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Abstract 

 

Selection can alter predator-prey interactions. However, whether and how complex food-webs 

respond to selection remains largely unknown. We show in the field that antagonistic 

selection from predators and pathogens on prey body-size can be a primary driver of food-

web functioning. In Windermere (UK), pike (Esox lucius, the predator) selected against small 

perch (Perca fluviatilis, the prey), while a perch-specific pathogen selected against large 

perch. The strongest selective force drove perch trait change and ultimately determined the 

structure of trophic interactions. Before 1976, the strength of pike-induced selection overrode 

the strength of pathogen-induced selection and drove change to larger, faster growing perch. 

Predation-driven increase in the proportion of large, infection-vulnerable perch presumably 

favored the pathogen since a peak in the predation pressure in 1976 coincided with pathogen 

expansion and a massive perch kill. After 1976, the strength of pathogen-induced selection 

overrode the strength of predator-induced selection and drove a rapid change to smaller, more 

slowly growing perch. These changes made perch easier prey for pike and weaker competitors 

against juvenile pike, ultimately increasing juvenile pike survival and total pike numbers. 

Therefore, although predators and pathogens exploited the same prey in Windermere, they did 

not operate competitively but synergistically by driving rapid prey trait change in opposite 

directions. Our study empirically demonstrates that a consideration of the relative strengths 

and directions of multiple selective pressures is needed to fully understand community 

functioning in nature.  
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Introduction 3 

 4 

Interacting populations often show reciprocal phenotypic changes reflecting co-adaptations. 5 

In turn, co-adaptations alter the strength and even the nature of interactions (1-3). Therefore, 6 

community structure and functioning is driven by an interplay between demography and 7 

phenotypic change (4-6). Recently, there has been considerable interest in how prey adaptive 8 

responses to predators can drive community dynamics (5-10). At the same time, it has been 9 

shown that parasites and parasite-mediated trait changes can play a crucial role in food-web 10 

structuring (11, 12). However, despite the fact that organisms are often confronted with both 11 

predators and parasites (13), there have been few attempts to understand how adaptive 12 

response to joint predation and parasitism affects food-web functioning in nature. Here, we 13 

use 50-years long time series from a whole-lake system (Windermere, UK) to show that 14 

simultaneous selection from both predators and pathogens structured the food-web in a way 15 

that could not be predicted by considering each selective pressure separately. 16 

Windermere is a glacial valley lake of the English Lake District, divided by shallows 17 

into north and south basins of different size and productivity (14, 15). The fish community of 18 

Windermere is size-structured, with only a few numerically dominant species interacting in a 19 

mixture of competition, predation, and cannibalism termed intraguild predation (IGP) (16, 20 

17). Perch (Perca fluviatilis) are the most abundant fish and are preyed upon by pike (Esox 21 

lucius), the top predator of the system. Small perch below 16 cm body length (~ age ≤ 2 22 

years) feed entirely on zooplankton and macroinvertebrates, while large perch (above 16 cm 23 

body length) feed on macroinvertebrates and on their own fry (18, 19). Small pike below 20 24 

cm body length (~ age ≤ 1.5 years) have the same diet as large perch (i.e. macroinvertebrates 25 
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and small perch), while large pike feed exclusively on fish, mostly perch of 6-9 cm body 26 

length (20). Consequently, small perch are prey for pike in Windermere, but large perch are 27 

potentially strong competitors with pike (especially with small pike).  28 

A long-term monitoring program for Windermere perch and pike was initiated in the 29 

early 1940s. Since 1944, pike have been gillnetted during winter (14, 15, 21, 22). Perch have 30 

been caught with traps set on their spawning grounds from the end of April to mid-June (23). 31 

On each lift of a trap, the whole catch or occasionally a random fraction of the catch has been 32 

sexed, measured for total body length, and opercular bones have been removed for age 33 

determination following a validated method (24). Bone density differs between summer and 34 

winter, producing narrow bands ("checks") that are deposited on the opercular bones during 35 

the slow winter growth period. These checks then serve as an annual mark and, thus, allow 36 

the aging of individual fish (24). Pike were aged following the same method (25). The 37 

abundances of both perch and pike have been estimated annually for the 1944-1995 period, 38 

separately for each basin as well as for both small (i.e. age = 2) and large (i.e. age > 2) 39 

individuals (26) (Fig. 1A and 1B). Together with these biological data, surface water 40 

temperatures were recorded on a near daily basis and were here averaged for each year. 41 

Finally, maximum phosphorus concentration between September/October in year y and 42 

February in year y+1 was measured each year since 1945 in the north basin and since 1946 in 43 

the south basin, and was here used as a proxy for Windermere primary productivity in year 44 

y+1.  45 

In 1976, a perch-specific pathogen severely impacted the perch population (Figs. 1A, 46 

1C and 1D). Although the primary pathogenic agent remains unidentified, the disease is 47 

characterized by epidermal lesions associated with a wide variety of fungal and bacterial 48 

infections (27). The pathogen preferentially infects large, maturing (90-100% prevalence) 49 

perch over small, immature individuals (50-70% prevalence) and induced a 98 % mortality of 50 
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spawners during the 1976 reproductive period (27). By 1977, captured perch showed no 51 

external sign of disease (27), but the numbers of large perch have remained low since 1976 52 

(Fig. 1A). Both the age structure (Fig. 1C) and mean body length (Fig. 1D) of the 53 

Windermere perch population remains severely truncated, suggesting that the pathogen is still 54 

present. Windermere perch were shifted by the pathogen from an iteroparous to an effectively 55 

semelparous population (Fig. 1C), setting the stage for increased investment into one single 56 

reproductive bout (28). Increased reproductive investment in perch is likely to have reduced 57 

somatic growth rate owing to the trade-off between body growth and reproduction (29). 58 

Additionally, in immature perch, disease prevalence is much higher on fast-growers than on 59 

slow-growers (27), indicating a trade-off between disease resistance and somatic growth (28). 60 

Based on these observations, we predicted that pike (predator)-induced selection and 61 

pathogen-induced selection acted in opposite directions on perch body-size and somatic 62 

growth rate. Before pathogen invasion, perch somatic growth rate should have reflected the 63 

effect of increased predation due to an increase in the pike/perch ratio (Fig. 2A). After 64 

pathogen invasion, perch growth should have reflected the combined action of the two 65 

antagonistic selective forces (21). We have tested this prediction by estimating nonlinear 66 

changes in perch somatic growth rate (21). In our statistical analysis, we accounted for the 67 

effects of environmental variables known to plastically affect perch growth [i.e. primary 68 

productivity, water temperature, and perch density (23), see Material and methods] and, by 69 

using a smooth term on the Year class effect, we removed any a priori expectation concerning 70 

the shape of the temporal trend. We performed separate analyses for each basin of 71 

Windermere because the two perch populations are considered distinct (30, 31), thus 72 

providing a natural replicate for hypothesis testing. Since life-history responses to pathogens 73 

may be sex-specific (28), we also performed separate analyses for each sex. In both basins of 74 
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the lake, our results support the prediction that pike and pathogens induced selection in 75 

opposite directions on perch body-size. 76 

 77 

Results and discussion 78 

 79 

Before 1976, perch somatic growth rate generally increased in both basins and in both male 80 

and female perch (Fig. 2C), in parallel with an overall increase in predation pressure (Fig. 81 

2A). Short-term variations in predation pressure (Fig. 2A) were in remarkably close match 82 

with similar changes in perch growth in both basins (especially in males, Fig. 2C), supporting 83 

the prediction that pike selected for increased somatic growth in Windermere perch. A 84 

correlation analysis revealed that predation pressure had a statistically significant (p < 0.05) 85 

positive effect on perch somatic growth at lags ranging from 0 to 9 years, with the highest 86 

correlation at a 5-years lag. This lag corresponds roughly to 1.25 to 5 perch generations since 87 

male perch in Windermere may mature at age-1 but mean age of mature fish in the catch was 88 

approximately age-4. Interestingly, female perch responded less closely than male perch to 89 

variation in the predation pressure (Fig. 2C), presumably because females reached a size 90 

refuge faster than males (Sex effect in Table 1). Indeed, fast immature growth generally lasts 91 

longer in female than in male fish because females mature at an older age (29). After outbreak 92 

of the pathogen in 1976, Windermere perch somatic growth decreased rapidly in both basins 93 

and for both sexes (Fig. 2C) despite the fact that predation pressure remained high (Fig. 2A). 94 

This result supports the prediction that the pathogen selected for slow somatic growth in 95 

perch, and further suggests that the strength of pathogen-induced selection overrode the 96 

strength of pike-induced selection (21, 22). Finally, perch somatic growth rate in 1995 97 

decreased to 1940s values in the north but not in the south basin (Fig. 2C), in accordance with 98 
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raw data observation of perch numbers (Fig. 1A), age (Fig. 1C) and size (Fig. 1D) showing 99 

that the infection was more severe in the north than in the south basin.  100 

Antagonistic selection from multiple consumers on their joint prey may result in 101 

counterintuitive demographic effects. Indeed, while linear density-dependence predicts a 102 

negative impact of multiple consumers on each other (i.e., exploitative competition), 103 

antagonistic selection on a joint resource can make consumers mutually beneficial foragers (5, 104 

6). In Windermere, observations are consistent with the predictions that the effects of 105 

antagonistic selection overrode the effects of exploitative competition and made pike and the 106 

pathogen mutually beneficial foragers. Indeed, signs of an externally similar disease on perch 107 

were reported as early as 1963 (27) but the spread of the pathogen and massive perch kill in 108 

1976 coincided with a peak in predation pressure in both basins (Fig. 2A). Additionally, 109 

predation pressure was higher in the north than in the south basin both before and after the 110 

spread of the pathogen (Fig. 2A), and the infection was more severe in the north than in the 111 

south basin (see above). Therefore, by increasing the proportion of large, fast-growing perch 112 

which were more sensitive to infection, pike may have facilitated the spread of the pathogen. 113 

Then, by selecting against slow somatic growth in perch, pike may have prevented perch from 114 

maximizing energy allocation to disease resistance (28) and may have favored the 115 

maintenance of high levels of pathogen prevalence. 116 

In turn, by preventing perch from reaching a size refuge the pathogen may have made 117 

perch become easier prey for and weaker competitors with pike (16). This process has been 118 

recently demonstrated by the artificial removal of large prey (Arctic charr Salvelinus alpinus) 119 

from a Norwegian lake, which ultimately increased top predator numbers (Brown trout Salmo 120 

trutta) (32). In Windermere, examination of trends in pike numbers suggests a similar process 121 

driven by the pathogen. Indeed, at odds with a linear density-dependent effect, pike numbers 122 

increased markedly after invasion of the perch pathogen in Windermere (Fig. 1B). We 123 
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predicted that juvenile pike should have most strongly benefited from invasion of the perch 124 

pathogen because (i) juvenile pike were shown from diet data to be more directly in potential 125 

competition with large perch (18-20) and (ii) juvenile pike eat at a higher rate than large pike 126 

and are thus more susceptible to competition for food (20). To test this prediction, we used 127 

pike stock-recruitment models which explored the relationship between parental stock size in 128 

year y and the number of age-2 pike in year y+2 (see Materials and methods). These models 129 

allowed us to estimate the effects of pathogen-induced trait changes in perch on the pike-130 

perch interaction, while controlling for the effects of temperature, perch numbers and pike 131 

numbers (Table 1). As emphasized above, perch populations in the north and south basins of 132 

Windermere should be considered distinct and only about 20% of pike disperse between the 133 

two basins (14, 15). We therefore analyzed pike recruitment separately for the north and south 134 

basins. Our results clearly show that pathogen-induced trait changes in perch increased 135 

juvenile pike survival by changing perch from being mainly a competitor to being mainly a 136 

prey for pike.  137 

Pike recruitment rate (i.e., number of recruits per spawner) increased significantly in 138 

both basins after invasion of the pathogen (Pathogen effects in Table 1, intercepts in Fig. 2B). 139 

This increase was not the result of a higher number of eggs produced by female pike because 140 

female pike reproductive investment decreased from 1963 to 1995 (21). Increased pike 141 

recruitment rate was also not due to a relaxation of density dependence (competition and 142 

cannibalism) in the pike population because the strength of density dependence did not 143 

change significantly (SSB*Pathogen interactions in Table 1, slopes almost unchanged in Fig. 144 

2B). Therefore, increased pike recruitment rate most likely reflected increased survival of 145 

small pike due to pathogen-induced trait changes in perch. Modeling the effect of perch on 146 

pike recruitment rate supported this hypothesis. Pathogen invasion changed the effect of perch 147 

from negative to positive (Perch*Pathogen interactions in Table 1, slopes changing from 148 
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negative to positive in Fig. 2D), indicating that the pike-perch link was changed from a 149 

mixture of predation and competition dominated by perch towards a simpler predator-prey 150 

relationship dominated by pike. Interestingly, perch traits were more severely shifted by the 151 

pathogen in the north than in the south basin (see above), driving a locally higher increase in 152 

pike recruitment and steeper change in the effect of perch on pike survival (Fig, 2D, Table 1). 153 

These results suggest that antagonistic selection from predators and pathogens on 154 

Windermere perch body-size generated a mechanism similar to the so-called "synergy" [i.e. 155 

synergistic foraging rates (5, 6, 10)] which has been modeled to arise among multiple 156 

predators when there is a trade-off in the prey for behavioral avoidance of the predators (5, 6). 157 

To our knowledge, our results provide the first empirical example of this synergistic effect 158 

acting through prey life-history change. 159 

 160 

Conclusions 161 

 162 

It has been shown that behavioral disturbance of predation capacity and sensitivity to 163 

predation in an invertebrate host (Gammarus spp.) by parasites can reverse species dominance 164 

in an IGP hierarchy (17). Parasites have also been shown to indirectly increase algal growth 165 

by reducing grazing capacity in a gastropod host (12). Our findings considerably expand the 166 

scope for parasite-induced effects on ecosystems by showing synergistic effects between 167 

parasites and predators acting through antagonistic selection on the prey. Antagonistic 168 

selection on prey body-size (as depicted in Windermere) is a potentially strong ecosystem 169 

modifier because body-size determines a host of species traits that affect the structure and 170 

dynamics of food webs (4, 33). Hence, in light of the abundance of parasites across systems 171 

(11), size-selective predators and pathogens are likely to play an important role in the 172 

structuring and resilience of ecosystems. So far, synergistic foraging between multiple 173 
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consumers (acting through a behavioral trade-off in the prey) has been consistently modeled 174 

to favor species coexistence and food-web stability (5, 6). 175 

Antagonistic selection leading to synergistic foraging rates has practical implications 176 

since it can magnify the effects of species introductions and human activities. For instance, 177 

invasive species will more strongly deplete native resource populations if they select in an 178 

opposite direction compared to native predators or pathogens of the resource. Antagonistic 179 

selection, by favoring species coexistence (5, 6), may also favor long-term persistence of 180 

invasive predators and parasites. In particular, our results underline that predators can 181 

influence coevolution between parasite virulence and host resistance by impeding evolution 182 

of resistance in the host (13, 34, 35). Finally, harvesting by humans often targets large 183 

individuals and induces body-size reduction in exploited populations (21). Hence, harvesting 184 

could select in an opposite direction to competitors and predators and magnify their effects. 185 

Management strategies ignoring potential effects of antagonistic selection on trophic 186 

interactions might lead to inappropriate management of ecological resources. 187 

 188 

Materials and methods 189 

 190 

Perch growth modeling. Perch traps used for sampling were unselective for individuals 191 

ranging from 9 to 30 cm body length and thus captured both fast and slow growers for ages 192 

ranging from 2 to 6 years (23). However, age 5 and 6 perch became rare after the invasion of 193 

the pathogen in Windermere. Therefore, in order to confidently rule out possible effects of 194 

sampling bias we restricted our growth analysis to perch caught from age-2 to age-4. We 195 

modeled temporal changes in Windermere perch somatic growth rate using a generalized 196 

additive model (mgcv library of R (36)) of the form: 197 

εββββββββ ++×+×+++++++= )()( 2765432110 YcfTPTPhPPhTSBasAfBL  Eq(1) 198 
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 199 

where BL stands for body length of individual i and year class Yc (n=67,457), A is the 200 

individual's age at capture, Bas is the basin in which the individual was captured, S is the 201 

individual's sex, T, Ph and P are mean temperature, mean phosphorus concentration and mean 202 

perch density (small + large), respectively, experienced by the individual (i.e. from year Yc to 203 

year Yc+A), βs are slopes of the linear effects, β0 is an intercept, ε is an error term, and f1 and 204 

f2 are nonparametric smoothing functions (natural cubic splines fitted by generalized cross 205 

validation (36)). In the model, interactions between temperature and the other biological 206 

covariates accounted for the thermal dependence of primary productivity and competitive 207 

interactions. Plots in Fig. 2C were produced with basin- and sex-specific models as described 208 

in Eq(1) but in which Bas and S were dropped (north basin: n=17,321 males and n=3,279 209 

females; south basin: n=40,904 males and n=5,953 females). 95% confidence limits around 210 

the Yc effect in Fig. 2C were computed using a modified wild bootstrap approach (37). 211 

Briefly, the bootstrap distribution for the effect estimate was obtained by randomly inverting 212 

the signs of the errors from the model, adding these to the fitted values, and refitting the 213 

model (repeated 500 times). To account for intra year-class correlation, all errors from a given 214 

year-class in a given bootstrap sample were either inverted or not with probability 0.5. 215 

Estimates of the main effects of T, Ph and P in Table 1 were obtained from a model in which 216 

the interaction terms were omitted from Eq(1). We calculated predation pressure from pike on 217 

perch as the natural log of the ratio of the numbers of all (age ≥ 2) pike on the number of 218 

small (age-2) perch because pike target mainly small perch in Windermere (20). Finally, we 219 

tested for the link between predation pressure and perch somatic growth using correlations 220 

between the fitted Yc effect (from 4 basin- and sex-specific models as in Fig. 2C) and 221 

predation pressure from pike on perch in year class Yc-t where t varied from 0 to 16 years. 222 

 223 



 12

Pike recruitment modeling. We modeled pathogen- associated change in pike recruitment 224 

using linear stock-recruitment models (38) of the form: 225 

 226 

εβββββ +×++++= PaSSBSSBPTSSBR 43210)/ln(  Eq(2) 227 

 228 

where R stands for the number of pike recruits (i.e. age-2 pike) in year y and basin Bas (n=50 229 

for each basin), SSB is pike spawning stock biomass (i.e. number of spawners) in year y-2 and 230 

basin Bas, T and P are mean water temperature and mean perch density (small + large) 231 

experienced by the recruits from year y-2 to year y, Pa is the pathogen (i.e. presence or 232 

absence), βs are slopes of the effects, β0 is an intercept, and ε is an error term. We modeled 233 

changes in the pike-perch interaction using a model similar to Eq(2) except that P and SSB 234 

were inverted in Eq(2). In our models, the response (natural log of the R/SSB ratio) measured 235 

recruitment rate, i.e. the number of recruits per spawner (38). The SSB effect in the right hand 236 

side of Eq(2) captured cannibalism and competition (density-dependence) in the pike 237 

population (38), and the SSB*Pa interaction tested for an effect of the perch pathogen on 238 

density dependence in the pike population. The P effect captured predation and competition 239 

between perch and juvenile pike, while the P*Pa interaction tested for an effect of pathogen-240 

induced trait changes in perch on the pike-perch trophic interactions. Estimation of the main 241 

effects of T, P, SSB, and Pa in Table 1 were obtained from a model in which the interaction 242 

term was omitted from Eq(2). Predicted values in Figs. 2B and 2D were computed from 2 243 

different models as in Eq(2) but in which only the focal terms (SSB and Pa in Fig. 2B; P and 244 

Pa in Fig. 2D) were kept. 245 
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Figure legends 

 
Figure 1. Background information for pike (E. lucius), perch (P. fluviatilis) and for expansion 

of a perch-specific pathogen in Windermere (UK). Vertical solid lines indicate the first 

massive perch kill from the pathogen in 1976. (A-B) Time series for population size of perch 

(A) and pike (B) in the north and south basins of the lake, separated into small (age-2 years) 

and large (age ≥ 3 years) individuals. Horizontal lines show mean abundances before and after 

pathogen invasion, separately for small (dashed and dotted lines) and large (solid lines) 

individuals. (C-D) Time series for perch mean age (C) and mean body length (D) with 95% 

confidence intervals, separated by sex and basin. 

Figure 2. Effects of predator (pike, E. lucius)- and pathogen-induced selection on perch (P. 

fluviatilis) trait-change and resultant impacts on pike-perch-pathogen interactions in 

Windermere (UK). Vertical solid lines indicate the first massive perch kill from the pathogen 

in 1976. Note that a peak in the predation pressure coincided with the perch kill. (A) Time 

series for the predation pressure from pike on perch in each basin of Windermere. (B) Effect 

of the perch pathogen on the link between number of pike spawners (SSB) and pike 

recruitment rate (i.e. natural log of number of age-2 recruits per spawner) in each basin of the 

lake (see also Table 1). Points represent observed data and lines represent predicted values 

with 95% confidence intervals. (C) Nonlinear temporal trends for perch somatic growth rate 

(in partial residuals units) with 95% bootstrap confidence intervals, accounting for the effects 

of environmental variation in growth conditions. Gray points represent the partial residuals for 

the smooth term (i.e. residuals that would be obtained by dropping the focal term from the 

model while leaving all other estimates fixed). Trends are provided separately for each sex 

and basin of the lake. (D) Effect of the perch pathogen on the link between perch density and 

pike recruitment rate (see also Table 1). Points represent observed data and lines represent 

predicted values with 95% confidence intervals.
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Table legend 
 
 
Table 1. Model parameter estimates and their statistical significance (df: degrees of 
freedom, edf: estimated degrees of freedom of smooth term). 
 

Response Effects Estimate* df (linear effect) or 
edf (smooth term) F  value P  value¶

Perch body length (n = 67,457) f(Age) none 1.992;  67,445.17 53593 <0.0001
Basin (south relative to north) 2.987 1;  67,445.17 249.97 <0.0001
Sex (females relative to males) 5.297 1;  67,445.17 566.25 <0.0001
Temperature 1.210 e+1 1; 67,441 2366.4 <0.0001
Phosphorus -8.071 1; 67,441 919.3 <0.0001
Perch density -3.688 e-5 1; 67,441 4277.9 <0.0001
Phosphorus * Temperature 7.016 1; 67,445.17 999.74 <0.0001
Perch density * Temperature -6.223e-06 1; 67,445.17 134.01 <0.0001
f(Year class) none 4.749;  67,445.17 3877 <0.0001

Ln(Pike recruits/SSB), North basin (n = 50) SSB (spawning stock biomass) -1.517e-04 1,45 20.4 <0.0001
Temperature 2.860e-01 1,45  4.8 0.0344
Perch density -7.819e-07 1,45 1.2 0.1259
Pathogen (presence/absence) 8.704e-01 1,45 8.7 0.0051
SSB * Pathogen -8.831e-05 1,44 1.1 0.3016
Perch density * Pathogen 7.934e-06 1,44 7.7 0.0080

Ln(Pike recruits/SSB), South basin (n=50) SSB (spawning stock biomass) -1.994e-04 1,45 16.6 <0.0002
Temperature 4.532e-01 1,45 6.1 0.0172
Perch density -9.134e-07 1,45 4.2 0.0458
Pathogen (presence/absence) 7.247e-01 1,45 5.6 0.0220
SSB * Pathogen 7.568e-05 1,44 0.9 0.3577
Perch density * Pathogen 1.273e-06 1,44 0.5  0.4985  

 
* Parameter estimates for main effects are from models without interaction terms. 
¶ Sequentially tested in case of stock-recruitment models. 
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