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Abstract

Ultrasonic Doppler flow monitoring (UDFM) is used measure water flow in pipes
and channels. However, a lack of scattering pagi@nd signal noise can cause
velocity errors, particularly for smaller dischasgend surface water (‘clean’) flows.
A post-processing methodology is presented thattifiles and corrects these errors,
maximising the value of existing data. Test crdesre used to identify errors. The
error correction procedure defines depth-veloa@atronships from cleaned ‘training
data’ representing the range of flow conditionl(iding backed up) and uses these
relationships to automatically replace erroneoumoiges. UDFM velocity errors
have been successfully identified and correcteeixemple applications. Routine use
allows early identification of changes in instrurhear site behaviour. The
methodology is practical, consistent and updatedifies is a significant advancement
on previous methods for correcting velocity errarsproving the applicability of

UDFM.
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I ntroduction

Ultrasonic Doppler flow monitoring (UDFM) is a stdard method for measuring
water flow in pipes and channels (WRc, 1987; B992Z, Herschy, 1995; Unidata,
2000; ADS, 2007). The instrumentation typically goises of an ultrasonic Doppler
velocity meter and a depth measuring pressure dumes, both sealed in a
streamlined ‘mouse’ that is attached to the pipefinor channel bed. The ‘mouse’ is
connected by cable to a control box that providewgs, logging and download
functions. The depth and velocity are usually labgeregular intervals, to be used in
subsequent velocity-area flow calculations. Thiseagch is based upon use of the
Unidata Starflow instrument to measure flows in ¥nfa-3 ha) surface water
catchments. However, the findings will be broadbplecable to other situations and
alternative instruments.

BSI (1992, p. 5) describes the operation of the MDFelocity meter: “The
acoustic signal transmitted by the meter is reflécby air in suspension and
particulate matter and returned to the sensordéferent frequency (Doppler effect).
The shift in frequency between the signal trangditind that received is proportional
to the liquid velocity’. Thus, successful velocityeasurement requires such scattering
particles in the flow (e.g. Watt and Jefferies, @9®9nidata, 2000). Each logged
velocity is an average of those velocities measurgdhe instrument during its
sampling period (which is typically kept small tptimnise battery consumption). In
this study the sampling period has been increaged $econds (from 2) by using
larger capacity batteries and modifying the inseabfirmware settings. Under very
low flow conditions, for example in smaller pipesdachannels or when flow is

backed up by a downstream control, even with aneased sampling period there



Blake, J. R. and Packman, J. C. (2007)

may still be too few scattering particles passigdghe instrument to provide a reliable
average velocity statistic. This is especially tniéclean’ as opposed to foul water
flows. In this case the Starflow records a defatior velocity (either zero or a repeat
of the last reliable value, depending on the imstnt settings). Unidata (2000) state
that a default error velocity may also be recondi¢ldere is: (i.) excessive noise in the
sampled velocities (e.g. due to the varying fiefdtlee ultrasonic cone, multiple
reflections, bias by large reflectors, stationagflectors, bedload targets or surface
ripples); (ii.) poor signal strength; or (iii.) aater level below the minimum operating
depth for the velocity meter. Additionally, spurgohigh velocity readings can be
caused by signal noise at low actual velocitiesoalgh a dynamic signal filter can
reduce this effect (Unidata, 2000).

This research aims to identify and correct any wlefarror velocities or
spurious high velocities present in UDFM data, esdly for low volume surface
water flows. A new post-processing methodology ésalibed that maximises the
value of existing UDFM depth-velocity data. Staged&ntifies the water velocity
measurement errors in a semi-automated manner.isrars evolution of WRc (1987)
guidance to manually check time-series plots of vahocity and depth for errors.
Stage 2 analyses training data to define the degticity relationship at each site.
This is analogous to the derivation of stage-disphaating curves (e.g. CEH, 2006;
Hydro-Logic, 2006). Stage 3 automatically replacasoneous velocities with
corrected values using the depth-velocity relatigmsThe velocity correction may be
complicated by hysteretic flow response (Packman Hewitt, 2000), transitions
between sub- and super- critical flow or shiftstie depth-velocity relationship.

However, the corrected velocity should be closerthie actual velocity than the
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default error value (zero or last recorded velQcitiiereby improving the velocity-
area flow calculation.

Recent work by ADS (e.g. Enfinger and Kimbrough04£&0Enfinger and
Stevens, 2006) uses regression methods to fit gn@enMg equation to depth-velocity
data. Our Stage 2 procedure is distinct from the#thods as it makes no a priori
assumption about the nature of the depth-veloeigtionship. Indeed, it would not be
possible to fit a Manning equation to some of thedgresented below. Furthermore,
the ADS output scattergraphs with Manning curves ased to establish sewer
capacity and infer flow behaviour, whereas we use tlerived depth-velocity
relationships to correct erroneous velocities.

Current WRc (1987) guidance indicates that flowtdspunder 100 mm, or
velocities under 200 mm/s, are too small for adeunaeasurement. Watt and Jefferies
(1996) also note the inaccuracy of some UDFM devatelow velocities. However,
sometimes such low flows are of interest, for exi@mpter-event flows within
sustainable drainage systems or stream basefloshdfmore, sites may need to be
monitored despite not having optimal flow charastes. The procedures presented

here will therefore improve the applicability of BM.

Data processing methodology

Monitoring site descriptions

The following sections make reference to two exampbnitoring sites: (i.) Site A is
an ordinary watercourse box culvert (2.44 m wid®B2 m deep). The data is logged
every 2 minutes and the flow is unlikely to back (ip) Site B is an oversized surface

water sewer pipe (diameter 900 mm) that also pesvwhline flood storage. The data
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is logged every minute and the flow occasionallgksaup and surcharges due to a
downstream throttle. These sites are part of 14 MDdécations run by CEH in the

EPSRC Water Cycle Management for New Developmemwieg (WaND, 2007).

Stage 1: Identification of UDFM velocity errors

Development of a data processing methodology fgpadicular site requires a
sufficient length of depth-velocity data to repmasthe expected flow range. This is
referred to herein as the training data. Assuntag the depth-velocity relationship is
time invariant, more data will improve accuracy.eTtaw training data for Site A
covers a 12 month period (see Fig. 1). The rawitigidata for Site B covers a 17
month period (see Fig. 2). At first sight the seath these plots looks excessive, but
the large number of points (~260 000 Site A; ~7@0 (bite B) masks a central
tendency and systematic flow patterns. Exampleultetaror velocities have been
marked on these plots. Both datasets also exhpoiti®us high velocities that are

delimited by the dashed lines and associated emsafvelocity; depth,d).
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Having examined the raw training data, the follogvoriteria can be used to identify

UDFM velocity errors:

1. Default repeat velocity errors: The logged vilofexcept zero) is identical to the
previous logged velocity (given the 1 mm/s veloartgter resolution and natural flow
variability, a valid repeat value is unlikely).

2. Default zero velocity errors: The logged depthgreater than or equal to the
minimum operating depth for the velocity meter th& logged velocity is zero.

3. Spurious high velocities: The logged velocitgexds subjectively defined limits.
For Site A:v > 13.333d or v > 3000 mm/s. For Site Br > 10d + 500 orv >
2000 mm/s. These limits balance tleguirementto include valid data and thoesire
to exclude spurious velocities.

4. Rapid velocity increase. The logged velocity hmaseased by 600 mm/s or more
over one record but the depth has not doubled.

5. Lone velocity value. A seemingly valid velocagcurs in isolation from other valid

readings, i.e. there is no valid reading withinGtrdinutes of the current reading.

Criteria 1-4 have been coded in a Fortran 90 pragf@ROC_SF) which searches
through downloaded data, identifies depth-velocigords that exhibit an error
condition, replaces the erroneous velocities withearor coding value (99999) and
stores the screened data in a new file. Critedad 2 are automatically evaluated. It
should be noted that alternative UDFM instrumenéy foe able to automatically flag
errors due to criteria 1 and 2, e.g. ADS (2007)te@a 3 and 4 require user-input:

Potential errors are displayed along with deptloei¢y values for both the preceding
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and subsequent two records. By considering theezbtiie user can decide whether
to flag the velocity as an error or not. Criteridias been coded in a second program
(REM_LONE_SF) that searches through the output fRROC_SF, re-codes errors
and outputs the screened data to a second fileniRyirthese programs for the
example sites results in 59 % of records beingreroded at Site A, 31 % at Site B.
The large number of errors reflect the difficult@fsmonitoring ‘clean’ surface water
flows in small catchments. The high error perceatiy Site A is also due to a long

period of low summer flows.

Stage 2: Analysis of cleaned training data to define depth-velocity relationships

It is now possible to clean the raw training ddtao programs are run sequentially:
(i.) ERR_PROC_SF removes records that have an eonded velocity; and (ii.)
DVZ_SF removes any remaining records that have zexocity. These zero
velocities occur when the flow is below the minimoperating depth for the velocity

meter. Since the flow may not actually be zeroy tineist be excluded.
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The cleaned training data (see Figs. 3 and 4) canbe analysed to define depth-
velocity relationships for use in the error corr@ct The Site A data (~101 000
points) exhibits a strong positive depth-veloc#jationship that can be linearized by
taking the logarithms of each variable (see Fig. H)e velocity values have a
relatively normal distribution, whereas the deptidues are somewhat negatively
skewed. Following various trials, a ‘robust MM’ hivate regression, with velocity as
the dependent variable, has been performed usPQUS 6.2 (Insightful Corp.). This

was selected in preference to traditional linegression due to the occurrence of
heteroscedasticity (varying spread of residuals) data outliers. The resultant

relationship is:

LOG(v) = 0.1727+1.3206.0G(d) (1)

The proportion of variation in response explaingdthis model is 90.0 %. Both
coefficients are significanf(< 0.0000) and the residual standard error is +4B8Q7

Eqg. (1) can be transformed into the power curveagqu...

v = 14883113206 (2)

Fig. 5 shows that certain areas of the depth-vloraining data are less well
represented by this equation. Lower than expectelbcities may be due to
meandering streamlines at lower depths, sensitigityhanging channel roughness or
the velocity signals from bedload targets. Conugrsehanges between sub- and
super- critical flow could affect higher velocitieRefinement of the depth-velocity

relationship to account for these deviations walldiscussed later.

11
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Fig. 5. Site A: Plot of cleaned training data showing tegression relationship (solid

line), deviations and the sub-/super- critical flobaundary (dashed line).

To investigate scatter in the training data, thiaigy time-series for a large event,
covering both the rising and falling flows, was stied using a three point centred
moving average (see Fig. 6). No persistent hystetesps are evident; rather the
smoothed data tends towards a single relation3lnps, the scatter is assumed to be
due to noise, justifying the decision at this stdgeuse a single depth-velocity

relationship for both rising and falling flows.

12
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Fig. 6. Site A: Smoothed velocity time-series (line) fotaage event, compared to

depth-velocity data (points).

Site B exhibits a more complex depth-velocity rielaship that becomes clearer on
logarithmic axes (compare Figs. 4 and 7). The plad been classified into three
zones. Zone 1 represents free flow with a strorgjtipe depth-velocity relationship.

Zone 3 indicates that the system is backed uptaltiee downstream throttle, and the

velocity is relatively unchanging with depth. ZoBecovers the transition between

these two states.

13
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Fig. 7. Site B: Logarithmic plot of cleaned training dathowing three zones
(delineated by dash-dot thresholds lines), the garedant depth-velocity relationship
in each zone (solid trend line(s)) and the subésugritical flow boundary (dashed

line).

The Zone 1 data has been extracted from the cle@maiming data by examining the
individual tracks between successive depth-veloddta pairs. Data points forming
tracks that remained within the area perceivedet@dne 1 were retained, whilst data
points forming tracks that exited Zone 1 were edetli Although somewhat
subjective, this is a useful approach given thea datmplexity. The Zone 1 data
(~8000 points) was linearized by taking the lodmemi$ of each variable. Both the
velocity and depth values possess a fairly nornmgthidution. As before, a ‘robust

MM’ bivariate regression has been performed. Tlsalltant Zone 1 trend equation is:

14
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LOG(v) =1.4733+ 0.7608.0G(d) 3)

The proportion of variation in response explaingdthis model is 76.2 %. Both
coefficients are significanP(< 0.0000) and the residual standard error is 4087

Eqg. (3) can be transformed into the power curveagqu...

v =29.737d°7%% (4)

As previously, some deviation from this relatiogshinay be explained by the
transition between sub- and super- critical floves (marked on Fig. 7). The
relationship between hydraulic radius and veloaigs also investigated but this was
no stronger because the Zone 1 flow depths arewbdlalf pipe, where the

relationship between depth and pipe hydraulic d&l reasonably linear. The
specified Zone 1 threshold line is parallel to Zmne 1 trend line and it delimits the
Zone 1 values. It was calculated by adding theelstrgegative residual (-0.2901) to

the intercept term in Eq. (3), then transforminig thto a power curve equation...

v =15.2481°%7°% (5)
The Zone 3 depth invariant relationship was deteeahi from the low velocity

histogram (Fig. 8). The backed up flow velocity Ihegn approximated as the median

value (34 mm/s), whilst the Zone 3 threshold veipis 52 mm/s.

15
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Fig. 8. Site B: Histogram of low velocities from cleanediting data.

Having established thresholds for Zones 1 and 8 Zlone 2 depth-velocity
relationships were determined by examining theksaoetween successive depth-
velocity data points. A hysteretic negative deptieeity relationship was revealed,
which varies in magnitude with increasing or desmeg depth. This has been
approximated using two average rates: (i.) Zoneeboity loss rate, velocity
decreases by 8.0 mm/s per unit depth increasej(iBhd@one 2 velocity gain rate,
velocity increases by 2.2 mm/s per unit depth desge These linear rates plot as

curves on a logarithmic graph (hence the examg@ersngcurvesin Fig. 7).

Stage 3: Correction of UDFM velocity errors
The depth-velocity relationships defined in Stagehd&®e been incorporated into

INFILL_SF - a new program that automatically cotsedDFM velocity errors. This

16
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program processes the Stage 1 output file, reglaany error coded velocities with
corrected values according to the site dependdes.riror Site A, the replacement
velocity is calculated using Eq. (2). For Site Be process is more complex (see Fig.
9) depending on the zones in which the previousrteand next valid record (i.e.
non-error coded velocity) occur and whether thenevends (i.e. depth below
minimum operating depth) before the next valid rdaoccurs. The Zone 1 threshold
is defined by Eq. (5) and the Zone 3 threshold2isnn/s. The INFILL_SF program

has been run on the data for both sites (see Rgsult

Event ends . Calculate
Previous
before next N . replacement
. > record in . .
valid Zone 19 velocity using
velocity? ’ Equation 4
N !
Calculate
i 1 t
oo Depth sty g
Previous Calculate record 1;1 rising? Zone }é lossg
& next replacement Zone 27 te (8.0
records in velocity using (8]
Zone 1? Equation 4
Calculate
Set replacement Depth re:lplgceme}lt
N| velocity to Zone 3 falling? velocity using
throttled velocity Zone 2 gain
Set (34 mm/s) rate (2.2)
. replacement
Previous T—
& next velocity to
s i Zone 3 Set
reZcor 53 (1)n throttled replacement
one > velocity (34 velocity to
mm/s) previous
velocity
N !
Pr.eV10us record Calculate replacement velocity
in Zone 3 or Y P . .
> using linear interpolation between
Zone 1, and previous and next velocities
next in Zone 2?
N

Fig. 9. Flowchart showing data correction process usetllilL_SF for Site B.
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Using the data processing programs

A training dataset (see Stage 2) has been usedevelap the data processing
programs. Whilst this could encompass all data feomonitoring campaign, it can be
beneficial to use the first few sets of data faining and then use the defined
relationships for routine processing of each nevasi as it is acquired. Checking
new data against training data can reveal instrafiaeits (such as depth sensor zero-
drift, see Watt and Jefferies, 1996) or the need dpdated depth-velocity
relationships (e.g. if sediment bedload is movihgoigh a surface water sewer
system). However, to avoid errors of extrapolatigaelocity correction should not
extend beyond the range of the training data (@ustbe training data and associated
relationships would need to be updated). The aiBtin between using the programs

in training or routine mode is shown in Fig. 10.

18
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velocity errors
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REM_LONE_SF
Identify and code lone
velocities as errors

}
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Remove records with
error coded velocity
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DVZ_SF
Remove records with
zero velocity

TRAINING ROUTINE
PROC_SF
PROC_SF Identify and code
Identify and code velocity errors

|

REM_LONE_SF
Identify and code lone [--*
velocities as errors

}

ERR _PROC_SF
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error coded velocity
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check of time-series
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Replace error
coded velocities
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values

Errors
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velocity training
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INFILL_SF
relationships

INFILL_SF
Replace error
coded velocities
with corrected
values
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DVZ_SF

Remove records with

zero velocity

}

Need to update
PROC_SF

Plot new and
training data on
depth-velocity
scatter plot

Need to update
INFILL_SF

New data within

training range?

Fig. 10. Data processing program use in training and routindes (dotted line shows

use of previous output).

Corrected velocity data

Results and Discussion

The data processing methodology has been use@ntifidand correct UDFM water
velocity errors at example sites A and B. Seleewehts are shown in Figs. 11 to 13.

They represent different flow conditions and shdwve tworst case’ number of

19
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velocity errors. In all of these, and subsequegurés, raw data is plotted as filled

blocks, corrected as a solid line.
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Fig. 11. Site A: Time series of depth and velocity (raw &reated).

Fig. 11 shows that the errors at Site A are predantly of the ‘default zero velocity’

type, as indicated by the unfilled areas mainlyuodng between 02/04/06 18:00 and
03/04/06 12:00. They are probably due to excessoise in the sampled velocities.
This may be linked to surface ripples affecting Bwppler return. With 30 readings
per hour, ‘default repeat velocity’ errors are hamdspot in this plot although the
program finds and corrects them. The correctedcitglas clearly an improvement

over the raw data; the replacement velocities se@sonable given their context, but
are less variable than the raw data because tleegearived from the less variable

depth time series.

20
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Fig. 12. Site B: Time series of depth and velocity (raw &rected) under normal

flow conditions.

Fig. 12 shows that at Site B (the oversize pipe émrors under normal flow
conditions are predominantly of the ‘default zemloeity’ type, mainly occurring
during flow recessions. As for Site A, this is pabby due to excessive noise.
Additional errors occur after 19:00 on 03/12/05 wiiee water level falls below the
instrument minimum operating depth (these cannotdreected). With 60 readings
per hour, ‘default repeat velocity’ errors are aghaard to spot in this plot. The
corrected velocity time series shows an improvermarthe raw data, with reasonable
replacement values. The improvement is not as gtasrfor Site A due to the weaker
depth-velocity relationship at Site B (see StageTRus, a step may occur between

the replacement and original velocities, whichrisagea for future improvement.
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Fig. 13. Site B: Time series of depth and velocity (raw &rected) under backed up

flow conditions.

Fig. 13 shows that at Site B the errors under bdchkeconditions are predominantly
of the ‘default repeat velocity’ type (e.g. the stant raw velocities around 29/03/05
21:00). They indicate that few scattering partides passing the sensor, presumably
due to low flow velocities and deposition. Somefé&ddt zero velocity’ errors also
occur and are again probably due to excessive .ndise corrected velocity time
series shows a visual improvement on the raw datiathe replacement velocity for

backed up flow (34 mm/s) may be somewhat high (@megbto the valid raw data).

Discharge calculation
Both the raw and corrected velocity data have hessd to generate discharge time
series. The corrected discharge has been calculated the corrected velocities, the

raw depths and the known cross section geometgg. B4 to 16 show the corrected
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discharge for the previously selected events, aleitiy the raw discharge (calculated
using raw depths and raw velocities). Although belythe scope of this paper, such
discharges should ideally be calibrated againstualaitow gauging (e.g. WRc, 1987,

Vermeyen, 2000) before being used in any applinatio
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Fig. 14. Site A: Time series of discharge (raw & corrected).
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Fig. 15. Site B: Time series of discharge (raw & corrected).
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Fig. 16. Site B: Time series of discharge (raw & corrected).

These figures highlight the benefits of the newhudblogy. Gaps in the discharge

series, caused by ‘default zero velocity’ errorayén been filled and ‘default repeat
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velocity’ errors have been replaced, allowing inya runoff estimates. With semi-
automated error identification, fully automatedoercorrection and site dependent
rules, the new methodology can correct data cargigt Furthermore, all stages of
the methodology can be updated as necessary and redependently. This provides
a significant advantage over the less consisterthade suggested in WRc (1987)
guidance, namely manual checking of raw velocitg depth time-series plots for
erroneous data, and using manual lines drawn andiepth scattergraphs to obtain
replacement flow values. It should be noted thatdktimates of corrected discharge
under backed up conditions (Fig. 16) may be somewigh at times, due to the use

of a fixed replacement velocity.

Evaluation of methodology

In the preceding sections, the new methodologybeas evaluated qualitatively. For
example, replacement velocities are noted as ‘redde given their context’ (the
context being the preceding and subsequent vatudisei data). This approach has
been necessary due to the inherent difficultieguaintitative evaluation. For example,
whilst the variation in response statistic aidgha assessment of alternative depth-
velocity relationships, it is less useful for ewing the methodology itself.
Furthermore, although confidence limits could blwated for erroneous velocities
replaced using a regression calculation, they waoldbe possible for non-regression
areas of the depth-velocity relationship (e.g. ZoReand 3 in Fig. 7). A quantitative
evaluation could involve replacing a proportionaoknown error free dataset with
realistically distributed erroneous velocities, rth@erforming error identification and
correction to produce a corrected dataset. Thieected dataset could be compared

with the original to quantify the match betweenreoted and actual velocities.
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However, since velocity errors tend to occur durflfoyv recession or backed up
conditions, it has not been possible to obtainreor éree dataset for these conditions.

Thus we have had to rely on a qualitative evalmatibthe methodology.

Futuredirections

Future work could improve the depth-velocity redaships used in the velocity
correction procedures. This might parallel recemwedopments in the derivation of
stage-discharge ratings (e.g. Petersen-Overleid6)20Currently, the relationships
(and their accuracy) are biased towards the moraemus lower depth-velocity
readings. An upgrade to multi-part regressions ccanlprove representation of the
sub- to super- critical flow transition (e.g. seg.F5), enabling the more accurate
correction of the albeit infrequent errors at highelocities. Following Enfinger and
Schutzbach (2005), it might also be possible tdieily account for the effects of
varying channel roughness. Error correction forkledcup conditions (e.g. Zone 3 in
Fig. 7) might be improved with a variable depthegitly relationship (rather than a
fixed value). Since error correction is predomihamequired on falling flows, it
might be improved by defining individual depth-vely relationships for rising or
falling flows. Depth-velocity relationships thateanon-stationary in time, e.g. for
natural channels or when a sediment pulse is moslagly through a drainage

system, will require time variant correction.

Conclusions

(1) A new post-processing methodology has been predetitat identifies and

corrects water velocity measurement errors as®utiaith ultrasonic Doppler flow
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monitoring. The error identification is semi-autdeth against test criteria. The error
correction procedure defines depth-velocity refatops from valid ‘training data’,
then uses these to automatically replace erroneelegities given valid depth data.
The methodology is practical, consistent and upddée It is a significant advance
over previous UDFM data correction methods. Theha@tmaximises the value of
existing data, requiring no additional data coll@tt Used in ‘routine’ mode for
ongoing data collection campaigns, it can highlighanges in instrument or site
behaviour at the earliest opportunity.

(2) The methodology has been applied to two exampés:sa stream culvert and a
surface water drainage pipe. Gaps in the dischsegies, caused by ‘default zero
velocity’ errors, have been filled and ‘default eep velocity’ errors have been
replaced. This provides a qualitative improvemergralirect use of the raw data.

(3) The methodology improves the applicability of UDRM smaller discharges,
surface water (‘clean’) flows, backed up conditiamsl sub-optimal sites.

(4) Future work could include refinement of the dep#necity relationships, e.g.

accounting for flow hysteresis and transitions lestwsub- and super- critical flow.
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4060 (main text and figure captions)

Figure Captions

Fig. 1. Site A: Scatter plot of raw data showing typicabes.

Fig. 2. Site B: Scatter plot of raw data showing typicabes, with inset detail for low

depths.

Fig. 3. Site A: Scatter plot of cleaned training data.

Fig. 4. Site B: Scatter plot of cleaned training data, viriket detail for low depths.

Fig. 5. Site A: Plot of cleaned training data showing tbgression relationship (solid

line), deviations and the sub-/super- critical floaundary (dashed line).

Fig. 6. Site A: Smoothed velocity time-series (line) fotaage event, compared to

depth-velocity data (points).

Fig. 7. Site B: Logarithmic plot of cleaned training dathowing three zones
(delineated by dash-dot thresholds lines), the garedant depth-velocity relationship
in each zone (solid trend line(s)) and the subé&sugritical flow boundary (dashed

line).

29



Blake, J. R. and Packman, J. C. (2007)

Fig. 8. Site B: Histogram of low velocities from cleanediting data.

Fig. 9. Flowchart showing data correction process usetllilUL_SF for Site B.

Fig. 10. Data processing program use in training and routindes (dotted line shows

use of previous output).

Fig. 11. Site A: Time series of depth and velocity (raw &reated).

Fig. 12. Site B: Time series of depth and velocity (raw &reated) under normal

flow conditions.

Fig. 13. Site B: Time series of depth and velocity (raw &rected) under backed up

flow conditions.

Fig. 14. Site A: Time series of discharge (raw & corrected).

Fig. 15. Site B: Time series of discharge (raw & corrected).

Fig. 16. Site B: Time series of discharge (raw & corrected).
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