

Report

Salmela, M. J.; Cavers, S.; Cottrell, J.; Ennos, R. A.. 2008 *Do seed zones conserve adaptive variation? Testing the adaptive significance of seed zones in Scots Pine. Nine month progress report for Scottish Forestry Trust. June 2008.* Edinburgh, CEH / Forest Research / University of Edinburgh, 8pp. (CEH Project Number: C03154)

Copyright © 2008, NERC/Centre for Ecology & Hydrology

This version available at http://nora.nerc.ac.uk/3261/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the authors and/or other rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This report is an official document prepared under contract between the customer and the Natural Environment Research Council. It should not be quoted without the permission of both the Centre for Ecology and Hydrology and the customer.

Contact CEH NORA team at <u>nora@ceh.ac.uk</u>

DO SEED ZONES CONSERVE ADAPTIVE VARIATION?

TESTING THE ADAPTIVE SIGNIFICANCE OF SEED ZONES IN SCOTS PINE

Nine month progress report for Scottish Forestry Trust June 2008

M. J. Salmela*⁺, S. Cavers⁺, J. Cottrell** & R. A. Ennos*

*Institute of Evolutionary Biology University of Edinburgh King's Buildings Mayfield Rd. Edinburgh EH9 3JU

⁺ Centre for Ecology and Hydrology, Edinburgh Bush Estate Penicuik Midlothian EH26 0QB

> **Forest Research Northern Research Station Roslin Midlothian EH25 9SY

Objectives of the project:

The project will use a combination of molecular markers and growth experiments to assess the effectiveness of designated seed zones in Scots pine for the conservation of adaptive variation, by answering the following questions:

- 1. Do designated seed zones accurately reflect patterns of neutral and adaptive variation in Scots pine?
- 2. Is local seed better adapted to the local environment, both now and in the future, than seed from further afield?

Progress from September 2007 to June 2008

 Seed collection from populations of Scots pine across the native range in Scotland Between January and March 2007 seed collections of *Pinus sylvestris* were made by Dr. Glenn Iason and colleagues from the Macaulay Institute from 21 native pine populations located in all seven of the designated native pine zones (Appendix I).
 Within each population four maternal trees were sampled for cones to yield at least 50 viable seeds per maternal tree. Maternal trees were chosen to cover the full elevational range within the relevant pinewood.

2. Establishment of seedling provenance/progeny trial

Approximately 100 seeds were extracted from cones collected from each maternal tree, germinated and potted up in late spring 2007. The resulting plants were used to establish a provenance/progeny seedling trial located in a cool glasshouse at CEH Edinburgh in summer 2007. The trial comprises 84 families, each of 40 offspring, derived from the 21 populations of native pine from which seed was originally collected. The trial is arranged as a randomised block design with 40 blocks each containing one individual from each of the 84 families (a total of 3360 seedlings).

3. Measurement of adaptive character variation in provenance/progeny trial

Preliminary investigation into the patterns of adaptive genetic variation in *P. sylvestris* has concentrated on the character of date of bud flushing. Seedlings were scored twice a week from 25/3/08 to 9/5/08 to determine the date at which the terminal bud flushed. Table 1 shows a simple ANOVA or the results which indicates that time of bud flush shows significant variation both among populations and among families within populations.

Source of Variation	d.f.	Mean Square	Significance
Blocks	39	171	P<0.001
Population	20	1103	P<0.05
Family(Population)	63	608	P<0.01
Within Family	3120	50	

Table 1. Analysis of variation for date of bud flushing in a seedling

 provenance/progeny trial containing 21 populations of *P. sylvestris* from the native

 range within Scotland and grown in a cool glasshouse near Edinburgh.

4. Estimation of heritability of time of bud flush variation

The results of the ANOVA of bud flush date were used to estimate the heritability of variation for this character. If we assume that the families of seeds collected were composed of a mixture of full and half sibs, the heritability of variation h^2 is estimated as 0.66, suggesting very strong genetic control of variation in bud burst date. However it should be noted that heritability assessed by this method may be an overestimate if there are significant maternal effects on bud burst date. Further estimates of bud flushing date will be made over future years to determine whether a reduction in the estimate of h^2 is found, a result that would be expected if there were significant maternal effects.

5. Estimation of the extent of population differentiation for time of bud flush

Where variation among populations and among families within populations can both be measured, a quantitative estimate of genetic differentiation among populations can be calculated (Qst). Assuming, as above, that families are a mixture of full and half sibs, a Qst value of 0.03 is calculated. This indicates that only 3% of the variation for date of bud flush is found among populations, a similar level of differentiation to that found for neutral genetic markers (Fst). This value may be an underestimate if maternal effects are large.

6. Geographic and Ecological determinants of population differentiation for bud flush date

Simple regression analysis indicates significant relationships between bud flush date of a family, and latitude and elevation of origin of that family (Table 2). Earlier flushing in the glasshouse is shown by populations from further north and at higher elevation. However, only a small amount of the variation ($R^2 = 6-10\%$) is accounted for by either of these factors (Table 2). When latitude, elevation and longitude are included in a multiple regression, only elevation accounts for a significant amount of variation in bud flush date. Initial analysis of possible ecological factors that may explain variation in bud flush date indicate later flushing for populations with higher accumulated temperature values ($R^2 = 8.9\%$), and greater moisture deficits ($R^2 = 10.5\%$) (Table 2).

Source of	d.f	M. S.	M.S.	M.S.	M.S.	M.S.	
Variation		Latitude	Longitude	Elevation	Moisture	Accumulated	
					deficit	temperature	
Regression	1	112**	63	191**	192**	166**	
Error	82	19	20	18	18	18	
R^2		5.6	2.6	10.4	10.5	8.9	

Table 2. Results of ANOVA for regression of date of bud flush on both geographic and ecological variables at site of origin of *P. sylvestris* family in Scotland. R^2 indicates amount of variation accounted for by regression. * P<0.05; **P < 0.01.

7. Development of methods for scoring Molecular Marker variation

Seven microsatellite primers (SPAC_11.6, SPAG_7.14, SPAC_11.5, SPAC_11.4, SPAG_3.7, SPAC_12.5 (Soranzo *et al.* (1998)) and PtTX4001 (González-Martínez *et al.* (2004)) have been tested for use in estimating both population differentiation and outcrossing rate in the *P. sylvestris* populations collected for the provenance/progeny trial. Large scale scoring of these genetic markers will be conducted in the autumn of 2008.

8. Identification of Candidate Genes linked to local adaptation

To facilitate the identification of candidate genes and ensure delivery of the this part of the project, additional funding has been secured from the EC-funded Network of Excellence EVOLTREE, to bring Dr Witold Wachowiak from the Institute of Dendrology of the Polish Academy of Sciences to Edinburgh for 6 months to apply his experience with analysis of Scots Pine genes to our collection from the Scottish remnant populations. Following his Ph.D. (studying hybridisation between *P. sylvestris* and *P. mugo*), Dr. Wachowiak has worked for three years at the University of Oulu, Finland identifying variations in genes linked to cold tolerance in Scots Pine and has extensive experience of the procedures for location, characterisation and screening of DNA for candidate genes. During the visit to Edinburgh, he will use his own knowledge and an additional database of 'candidate' genes, made available through the EVOLTREE network, to analyse variation in populations across Scottish environmental gradients. He will identify variable regions and establish the screening protocols, to ensure subsequent analysis of the full experimental trial proceeds quickly. Dr. Wachowiak will start work in August 2008.

Conclusions

The large scale seedling provenance/progeny trial needed to deliver information on adaptive genetic differentiation across the natural range of Scots pine in Scotland has been successfully established. Data on a relevant adaptive character has been gathered and analysed. This work will be extended to include further characters in the next year. Preliminary work required for scoring molecular marker variation has been completed. EC funding has been secured for developing methods for screening variation in candidate adaptive genes. This will provide the opportunity to study candidate genes and incorporate the information into the current project.

References

González-Martínez SC, Robledo-Arnuncio JJ, Collada C, Díaz A, Williams CG, Alía R, Cervera MT. (2004). Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines. Theor. Appl. Genet. 109: 103-111. Soranzo N, Provan J, Powell, W. (1998) Characterization of microsatellite loci in *Pinus sylvestris* L. Molecular Ecology (1998) 7, 1260-1261.

Appendix I. Location of maternal families of *P. sylvestris* sampled for the

Population	Core pinewood area (ha)	Pinewood zone	Family	Altitude (m)	Latitude	Longitude (W)	Accumulated temperature	Moisture deficit
Abernethy	、		AB1832	365	57.2	3.6	873	47
	2452	Fact Control	AB1834	363	57.2	3.6	876	48
	2452	East Central	AB1837	311	57.2	3.6	939	61
			AB1839	327	57.2	3.6	919	57
			AC1802	512	57.0	3.4	699	13
	10	North East	AC1803	493	57.0	3.4	723	18
Allt Cull	13		AC1806	464	57.0	3.4	759	26
			AC1808	435	57.0	3.4	795	33
		North Central	AM41	39	57.9	4.6	1202	116
Amet	101		AM44	201	57.9	4.6	1019	74
Amat	101		AM45	153	57.9	4.6	1073	86
			AM50	156	57.9	4.6	1070	85
			BB74	500	57.0	3.3	717	17
Delleskuis	775	North Cost	BB75	524	57.0	3.3	687	11
Ballochule	//5	North East	BB80	456	57.0	3.3	772	29
			BB97	421	57.0	3.3	816	38
			BE21	59	57.6	5.4	1210	103
Deine Fishe	100	North Mont	BE23	91	57.6	5.4	1173	94
Beinn Eigne	182	North West	BE26	83	57.6	5.3	1183	97
			BE30	17	57.6	5.4	1259	113
			BW1822	307	56.7	4.3	990	57
Black Wood of	1011	South Central	BW1825	257	56.7	4.3	1054	69
Rannoch			BW1828	250	56.7	4.3	1063	71
			BW1830	285	56.7	4.3	1082	62
			CCC1801	298	56.4	4.7	1024	56
Coille Coire	07	South Central	CCC1806	222	56.4	4.7	1125	75
Chuilc	67		CCC1807	237	56.4	4.7	1105	71
			CCC1809	269	56.4	4.7	1062	63
Cona Glen	189	South West	CG1862	89	56.8	5.3	1265	100
			CG1864	154	56.8	5.3	1182	83
			CG1867	180	56.8	5.3	1149	76
			CG1868	169	56.8	5.3	1163	79
		South West	CR1881	258	56.6	4.7	1063	65
Crannach	70		CR1885	307	56.6	4.7	999	53
	70		CR1888	338	56.6	4.7	959	45
			CR1889	280	56.6	4.7	1034	60
Glen Affric		North Central	GA1892	205	57.3	5.0	1073	71
	1532		GA1893	274	57.3	5.0	990	53
			GA1897	274	57.3	5.0	989	53
			GA1900	270	57.3	5.0	994	54
			GC85	348	57.3	4.9	892	36
	0.5.1	North	GC88	361	57.3	4.9	876	32
Gien Cannich	301	Central	GC89	182	57.4	4.9	1091	78
			GC90	189	57.4	4.9	1082	77

provenance/progeny trial, together with information on ecological variables at the site.

Appendix I ctd..

Glen Derry 235		East Control	GD94	493	57.0	3.6	726	16
	225		GD95	492	57.0	3.6	727	16
	East Central	GD98	437	57.0	3.6	795	30	
			GD99	426	57.0	3.6	809	33
			GE33	59	58.0	4.7	1171	108
Glen Einig 27	27	North	GE36	69	58.0	4.7	1160	106
	21	North	GE37	45	58.0	4.7	1187	112
			GE38	46	58.0	4.8	1186	111
		South West	GL1868	155	56.9	5.1	1168	85
Clan Lov	74		GL1872	161	56.9	5.1	1160	83
Cicil Loy	14		GL1876	197	56.9	5.1	1114	74
			GL1877	170	56.9	5.1	1149	81
			GT1851	289	57.0	2.9	975	76
Glen Tanar	1564	North Fast	GT1856	422	57.0	2.9	810	42
Cicil Tallal	1304	North Last	GT1858	345	57.0	2.9	906	62
			GT1860	330	57.0	2.9	924	66
		North West	LC3	166	57.6	5.4	1070	62
Loch Clair 126	126		LC5	153	57.6	5.4	1108	79
Loon oldi	120		LC7	107	57.6	5.4	1162	91
			LC8	102	57.6	5.4	1168	92
		South Central	MG1813	286	56.6	4.4	1025	62
Meggernie	277		MG1815	264	56.6	4.4	1053	68
meggernie	211		MG1816	287	56.6	4.4	1023	62
			MG1820	385	56.6	4.3	895	37
		North	RD61	175	57.9	5.0	1049	76
Phidorroch 10	103		RD63	220	57.9	5.0	998	64
i dindon con	100		RD64	193	57.9	5.0	1028	71
			RD70	138	57.9	5.0	1090	85
Rothiemurchus 1744		East Central	RM1841	306	57.1	3.8	951	61
	1744		RM1845	325	57.1	3.8	928	56
	17		RM1846	329	57.1	3.8	923	55
			RM1848	311	57.1	3.8	944	60
Shieldaig		North West	SD11	91	57.5	5.6	1182	92
	103		SD13	44	57.5	5.6	1243	104
	100		SD14	56	57.5	5.6	1229	101
			SD16	132	57.5	5.6	1197	68
		North	SO51	38	58.0	4.6	1192	115
Strath Oykel	14		SO55	152	58.0	4.6	1064	86
	14		SO56	158	58.0	4.6	1058	84
			SO60	63	58.0	4.6	1164	109