was 
based on 13 catchments spread across Great Britain, modelled using a version of the 
PDM slightly different to that used in this project (Prudhomme et al. 2005). 
 
Wilby (2005) also investigated the impact of climate change on water resources 
(monthly mean flows), using a conceptual water balance model for the Thames 
catchment, particularly looking at the effect of model uncertainty. He found that 
calibration uncertainty was comparable in size to emissions uncertainty (even for the 
2080s), although only two emissions scenarios (A2 and B2) were used, which do not 
span the full range. GCM uncertainty was not assessed.  
 
 
2.9 Validity of ‘Current to Future’ assumptions  
 
Listed below are some aspects which are assumed to be the same, when using future 
scenarios, as for the current climate. 
 

• GCM parameterisations. 
• Downscaling from GCMs: 

o statistical downscaling model (fit of GCM features to rainfall), 
o RCM parameterisations, 
o SAAR downscaling, for hydrological model rainfall inputs. 

• Hydrological model: 
o Parameter values, 
o Generalisation relationships. 

 
Some of these it may seem reasonable to assume are constant, as they are based on 
physical responses (e.g. those due to soil type, geology etc) that should not change 
significantly. However, some things may change because of the change in climate. For 
example, if climate change means a change in the tracking of weather fronts then the 
relative SAARs of different areas may change. However, this should have a relatively 
minor affect on the SAAR downscaling given the grid scale, unless many weather fronts 
were to come from a very different direction. 
 
Another example is that land cover may change, due to the dieback of certain plants that 
cannot cope with the increased temperatures and/or changed rainfall patterns or the need 
to grow more resilient crops. This could lead to changes in runoff, and so hydrological 
model parameters may need to be changed. However, the fitting of relationships 
between catchment properties such as land-use and model parameters does not 
necessarily provide a straightforward way of making such an adjustment. This is 
because some properties could be acting as surrogates for other features affecting the 
hydrological regime. For instance, in the UK there is a high (negative) correlation 
between proportion of arable land and mean catchment altitude, which is in turn 
correlated with average rainfall and mean catchment slope.  
 



 

 
2.10 Model performance under future conditions  
 
One relatively consistent feature of the predictions of different GCMs is the increased 
seasonality of rainfall, with wetter winters and drier summers particularly over southern 
England. This means that the models must be able to cope with quick recovery from 
high soil moisture deficits. Checking this recovery on a historical period of similar 
strong seasonal differences thus provides reassurance about response under future 
climates. Similarly, response could be specifically assessed during historical periods of 
other extremes that may be predicted to occur more frequently in the future. 
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Figure 2.2 Examples of simulated recovery (during late 1976) from the 1975/76 
drought (red), compared to observed flows (black), for two catchments: 
a) 39007 (the Blackwater at Swallowfield) modelled with the G2G 
model, and b) 42012 (the Anton at Fullerton) modelled with the PDM. 

 
 
The driest conditions for much of the UK during the standard baseline period of 1961 to 
1990 occurred in the summer of 1976, following on from the low rainfalls during the 
winter of 1975/76. The drought period ended very rapidly in the autumn of 1976. 
Inspection of model response during periods such as this is thus recommended. 
Examples of simulated recovery from drought during late 1976 are shown in Figure 2.2 
for the G2G and PDM models. The performance for each model suggests that 
simulations of flood events following droughts under future climates (where conditions 
may not be more extreme than in 1976, but such events may occur more frequently) are 
more likely to over- rather than under-estimate subsequent runoff. This is consistent 
with the performance of a further model used by the group for modelling climate 
change impacts, the semi-distributed model CLASSIC (Reynard et al. 2004). 



 

 
If the future change in hydrological regime for a catchment is beyond that available in 
its historical data, it may be possible to find a so-called analogue catchment to 
investigate. That is, a catchment which is relatively similar (in terms of physical 
catchment properties) to the catchment of interest, and whose historical record does 
contain events of the type that that catchment may experience in future. Investigating 
model performance during particular events for the analogue catchment may then give 
confidence in performance for the catchment of interest under future conditions. 
 



 

3 EXAMPLES OF THE EFFECT OF UNCERTAINTY ON FLOOD 
FREQUENCY ESTIMATION 

 
This section presents examples of each of the sources of uncertainty, for two catchments 
in England. These catchment are 40005 (the Beult at Stile Bridge, in the South East) and 
74001 (the Duddon at Duddon Hall, in the North West), and they are shown on the map 
in Figure 3.1. Some details of the catchment are given in Table 3.1. Both catchments are 
essentially rural, but are very different in terms of area, rainfall regime and topography 
(Figure 3.2). These factors, as well as location (amongst other things), are likely to 
mean a differing impact of climate change. 
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Figure 3.1 Map showing the locations of the two example catchments. 



 

Table 3.1 Details of the two example catchments. 

Catchment 
number 

Catchment 
area (km2) 

Altitude 
range (m) 

Mean  
altitude 

(m) 

Baseflo
w 

index 

Mean 
flow 

(m3s-1) 

SAAR61-90
(mm) R 

40005 277 13 – 161 45 0.24 2.1 690 0.34

74001 86 17 – 799 315 0.28 4.8 2265 0.81

SAAR61-90 = standard annual average rainfall for 1961-1990, R = mean annual runoff / mean 
annual rainfall. 
 
 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 3.2 Topography of the two example catchments. 
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3.1 Future greenhouse gas emissions 
 
Figure 3.3 shows examples of the effect of emissions uncertainty on flood frequency 
estimation, using the four UKCIP02 emissions scenarios for the 2080s (see Section 2.1). 
The scenarios are applied by adjusting baseline (hourly) rainfall and PE data using mean 
monthly percentage changes derived from each of the UKCIP scenarios (see 
Section 2.4). The results show that uncertainty due to emissions is very low for 
catchment 40005, but more important for catchment 74001. However, it should be 
recalled that three of the UKCIP02 scenarios are pattern-scaled from the ensemble mean 
of the medium-high scenario, and that even these four scenarios do not cover the full 
IPCC range. 
 
 
a) 40005 

 
b) 74001 

Figure 3.3 Examples of flood frequency uncertainty from emissions uncertainty, 
showing results for the UKCIP02 High (red), Medium-high (orange), 
Medium-low (green) and Low (blue) scenarios for the 2080s. The 
current flood frequencies from observed flows (black dotted line) and 
simulated with observed rain (black dashed line) are also shown. 
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3.2 GCM – structure 
 
Figure 3.4 shows examples of the effect of GCM uncertainty on flood frequency 
estimation, under the A2 emissions scenario for the 2080s. The 5 GCMs represented 
here are HadCM3 (UK Hadley Centre), CSIRO-Mk2 (Australia), CGCM2 (Canada), 
ECHAM4 (Germany) and CCSR (Japan) (but there are others). The delta change 
method is used to apply monthly percentage changes in rainfall and PE, derived from 
each of the GCMs, to the baseline hourly data for the catchments. The results show that 
GCM uncertainty could be quite important for both catchments, although the GCM 
resulting in the highest increase in flood frequency for both catchments, CCSR, is 
generally considered to be quite extreme in terms of the increase in winter rainfall that it 
redicts. The ordering of the effect of other GCMs differs between the two catchments. 

 
) 74001 

Figure 3.4 Examples of flood frequency uncertainty from GCM structure 
uncertainty, showing results for 5 GCMs (2080s, A2 emissions 
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scenario); HadCM3 (green), CSIRO-Mk2 (yellow), CGCM2 (orange), 
ECHAM4 (red) and CCSR (purple). The current flood frequencies 
from observed flows (black, open circles/dotted line) and simulated with 
observed rain (black, filled squares/dashed line) are also shown. 



 

 
3.3 GCM – initial conditions 

 
emonstration of natural climate variability, which is discussed further in Section 3.7.1. 

 
3.4 Downscaling from GCMs 
 
3.4.1 Delta change vs. direct use of RCM data 
 
Figure 3.6 shows examples of the effect of downscaling uncertainty on flood frequency 
estimation, under the A2 emissions scenario for the 2080s. Results are shown for four 
different downscaling methods, the first three of which are based on the delta change 
method and the last of which uses data directly from an RCM.  
 
Two of the delta change methods use different data sources to determine the monthly 
percentage changes that are applied; the first uses GCM data while the second uses 
RCM (UKCIP02) data. These changes are applied to the baseline hourly rainfall and PE 

rough the simple application of the monthly percentage changes to each hour of 
ata according to month. However, this does not allow for more complex 

changes in rainfall distributions. Reynard et al. (2004) developed a version of the delta 
change method which aims to match changes in daily rainfall intensity as well as 
percentage changes in monthly means (PE is still adjusted simply through changes in 
monthly means), and it is this which is applied in the third version of the delta change 
method, again using changes derived from UKCIP02 RCM data. The final of the four 
methods uses data directly from an RCM (25km HadRM3H) to derive rainfall and PE 
inputs for the hydrological model (Kay et al. 2003). 
 
For the two catchments used here, the three delta change methods show very similar 
results, with a decrease in flood frequency at higher return periods for catchment 40005, 
and an increase in flood frequency at all return periods for catchment 74001 (Figure 
3.6a-c). It is more difficult to compare these to the results using RCM data directly, as 
bias means that it is necessary to use both current (1961-1990) and future (2071-2100) 

an observed
two catchm

 
Figure 3.5 shows examples of the effect of GCM initial condition uncertainty on flood 
frequency estimation, under the A2 emissions scenario for the 2080s. Results are shown 
for the HadRM3P RCM nested within a three-member initial condition ensemble of the 
HadAM3P GCM (data from PRUDENCE project). The delta change method is used to 
apply monthly percentage changes in rainfall and PE, derived from each of the RCM 
runs, to the baseline hourly data for the catchments. The results suggest a greater effect 
of GCM initial condition uncertainty for catchment 40005 than for catchment 74001. 
The ordering of the effect of the three ensemble members differs between the two 
catchments, although the third ensemble member generally has the greatest effect on 
both (at least at lower return periods). GCM initial condition uncertainty is essentially a
d
 

th
baseline d

time-slices of RCM data, and look at changes between these rather than changes from 
 flood frequency curve (Figure 3.6d). However, the pairs of curves for the 

ents show similar decreases for 40005 and increases for 74001. 



 

 
a) 40005 

 
b) 74001 

 

Figure 3.5 Examples of flood frequency uncertainty from GCM initial condition 
uncertainty (2080s, A2 emissions scenario), showing results for the 
HadRM3P RCM nested within three ensemble members of the 
HadAM3P GCM (red, green and blue). The current flood frequencies 
from observed flows (black, open circles/dotted line) and simulated with 
observed rain (black, filled squares/dashed line) are also shown. 
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Figure 3.6 Examples of flood frequency uncertainty from downscaling uncertainty 

re also 
shown. 

(2080s, A2 emissions): a) delta change from HADCM3 GCM (orange), 
b) delta change from UKCIP02 RCM (orange), c) extended delta 
change from RCM (orange), and d) direct use of hourly RCM (25km 
HadRM3H) data (1970s – blue, 2080s – green). The current flood 
frequencies from observed flows (black, open circles/dotted line) and 
simulated with observed rain (black, filled squares/dashed line) a



 

 
3.4.2 RCM structure 
 
Figure 3.7 shows examples of the effect of RCM uncertainty on flood frequency 
estimation, using PRUDENCE data for 5 different RCMs nested within the same GCM 
(HadAM3H). The 5 RCMs represented here are from the Hadley Centre (UK), ICTP 
(Italy), DMI (Denmark), ETH (Switzerland) and KNMI (Netherlands). [Note that only 5 
of the 9 PRUDENCE RCMs are included here as data from the others are not available, 
at the time of writing, due to PRUDENCE disc problems.] 
 
The results shown are based on the use of the simple delta change method, with 
monthly percentage changes in rainfall derived from the RCMs (2080s, A2 emissions 
scenario) and applied to the baseline catchment rainfall. Due to difficulties in deriving 
PE in a consistent way for different RCMs (because of the high data requirements, in 
terms of variables needed for the Penman-Monteith method used for observed PE), the 
same change in PE has been applied for all RCMs: that derived from the UKCIP02 
Medium-High emissions scenario. 
 
For each of the two catchments, the results milar pattern of 
change, with an increase at lower return per
for catchment 40005, whilst for catchment 74001 there is an increase at most return 
periods which is larger for higher return periods. However, the ordering of the impacts 
from the 5 RCMs is different for each catchment; the ICTP RCM shows the greatest 
effect for catchment 40005 but the ETH and KNMI RCMs shows the greatest effect for 
catchment 74001. Similarly, the DMI RCM shows the least effect for catchment 40005 
while the Hadley RCM shows the least effect for catchment 74001. 
 
 
3.5 Hydrological model – structure 
 
Figure 3.8 compares the results for the two example catchments from the two models 
being used within this project, G2G and PDM, at three return periods. Results are from 
the direct use of hourly RCM (25km HadRM3H) data for current (1970s) and future 
(2080s, A2 emissions scenario) timeslices.  
 
The impact on flood frequency is shown for the G2G model as the change at each river 
point on the 1km flow network, and the change for the catchment PDM is overlaid as a 
box, with the catchment boundary also shown. The two models compare very well, and 
show the same pattern of a decrease in flood frequency change with return period for 
catchment 40005, and a more uniform flood frequency change with return period for 
catchment 74001.  

 for the 5 RCMs show a si
iods and a decrease at higher return periods 

 



 

 
a) 40005 

 
b) 74001 

 

Figure 3.7 Examples of flood frequency uncertainty from RCM uncertainty, 
showing results for 5 RCMs (2080s, A2 emissions); Hadley Centre 
(green), ICTP (yellow), DMI (orange), ETH (red) and KNMI (purple). 
The current flood frequencies from observed flows (black, open 
circles/dotted line) and simulated with observed rain (black, filled 
squares/dashed line) are also shown. 
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Figure 3.8 Examples of flood frequenc
structure uncertainty,
lines) comp
three return periods. Both models have
data for current (1970
and the percentage change in flood
periods.  

 
 

y uncertainty from hydrological model 
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 frequency calculated at three return 



 

 
3.6 Hydrological model – parameters 
 
Figure 3.9 shows examples of the effect of parameter uncertainty, in the catchment 
PDM, on flood frequency estimation, under the A2 emissions scenario for the 2080s. 
Jack-knifing has been used to obtain a number of (automatically) calibrated parameter 
sets for each catchment, with each new parameter set obtained by leaving out one year 
of flow data (all input data are retained, to maintain the water balance). Thus there are 
17 jack-knifed parameter sets for each catchment, plus the original (manually) 
calibrated parameter set. Each set has then been used with the baseline input data and 
with inputs adjusted by the delta change method (UKCIP02 Medium-High 2080s).  
 
For both the baseline and future period, error bars are constructed for the flood 
frequency curves at specific return periods by estimating the variance (σ2) from the 
values of the 17 jack-knifed flood frequency curves at that return period. The 95% error 
bars can then be plotted as µ±2σ, where µ is the mean of the jack-knifed values. 
However, jack-knife theory requires that the variance be calculated slightly differently 
to a usual sample, and this inflates the size of the error bars. Figure 3.9 shows the jack-
knifed flood frequency curves, with error bars at specific return periods determined by 
both the standard variance (solid lines) and jack-knife variance (dotted lines). The same 
principle is used to construct the error bars for the percentage change in flood frequency 
at different return periods, after calculating changes between each pair of jack-knifed 
flood frequency curves (i.e. those using the same jack-knifed parameter set). 
 
Note that the jack-knifed parameter sets are produced using an automatic method of 
calibration, and only include the calibration uncertainty due to data availability, not that 
due to equifinality for example. This is why the range of results from the jack-knifed 
parameter sets does not always include the flood frequency curve resulting from the 
original calibrated parameter set, as this was derived through manual calibration. Thus 
the full effect of parameter uncertainty on flood frequency estimation is larger than that 
represented here. In particular, for catchment 40005 the jack-knifed parameter sets all 
show a small increase in flood frequency at higher return periods and a small decrease 
at lower return periods (Figure 3.9a), whereas the original calibrated parameter set (with 
the same emissions scenario, downscaling method etc.) gave a small decrease in flood 

equency at higher return periods and a small increase at lower return periods (Figure 

 

fr
3.6b). The flood frequency for catchment 74001 shows a very consistent increase at all 
return periods, for all calibrated parameter sets. 



 

a) 40005 

 

Figure 3.9 Examples of flood frequency uncertainty from calibration uncertainty. 
The solid coloured lines show results for each jack-knifed parameter set 
for the baseline period (top graph of each three) and the future period 
(middle graph of each three; UKCIP02, 2080s, Medium-High 
emissions). Also shown for each period are the curves using the original 
calibrated parameter sets (dashed lines and points). (Continued on next 
page.) 
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b) 74001 
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Figure 3.8 (continued.) The bottom graph of each three shows the range of 
percentage changes between each current/future pair (i.e. from the 
same model parameter set). Two sets of error bars are shown on each 
graph, at return periods of 1, 2, 5, 10, 20 and 50 years. The inner error 
bars use the standard estimate of variance, whilst the outer ones (dotted 
lines) use the jack-knife estimate of variance. 
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 Impact definition 

 Natural variability 

A simple way of demonstrating the potential effect of natural climate variability
flood frequency is to resample rainfall series, to produce a large number of new rainfall 
series. Monthly resampling involves the formation of new time-series through the
random selection of rainfall, month by month, from the original series. For exam

 a baseline series for January 1985 - December 2000, a new series would be created
by first selecting a January from any of those in the baseline period, to represent 
January 1985, then selecting any February to represent February 1985, and so on until a 

s of the same length as the original is created. The months are selected wit
replacement, so that the rainfall for the same month could be repeated in any one of the
resampled series, and some months may not be used at all. 

Resampling by month or season (3-month blocks) limits the effect of time-correlations 
in rainfall series. It does not allow for variation in the short term extremes (e.g. 
hourly/daily maxima etc.), but does allow variation in longer term accumulations by, for 
instance, meaning that a wet winter can potentially follow a wet autumn. Resamp
under the current climate allows the representativeness of the original baseline series to 
be assessed, by comparison against the median and bounds from the set of resamp
series. Resampling under the current and future climates allows the potential range due 
to natural variability under the current climate to be compared to the range of changes
that might be expected under climate change.  

e form of stochastic rainfall model could be used to generate a large numbe
all time-series for the current or future climates, which would allow for variation in 

shorter-term extremes. However, such use would require significant checking of the 
performance of the rainfall model under current conditions, in terms of its ability to 

ulate extremes as well as its replication of the seasonal cycle etc. Initial condition 
ensembles of GCMs (Section 3.3) also give a demonstration of natural variability, 
including the possibility of variation in shorter term extremes, but it is

putationally expensive to run large GCM ensembles. Resampling thus represents a 
ple proxy for the effect of natural variability. 

Figure 3.10 shows the potential effect of natural variability in the current and future 
ates, for the two example catchments. The future climate uses the simple delta 

change method to adjust the baseline rainfall and PE according to the UKCIP
m
have been produced for both the current and future climate, with resampling in 3-month 
blocks, and the model run with each new rainfall series. The median flood frequency 

ts upper and lower 90% bounds have then been calculated for each period. 
 suggest that natural variability could be significant for both catchments, but 
atchment 40005, particularly at higher return periods (Table 3.2).  



 

 
a) 40005 
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Figure 3.10 Examples of flood frequency uncertainty from natural variability, 
showing results from resampled baseline (blue) and future (green; 
2080s, UKCIP02 medium-high emission scenario) rainfall. The median 
flood frequency (solid line) and the upper and lower 90% bounds 
(dotted lines) are shown for each period, from 100 resampled series (3-
month blocks). The simple delta change method is applied for the 
future scenario. The current flood frequencies from observed flows 
(black, open circles/dotted line) and simulated with observed rain 
(black, filled squares/dashed line) are also shown. 
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Table 3.2 Description of the resampling results for the current and future periods, 
for the median flood frequency curve and the upper and lower 90% 
bounds. For the ‘Current’ period the percentage differences are shown 
from the flood frequency simulated with the original baseline rainfall. 
For the ‘Future’ period the percentage differences are shown from the 
median current flood frequency. 

 
Return Period 

Catchment 
Period 

(change 
from…) 

Change (%) 
to… 2 5 10 20 50

90% lower  -16.0 -18.4 -21.9 -27.1 -33.5
median -1.7 -0.8 -1.3 -1.3 -1.2
90% upper 12.9 13.2 14.5 14.0 16.9

Current  
(from 
simulated 
baseline) size of range 

(upper-lower) 28.9 31.6 36.4 41.1 50.4

90% lower  -10.7 -15.7 -18.3 -23.7 -31.1
median 2.1 -2.1 -4.7 -7.3 -13.2
90% upper 15.5 10.7 9.6 8.5 8.8

40005 

Future 
(from 
median 
current) size of range 

(upper-lower) 26.1 26.4 27.9 32.2 39.9

90% lower  -12.7 -15.2 -15.3 -16.5 -19.5
median 0.0 -1.0 -1.9 -2.4 -4.3
90% upper 8.2 7.1 6.3 6.1 7.3

Current 
(from 
simulated 
baseline) size of range 

(upper-lower) 20.9 22.3 21.5 22.6 26.7

90% lower  -3.9 -3.5 -2.4 -0.4 1.1
median 8.0 11.0 14.9 18.4 25.8
90% upper 19.0 22.5 25.4 29.0 40.8

74001 

Future 
(from 
median 
current) size of range 

(upper-lower) 22.9 25.9 27.8 29.4 39.7

 
 
The smaller effect for catchment 74001 could be due to the fact that the resampling 
method only allows variation in longer term extremes, as the longer memory of larger, 
flatter catchments, like 40005, means that variation in longer term extremes has a 
greater effect on them than on more responsive (small, steep) catchments, like 74001. In 
ontrast, variation of shorter term extremes would have a greater effect on more 

The effect 
natural var
upwards co
40005 are 
both catchm
experience 
 

c
responsive catchments. 
 

of climate change could be much more significant, in comparison with 
iability, for catchment 74001 as its ‘Future’ bounds are consistently shifted 
mpared to the ‘Current’ bounds, whereas the ‘Future’ bounds for catchment 
almost completely contained within its ‘Current’ bounds (Figure 3.11). For 

ents though, natural variability could be a significant factor in the future 
of flooding (the potential, versus the actual).  



 

 
a) 40005 

 
b) 74001 

llustrating the range of natural variability in the current 

 the median current flood 
frequency.  

 

igure 3.11 Graphs iF
climate (blue) and in potential future changes (green), for five return 
periods (2, 5, 10, 20 and 50 years). The median (plus signs) and the 90% 
upper and lower bounds (bars) are shown for each (from Table 3.2). 
Resampling in 3-month blocks has been used as a proxy for natural 
variability, with the future climate produced using the simple delta 
change method and the UKCIP02 medium-high scenario for the 2080s, 
and the future change is calculated from
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The natural variability in future changes as represented by the 3-member initial 
ensemble of the Hadley Centre GCM/RCM (Section 3.3) is generally well-

contained within that represented by resampling in 3-month blocks. The exception is 

 
 

 

 

r all of the previous results) compared to those from daily mean flows, based on the 
of hourly RCM data (1970s to 2080s under the A2 emissions scenario) in the 

ment, the hourly and daily changes have slightly 

 
 

condition 

lower return periods (< 10 years) for catchment 40005, where the impact from one of 
the three runs from the initial condition ensemble is slightly above the upper 90% bound 
from the resampling. 

3.7.2 Return period and time-scale 

The variation of impact on flood frequency according to return period, for the two 
example catchments, is illustrated in Figure 3.12 for the range of scenarios and methods 
presented in Sections 3.1-3.6. For catchment 40005 there is a consistent reduction in the 
flood frequency percentage change with increasing return period, with an increase in 
flood frequency at lower return periods turning into a general decrease at higher return 
periods. For catchment 74001 the majority of the percentage changes are positive, and 
increase with increasing return period. 

Table 3.3 shows the percentage change in flood frequency based on hourly flows (used 
fo
direct use 
catchment PDM. For each catch
different magnitudes, but show the same pattern of decrease with increasing return 
period.  
 
 

Table 3.3 Percentage change in flood frequency (1970s to 2080s, A2 emissions
scenario) from hourly flows and from daily mean flows, using RCM
data directly in the catchment PDM. 

 
Return Period Catchment Timescale 2 5 10 20 50

hourly 6.8 -0.6 -6.7 -13 -21.240005 
daily 5.8 3.1 -0.2 -3.8 -8.7

hourly 18.4 15.3 12.4 9.3 4.974001 
daily 15.3 12.0 8.6 4.7 -0.9

 
 
An analysis of the impact of climate change on flows at a variety of time-scales could 

significant 
2000 were 
of maximum
 

be important, as it could be that there is little discernible effect at one time-scale but a 
effect at another (Kay et al. 2004). For instance, the flood events of Autumn 
more notable in terms of flows averaged over longer durations than in terms 

 (instantaneous) flows. 



 

a) 40005 

 
b) 74001 

 

Figure 3.12 Graphs of the variation in the impact of climate change on flood 
frequency, from various sources (‘ic’ is ‘initial condition’), for five 
return periods (2, 5, 10, 20 and 50 years). The impact is shown as the 
percentage change in flood frequency from the current period to the 
2080s. The potential range of current natural variability is also shown 
for comparison (from Table 3.2), by bars at the median and at the 90% 
upper and lower bounds. 
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o the method of downscaling from the GCM (including RCM structure). The 
y from hydrological model structure is higher for catchment 40005 than for 

ent 74001 probably because of the G2G’s lower performance for catchments 

3.8 Relative sizes of uncertainties 
 
Figure 3.12 also illustrates the range of impacts due to uncertainty from the various 
sources. The ranges overlap to a good extent, but the sizes vary quite considerably. This 
is illustrated in Figure 3.13, which shows bar charts of the impact range sizes based on 
the data points plotted in Figure 3.12.  
 
When all of the data points are included, GCM structure is by far the dominant source 
of uncertainty (Figure 3.13a). However, when the data points for the most extreme 
GCM (CCSR) are excluded, the uncertainty due to GCM structure becomes more 
similar in size to that from other sources of uncertainty (Figure 3.13b). Although the 
uncertainty from hydrological model parameters is seemingly the smallest in all cases, 
the ordering of the other sources varies by return period and between the two 
catchments. 
 
Table 3.4 shows the ordering of the sources when the size of the impact range is 
averaged over the 5 illustrated return periods (when the CCSR GCM is excluded, Figure 
3.13b; ‘GCM structure’ is promoted to number 1 in the list if this GCM is included). 
The more dominant sources of uncertainty in this case appear to be those related to the 
GCM or t

ncertaintu
catchm
with a less topographically-driven flow regime, particularly with the area-wide 
parameters used here (rather than catchment-calibrated parameters).  
 
Section 3.7.1 showed, through the application of a simple resampling technique, that 
natural variability could be important for both of the example catchments, although 
potentially more important for catchment 40005. The size of the potential range of 
natural variability under current conditions is actually comparable with the larger ranges 
from the various sources of climate change uncertainty: natural variability would appear 
at the top of the lists in Table 3.4, although the full range of uncertainty from GCM 
structure exceeds that of natural variability. The positioning of the future changes 
relative to the bounds from current natural variability is the crucial factor though, as is 
illustrated in Figure 3.11 and Figure 3.12. 
 
 

Table 3.4 The ordering of the sources of uncertainty for the example catchments, 
based on the size of their impact ranges averaged over the 5 return 
periods (excluding the CCSR GCM). 

 
 40005 74001 
1 GCM ensemble (ic) RCM structure 
2 GCM structure GCM structure 
3 Hydro' structure Downscaling 
4 RCM structure Emissions 
5 Downscaling GCM ensemble (ic) 
6 Emissions Hydro' structure 
7 Hydro' parameters Hydro' parameters 



 

 
 
      40005      74001 
a) 

  
b) 

  
 

 

Figure 3.13 Bar charts showing the relative size of the impact range from the 
various scenarios and methods, for five return periods, a) for all the 
possibilities presented previously, and b) after excluding the results for 
the most extreme GCM (CCSR). 

 
 
It should be noted that the results presented here are preliminary, in that they do not 
cover the full range of possibilities:  

• The range of emissions scenarios used (from UKCIP02) is not the full IPCC 
range (and the A1F1, B1 and B2 scenarios are scaled from the ensemble results 
for the A2 scenario). 

• Only 5 GCMs are used to represent GCM structure uncertainty. More are 
available, but there are difficulties in the consistent calculation of Penman-
Monteith PE for these. We hope to investigate the use of simpler PE formulae 
soon. 

• Only 5 RCMs are used to represent RCM structure uncertainty. More are 
available from PRUDENCE, but at the time of preparation of this report there 
are difficulties downloading data due to PRUDENCE disc problems.  

• The PRUDENCE RCM rainfall changes have been used with UKCIP02 PE 
changes, due to the aforementioned difficulty of calculation of Penman-
Monteith PE. 

emissions  GCM structure  GCM ensemble (ic)  
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• Only two models are used to represent hydrological model structure uncertainty, 
particular difficulty in flatter regions. Ongoing 

development of the G2G should improve its performance in such regions. 

is used as a simple proxy for natural variability. 
Use of methods which allow for variation in shorter term extremes could lead to 

bout the importance of different sources of uncertainty; overall, for 
ifferent types of catchment, or for different locations in the country. However, the 

one of which (the G2G) has 

• The uncertainty from hydrological model parameters is being represented 
through the use of jack-knifed calibrated parameter sets, which cover the 
uncertainty from data but not from equifinality etc. 

• Resampling in 3-month blocks 

wider ranges of natural variability, particularly for more responsive catchments 
(like 74001). 

The inclusion of more possibilities would lead to more robust conclusions, but not 
necessarily to wider ranges of impacts. 
 
In addition, more catchments would need to be studied to determine anything 
conclusive a
d
ordering here is consistent with the conclusions of Prudhomme et al. (2005) for the 
uncertainty in the impact of climate change on water resources (based on investigations 
for 13 catchments in Britain). 
 
 



 

4 DISCUSSION AND CONCLUSIONS 

 in climate chan  studies, with 

Various assumptions made when modelling 
be made on model performance for such app
Examples were then given of the single-pr
through to their range of impacts on flood 
Multi-propagation (that is, propagation of mo
was not attempted. 
 
The results from single-propagation of each of e sources of uncertainty suggested that 

c
s is due to the extremely large increases 

GCMs used (CCSR). Omitting the results f
uncertainty becoming more significant, alt
modelling of the future climate was generally s
or hydrological modelling. Natural variability co
 
The results presented here are not conclusive as som
not fully represented. Additions would not n
from any source, but would make the results m re robust. In addition, more catchments 

consistently m n types of 
catchme
 
Comparison of the uncertainty from different sources can help to suggest where more 

reduction w
time how e
of emission

(ipc
PRUDE
 
 

 
This report discussed sources of uncertainty ge impact
particular reference to the impact of climate change on flood frequency in Britain. 

future time-horizons, and checks that could 
lications, were also briefly discussed. 

opagation of the sources of uncertainty 
frequency, for two catchments in England. 

re than one source of uncertainty at once) 

th
e largest source of uncertainty. However, un

thi
ertainty from GCM structure was by far th

in winter rainfall predicted by one of the 5 
or this GCM led to other sources of 

hough uncertainty from sources relating to 
till larger than that relating to emissions 
uld also play a significant role.  

e of the sources of uncertainty are 
ecessarily increase the range of uncertainty 

o
would need to be assessed to decide whether some sources of uncertainty are 

ore or less important, or are more/less important for certai
nt or for certain areas of the country. 

research effort should be placed, in order to try to reduce uncertainty. However, such a 
ill not always be possible. For example, we cannot know at this point in 

missions will evolve over the next century. Knowledge on the potential path 
s could improve with time though. 
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