

Article (refereed)

Edeline, Eric; Ari, Tamara Ben; Vollestad, L. Asbjorn; Winfield, Ian J.; Fletcher, Janice M.; James, J. Ben; Stenseth, Nils C. 2008 Antagonistic selection from predators and pathogens alters foodweb structure. *Proceedings of the National Academy of Sciences of the USA*, 105 (50). 19792-19796. doi:10.1073/pnas.0808011105

© 2008 by The National Academy of Sciences of the USA

This version available at http://nora.nerc.ac.uk/3092/

NERC has developed NORA to enable users to access research outputs wholly or partially funded by NERC. Copyright and other rights for material on this site are retained by the authors and/or other rights owners. Users should read the terms and conditions of use of this material at http://nora.nerc.ac.uk/policies.html#access

This document is the author's final manuscript version of the journal article, incorporating any revisions agreed during the peer review process. Some differences between this and the publisher's version remain. You are advised to consult the publisher's version if you wish to cite from this article.

http://www.pnas.org

Contact CEH NORA team at <u>nora@ceh.ac.uk</u>

Manuscript classification:

BIOLOGICAL SCIENCES Evolution

Key words:Cost of immunity, Intraguild predation, Life history trade-offs,
Rapid evolution, Trait-mediated indirect interactions.

Title: Antagonistic selection from predators and pathogens alters food-web structure

Authors: Eric Edeline^{1,2}, Tamara Ben Ari¹, L. Asbjørn Vøllestad¹, Ian J. Winfield³, Janice M. Fletcher³, J. Ben James³ and Nils Chr. Stenseth¹*

Addresses: ¹ Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Department of Biology, P.O. Box 1066 Blindern, 0316 Oslo, Norway. ² UMR 7618 BIOEMCO, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris cedex 05, France. ³ Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, Lancashire LA1 4AP, UK

* To whom correspondence should be sent: N.C. Stenseth, Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway. Telephone: +47-22854584/4400. Fax: +47-22854001, e-mail: n.c.stenseth@bio.uio.no.

Manuscript information:	22 pages, 2 figures, 1 table.	
Word count: Character count:	232 words in whole text: Fig. 1: Fig. 2: Table 1: Extra space:	the abstract 26,674 (including spaces) 4,320 (12 cm, two columns) 4,320 (12cm, two column) 2,640 (22 lines, 2 columns) 2,040 (2 two columns figures + 1 two columns table + 2 one column equations)

Total: 39,994 characters

No nonstandard abbreviation used. Abbreviation: IGP, intraguild predation

Abstract

Selection can alter predator-prey interactions. However, whether and how complex food-webs respond to selection remains largely unknown. We show in the field that antagonistic selection from predators and pathogens on prey body-size can be a primary driver of foodweb functioning. In Windermere (UK), pike (Esox lucius, the predator) selected against small perch (Perca fluviatilis, the prey), while a perch-specific pathogen selected against large perch. The strongest selective force drove perch trait change and ultimately determined the structure of trophic interactions. Before 1976, the strength of pike-induced selection overrode the strength of pathogen-induced selection and drove change to larger, faster growing perch. Predation-driven increase in the proportion of large, infection-vulnerable perch presumably favored the pathogen since a peak in the predation pressure in 1976 coincided with pathogen expansion and a massive perch kill. After 1976, the strength of pathogen-induced selection overrode the strength of predator-induced selection and drove a rapid change to smaller, more slowly growing perch. These changes made perch easier prey for pike and weaker competitors against juvenile pike, ultimately increasing juvenile pike survival and total pike numbers. Therefore, although predators and pathogens exploited the same prey in Windermere, they did not operate competitively but synergistically by driving rapid prey trait change in opposite directions. Our study empirically demonstrates that a consideration of the relative strengths and directions of multiple selective pressures is needed to fully understand community functioning in nature.

- 1 \mathbf{body}
- 2

3 Introduction

4

5 Interacting populations often show reciprocal phenotypic changes reflecting co-adaptations. 6 In turn, co-adaptations alter the strength and even the nature of interactions (1-3). Therefore, 7 community structure and functioning is driven by an interplay between demography and 8 phenotypic change (4-6). Recently, there has been considerable interest in how prey adaptive 9 responses to predators can drive community dynamics (5-10). At the same time, it has been 10 shown that parasites and parasite-mediated trait changes can play a crucial role in food-web 11 structuring (11, 12). However, despite the fact that organisms are often confronted with both 12 predators and parasites (13), there have been few attempts to understand how adaptive 13 response to joint predation and parasitism affects food-web functioning in nature. Here, we 14 use 50-years long time series from a whole-lake system (Windermere, UK) to show that 15 simultaneous selection from both predators and pathogens structured the food-web in a way 16 that could not be predicted by considering each selective pressure separately.

17 Windermere is a glacial valley lake of the English Lake District, divided by shallows 18 into north and south basins of different size and productivity (14, 15). The fish community of 19 Windermere is size-structured, with only a few numerically dominant species interacting in a 20 mixture of competition, predation, and cannibalism termed intraguild predation (IGP) (16, 21 17). Perch (Perca fluviatilis) are the most abundant fish and are preyed upon by pike (Esox 22 *lucius*), the top predator of the system. Small perch below 16 cm body length (~ age ≤ 2 23 years) feed entirely on zooplankton and macroinvertebrates, while large perch (above 16 cm 24 body length) feed on macroinvertebrates and on their own fry (18, 19). Small pike below 20 25 cm body length (~ age ≤ 1.5 years) have the same diet as large perch (i.e. macroinvertebrates

and small perch), while large pike feed exclusively on fish, mostly perch of 6-9 cm body
length (20). Consequently, small perch are prey for pike in Windermere, but large perch are
potentially strong competitors with pike (especially with small pike).

29 A long-term monitoring program for Windermere perch and pike was initiated in the 30 early 1940s. Since 1944, pike have been gillnetted during winter (14, 15, 21, 22). Perch have 31 been caught with traps set on their spawning grounds from the end of April to mid-June (23). 32 On each lift of a trap, the whole catch or occasionally a random fraction of the catch has been 33 sexed, measured for total body length, and opercular bones have been removed for age 34 determination following a validated method (24). Bone density differs between summer and 35 winter, producing narrow bands ("checks") that are deposited on the opercular bones during 36 the slow winter growth period. These checks then serve as an annual mark and, thus, allow 37 the aging of individual fish (24). Pike were aged following the same method (25). The 38 abundances of both perch and pike have been estimated annually for the 1944-1995 period, 39 separately for each basin as well as for both small (i.e. age = 2) and large (i.e. age > 2) 40 individuals (26) (Fig. 1A and 1B). Together with these biological data, surface water 41 temperatures were recorded on a near daily basis and were here averaged for each year. 42 Finally, maximum phosphorus concentration between September/October in year y and 43 February in year y+1 was measured each year since 1945 in the north basin and since 1946 in 44 the south basin, and was here used as a proxy for Windermere primary productivity in year 45 y+1.

In 1976, a perch-specific pathogen severely impacted the perch population (Figs. 1A,
1C and 1D). Although the primary pathogenic agent remains unidentified, the disease is
characterized by epidermal lesions associated with a wide variety of fungal and bacterial
infections (27). The pathogen preferentially infects large, maturing (90-100% prevalence)
perch over small, immature individuals (50-70% prevalence) and induced a 98 % mortality of

51 spawners during the 1976 reproductive period (27). By 1977, captured perch showed no 52 external sign of disease (27), but the numbers of large perch have remained low since 1976 53 (Fig. 1A). Both the age structure (Fig. 1C) and mean body length (Fig. 1D) of the 54 Windermere perch population remains severely truncated, suggesting that the pathogen is still 55 present. Windermere perch were shifted by the pathogen from an iteroparous to an effectively 56 semelparous population (Fig. 1C), setting the stage for increased investment into one single 57 reproductive bout (28). Increased reproductive investment in perch is likely to have reduced 58 somatic growth rate owing to the trade-off between body growth and reproduction (29). 59 Additionally, in immature perch, disease prevalence is much higher on fast-growers than on 60 slow-growers (27), indicating a trade-off between disease resistance and somatic growth (28). 61 Based on these observations, we predicted that pike (predator)-induced selection and 62 pathogen-induced selection acted in opposite directions on perch body-size and somatic 63 growth rate. Before pathogen invasion, perch somatic growth rate should have reflected the 64 effect of increased predation due to an increase in the pike/perch ratio (Fig. 2A). After 65 pathogen invasion, perch growth should have reflected the combined action of the two 66 antagonistic selective forces (21). We have tested this prediction by estimating nonlinear 67 changes in perch somatic growth rate (21). In our statistical analysis, we accounted for the 68 effects of environmental variables known to plastically affect perch growth [i.e. primary 69 productivity, water temperature, and perch density (23), see Material and methods] and, by 70 using a smooth term on the Year class effect, we removed any a priori expectation concerning 71 the shape of the temporal trend. We performed separate analyses for each basin of 72 Windermere because the two perch populations are considered distinct (30, 31), thus 73 providing a natural replicate for hypothesis testing. Since life-history responses to pathogens 74 may be sex-specific (28), we also performed separate analyses for each sex. In both basins of

the lake, our results support the prediction that pike and pathogens induced selection inopposite directions on perch body-size.

77

78 **Results and discussion**

79

80 Before 1976, perch somatic growth rate generally increased in both basins and in both male 81 and female perch (Fig. 2C), in parallel with an overall increase in predation pressure (Fig. 82 2A). Short-term variations in predation pressure (Fig. 2A) were in remarkably close match 83 with similar changes in perch growth in both basins (especially in males, Fig. 2C), supporting 84 the prediction that pike selected for increased somatic growth in Windermere perch. A 85 correlation analysis revealed that predation pressure had a statistically significant (p < 0.05) 86 positive effect on perch somatic growth at lags ranging from 0 to 9 years, with the highest 87 correlation at a 5-years lag. This lag corresponds roughly to 1.25 to 5 perch generations since 88 male perch in Windermere may mature at age-1 but mean age of mature fish in the catch was 89 approximately age-4. Interestingly, female perch responded less closely than male perch to 90 variation in the predation pressure (Fig. 2C), presumably because females reached a size 91 refuge faster than males (Sex effect in Table 1). Indeed, fast immature growth generally lasts 92 longer in female than in male fish because females mature at an older age (29). After outbreak 93 of the pathogen in 1976, Windermere perch somatic growth decreased rapidly in both basins 94 and for both sexes (Fig. 2C) despite the fact that predation pressure remained high (Fig. 2A). 95 This result supports the prediction that the pathogen selected for slow somatic growth in 96 perch, and further suggests that the strength of pathogen-induced selection overrode the 97 strength of pike-induced selection (21, 22). Finally, perch somatic growth rate in 1995 98 decreased to 1940s values in the north but not in the south basin (Fig. 2C), in accordance with

raw data observation of perch numbers (Fig. 1A), age (Fig. 1C) and size (Fig. 1D) showingthat the infection was more severe in the north than in the south basin.

101 Antagonistic selection from multiple consumers on their joint prey may result in 102 counterintuitive demographic effects. Indeed, while linear density-dependence predicts a 103 negative impact of multiple consumers on each other (i.e., exploitative competition), 104 antagonistic selection on a joint resource can make consumers mutually beneficial foragers (5, 105 6). In Windermere, observations are consistent with the predictions that the effects of 106 antagonistic selection overrode the effects of exploitative competition and made pike and the 107 pathogen mutually beneficial foragers. Indeed, signs of an externally similar disease on perch 108 were reported as early as 1963 (27) but the spread of the pathogen and massive perch kill in 109 1976 coincided with a peak in predation pressure in both basins (Fig. 2A). Additionally, 110 predation pressure was higher in the north than in the south basin both before and after the 111 spread of the pathogen (Fig. 2A), and the infection was more severe in the north than in the 112 south basin (see above). Therefore, by increasing the proportion of large, fast-growing perch 113 which were more sensitive to infection, pike may have facilitated the spread of the pathogen. 114 Then, by selecting against slow somatic growth in perch, pike may have prevented perch from 115 maximizing energy allocation to disease resistance (28) and may have favored the 116 maintenance of high levels of pathogen prevalence.

In turn, by preventing perch from reaching a size refuge the pathogen may have made perch become easier prey for and weaker competitors with pike (16). This process has been recently demonstrated by the artificial removal of large prey (Arctic charr *Salvelinus alpinus*) from a Norwegian lake, which ultimately increased top predator numbers (Brown trout *Salmo trutta*) (32). In Windermere, examination of trends in pike numbers suggests a similar process driven by the pathogen. Indeed, at odds with a linear density-dependent effect, pike numbers increased markedly after invasion of the perch pathogen in Windermere (Fig. 1B). We

124 predicted that juvenile pike should have most strongly benefited from invasion of the perch 125 pathogen because (i) juvenile pike were shown from diet data to be more directly in potential 126 competition with large perch (18-20) and (ii) juvenile pike eat at a higher rate than large pike 127 and are thus more susceptible to competition for food (20). To test this prediction, we used 128 pike stock-recruitment models which explored the relationship between parental stock size in 129 year y and the number of age-2 pike in year y+2 (see Materials and methods). These models 130 allowed us to estimate the effects of pathogen-induced trait changes in perch on the pike-131 perch interaction, while controlling for the effects of temperature, perch numbers and pike 132 numbers (Table 1). As emphasized above, perch populations in the north and south basins of 133 Windermere should be considered distinct and only about 20% of pike disperse between the 134 two basins (14, 15). We therefore analyzed pike recruitment separately for the north and south 135 basins. Our results clearly show that pathogen-induced trait changes in perch increased 136 juvenile pike survival by changing perch from being mainly a competitor to being mainly a 137 prey for pike.

138 Pike recruitment rate (i.e., number of recruits per spawner) increased significantly in 139 both basins after invasion of the pathogen (Pathogen effects in Table 1, intercepts in Fig. 2B). 140 This increase was not the result of a higher number of eggs produced by female pike because 141 female pike reproductive investment decreased from 1963 to 1995 (21). Increased pike 142 recruitment rate was also not due to a relaxation of density dependence (competition and 143 cannibalism) in the pike population because the strength of density dependence did not 144 change significantly (SSB*Pathogen interactions in Table 1, slopes almost unchanged in Fig. 145 2B). Therefore, increased pike recruitment rate most likely reflected increased survival of 146 small pike due to pathogen-induced trait changes in perch. Modeling the effect of perch on 147 pike recruitment rate supported this hypothesis. Pathogen invasion changed the effect of perch 148 from negative to positive (Perch*Pathogen interactions in Table 1, slopes changing from

149 negative to positive in Fig. 2D), indicating that the pike-perch link was changed from a 150 mixture of predation and competition dominated by perch towards a simpler predator-prey 151 relationship dominated by pike. Interestingly, perch traits were more severely shifted by the 152 pathogen in the north than in the south basin (see above), driving a locally higher increase in 153 pike recruitment and steeper change in the effect of perch on pike survival (Fig, 2D, Table 1). 154 These results suggest that antagonistic selection from predators and pathogens on 155 Windermere perch body-size generated a mechanism similar to the so-called "synergy" [i.e. 156 synergistic foraging rates (5, 6, 10)] which has been modeled to arise among multiple 157 predators when there is a trade-off in the prey for behavioral avoidance of the predators (5, 6). 158 To our knowledge, our results provide the first empirical example of this synergistic effect 159 acting through prey life-history change.

160

161 Conclusions

162

163 It has been shown that behavioral disturbance of predation capacity and sensitivity to 164 predation in an invertebrate host (Gammarus spp.) by parasites can reverse species dominance 165 in an IGP hierarchy (17). Parasites have also been shown to indirectly increase algal growth 166 by reducing grazing capacity in a gastropod host (12). Our findings considerably expand the 167 scope for parasite-induced effects on ecosystems by showing synergistic effects between 168 parasites and predators acting through antagonistic selection on the prey. Antagonistic 169 selection on prey body-size (as depicted in Windermere) is a potentially strong ecosystem 170 modifier because body-size determines a host of species traits that affect the structure and 171 dynamics of food webs (4, 33). Hence, in light of the abundance of parasites across systems 172 (11), size-selective predators and pathogens are likely to play an important role in the 173 structuring and resilience of ecosystems. So far, synergistic foraging between multiple

174 consumers (acting through a behavioral trade-off in the prey) has been consistently modeled
175 to favor species coexistence and food-web stability (5, 6).

176 Antagonistic selection leading to synergistic foraging rates has practical implications 177 since it can magnify the effects of species introductions and human activities. For instance, 178 invasive species will more strongly deplete native resource populations if they select in an 179 opposite direction compared to native predators or pathogens of the resource. Antagonistic 180 selection, by favoring species coexistence (5, 6), may also favor long-term persistence of 181 invasive predators and parasites. In particular, our results underline that predators can 182 influence coevolution between parasite virulence and host resistance by impeding evolution 183 of resistance in the host (13, 34, 35). Finally, harvesting by humans often targets large 184 individuals and induces body-size reduction in exploited populations (21). Hence, harvesting 185 could select in an opposite direction to competitors and predators and magnify their effects. 186 Management strategies ignoring potential effects of antagonistic selection on trophic 187 interactions might lead to inappropriate management of ecological resources.

188

189 Materials and methods

190

Perch growth modeling. Perch traps used for sampling were unselective for individuals ranging from 9 to 30 cm body length and thus captured both fast and slow growers for ages ranging from 2 to 6 years (23). However, age 5 and 6 perch became rare after the invasion of the pathogen in Windermere. Therefore, in order to confidently rule out possible effects of sampling bias we restricted our growth analysis to perch caught from age-2 to age-4. We modeled temporal changes in Windermere perch somatic growth rate using a generalized additive model (mgcv library of R (36)) of the form:

198
$$BL = \beta_0 + f_1(A) + \beta_1 Bas + \beta_2 S + \beta_3 T + \beta_4 Ph + \beta_5 P + \beta_6 Ph \times T + \beta_7 P \times T + f_2(Yc) + \varepsilon$$
 Eq(1)

200 where *BL* stands for body length of individual *i* and year class *Yc* (n=67,457), *A* is the 201 individual's age at capture, Bas is the basin in which the individual was captured, S is the 202 individual's sex, T, Ph and P are mean temperature, mean phosphorus concentration and mean 203 perch density (small + large), respectively, experienced by the individual (i.e. from year Yc to 204 year Yc+A), β s are slopes of the linear effects, β_0 is an intercept, ε is an error term, and f_1 and 205 f_2 are nonparametric smoothing functions (natural cubic splines fitted by generalized cross 206 validation (36)). In the model, interactions between temperature and the other biological 207 covariates accounted for the thermal dependence of primary productivity and competitive 208 interactions. Plots in Fig. 2C were produced with basin- and sex-specific models as described in Eq(1) but in which Bas and S were dropped (north basin: n=17,321 males and n=3,279 209 210 females; south basin: n=40,904 males and n=5,953 females). 95% confidence limits around 211 the Yc effect in Fig. 2C were computed using a modified wild bootstrap approach (37). 212 Briefly, the bootstrap distribution for the effect estimate was obtained by randomly inverting 213 the signs of the errors from the model, adding these to the fitted values, and refitting the 214 model (repeated 500 times). To account for intra year-class correlation, all errors from a given 215 year-class in a given bootstrap sample were either inverted or not with probability 0.5. 216 Estimates of the main effects of T, Ph and P in Table 1 were obtained from a model in which 217 the interaction terms were omitted from Eq(1). We calculated predation pressure from pike on 218 perch as the natural log of the ratio of the numbers of all (age ≥ 2) pike on the number of 219 small (age-2) perch because pike target mainly small perch in Windermere (20). Finally, we 220 tested for the link between predation pressure and perch somatic growth using correlations 221 between the fitted Yc effect (from 4 basin- and sex-specific models as in Fig. 2C) and 222 predation pressure from pike on perch in year class *Yc-t* where *t* varied from 0 to 16 years. 223

224 Pike recruitment modeling. We modeled pathogen- associated change in pike recruitment
225 using linear stock-recruitment models (38) of the form:

226

227
$$\ln(R/SSB) = \beta_0 + \beta_1 T + \beta_2 P + \beta_3 SSB + \beta_4 SSB \times Pa + \varepsilon \quad Eq(2)$$

228

229 where R stands for the number of pike recruits (i.e. age-2 pike) in year y and basin Bas (n=50 230 for each basin), SSB is pike spawning stock biomass (i.e. number of spawners) in year y-2 and 231 basin *Bas*, *T* and *P* are mean water temperature and mean perch density (small + large) 232 experienced by the recruits from year y-2 to year y, Pa is the pathogen (i.e. presence or 233 absence), β s are slopes of the effects, β_0 is an intercept, and ε is an error term. We modeled 234 changes in the pike-perch interaction using a model similar to Eq(2) except that P and SSB 235 were inverted in Eq(2). In our models, the response (natural log of the *R/SSB* ratio) measured 236 recruitment rate, i.e. the number of recruits per spawner (38). The SSB effect in the right hand 237 side of Eq(2) captured cannibalism and competition (density-dependence) in the pike 238 population (38), and the SSB*Pa interaction tested for an effect of the perch pathogen on 239 density dependence in the pike population. The P effect captured predation and competition 240 between perch and juvenile pike, while the P*Pa interaction tested for an effect of pathogen-241 induced trait changes in perch on the pike-perch trophic interactions. Estimation of the main 242 effects of T, P, SSB, and Pa in Table 1 were obtained from a model in which the interaction 243 term was omitted from Eq(2). Predicted values in Figs. 2B and 2D were computed from 2 244 different models as in Eq(2) but in which only the focal terms (SSB and Pa in Fig. 2B; P and 245 Pa in Fig. 2D) were kept.

Acknowledgments. We are grateful to the many individuals who have participated in the Windermere data collection over the years. We thank Stephanie M. Carlson and Leif Chr. Stige for comments on an earlier version of the manuscript; Leif Chr. Stige also provided statistical advice. We also thank the Freshwater Biological Association for their joint stewardship of these invaluable data. E.E. received support from the Research Council of Norway and T.B.A. received support from a Marie Curie PhD fellowship awarded to CEES. Support from the Natural Environment Research Council to the Centre for Ecology & Hydrology is also acknowledged.

Author contributions. E.E. and T.B.A. conceived the study. E.E. performed the statistical analyses. E.E. and T.B.A. wrote the paper in dialogue with all coauthors, all of whom participated in the interpretation of the statistical results. I.J.W., J.M.F. and J.B.J. contributed to the collection of data and made them all available to the present study.

Author information. The authors declare that they have no conflicts of interests. Correspondence and requests for materials should be addressed to N.C.S. (n.c.stenseth@bio.uio.no).

References

- Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294: 321-326.
- Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. *Ecology* 84: 1083-1100.

- 3. Bolker B, Holyoak M, Krivan V, Rowe L, Schmitz O (2003) Connecting theoretical and empirical studies of trait-mediated interactions. *Ecology* 84: 1101-1114.
- Loeuille N, Loreau M (2005) Evolutionary emergence of size-structured food webs.
 Proc Natl Acad Sci USA 102: 5761-5766.
- Huxel GR (2007) Antagonistic and synergistic interactions among predators. *B Math Biol* 69: 2093-2104.
- Kondoh M (2007) Anti-predator defence and the complexity-stability relationship of food webs. *Proc R Soc Lond B* 274: 1617-1624.
- 7. Matsuda H, Abrams PA, Hori M (1993) The effect of adaptive antipredator behavior on exploitive competition and mutualism between predators. *Oikos* 68: 549-559.
- Yoshida T, Ellner SP, Jones LE, Bohannan BJM, Lenski RE, *et al.* (2007) Cryptic population dynamics: rapid evolution masks trophic interactions. *Plos Biol* 5: 1868-1879.
- 9. Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG (2003) Rapid evolution drives ecological dynamics in a predator-prey system. *Nature* 424: 303-306.
- Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of traitmediated indirect interactions. *Ecol Lett* 7: 153-163.
- Lafferty KD, Dobson AP, Kuris AM (2006) Parasites dominate food web links. *Proc Natl Acad Sci USA* 103: 11211-11216.
- 12. Wood CL, Byers JE, Cottingham KL, Altman I, Donahue MJ, *et al.* (2007) Parasites alter community structure. *Proc Natl Acad Sci USA* 104: 9335-9339.
- Rigby MC, Jokela J (2000) Predator avoidance and immune defence: costs and tradeoffs in snails. *Proc R Soc Lond B* 267: 171-176.

- Haugen TO, Winfield IJ, Vøllestad LA, Fletcher JM, James JB, *et al.* (2006) The ideal free pike: 50 years of fitness-maximizing dispersal in Windermere. *Proc R Soc Lond B* 273: 2917-2924.
- 15. Haugen TO, Winfield IJ, Vøllestad LA, Fletcher JM, James JB, *et al.* (2007) Density dependence and density independence in the demography and dispersal of pike over four decades. *Ecol Monogr* 77: 483-502.
- Holt RD, Polis GA (1997) A theoretical framework for intraguild predation. *Am Nat* 149: 745-764.
- Hatcher MJ, Dick JTA, Dunn AM (2006) How parasites affect interactions between competitors and predators. *Ecol Lett* 9: 1253-1271.
- McCormack JC (1970) Observations on food of perch (*Perca fluviatilis* L.) in Windermere. *J Anim Ecol* 39: 255-267.
- Craig JF (1978) A study of the food and feeding of perch, *Perca fluviatilis* L., in Windermere. *Freshwater Biol* 8: 59-68.
- 20. Frost WE (1954) The food of pike, *Esox lucius* L., in Windermere. *J Anim Ecol* 23: 339-360.
- 21. Edeline E, Carlson SM, Stige LC, Winfield IJ, Fletcher JM, *et al.* (2007) Trait changes in a harvested population are driven by a dynamic tug-of-war between natural and harvest selection. *Proc Natl Acad Sci USA* 104: 15799-15804.
- Carlson SM, Edeline E, Vøllestad LA, Haugen TO, Winfield IJ, *et al.* (2007) Four decades of opposing natural and human-induced artificial selection acting on Windermere pike (*Esox lucius*). *Ecol Lett* 10: 512-521.
- Le Cren ED (1958) Observations on the growth of perch (*Perca fluviatilis* L.) over twenty-two years with special reference to the effects of temperature and changes in population density. *J Anim Ecol* 27: 287-334.

- 24. Le Cren ED (1947) The determination of the age and growth of the perch (*Perca fluviatilis*) from the opercular bone. *J Anim Ecol* 16: 188-204.
- 25. Frost WE, Kipling C (1959) The determination of the age and growth of pike (*Esox lucius*) from scales and opercular bones. *J Cons Int Explor Mer* 24: 314-341.
- des Clers S, Fletcher JM, Winfield IJ, Kirkwood GP, Cubby PR, et al., Tech. Report No. WI/T11050d5/4 (Ministry of Agriculture, Fisheries and Food, 1994).
- 27. Bucke D, Cawley GD, Craig JF, Pickering AD, Willoughby LG (1979) Further studies of an epizootic of perch, *Perca fluviatilis* L., of uncertain aetiology. *J Fish Dis* 2: 297-311.
- 28. Zuk M, Stoehr AM (2002) Immune defense and host life history. Am Nat 160: S9-S22.
- 29. Roff DA (1992) *The evolution of life histories: theory and analysis* (Chapman and Hall, New York).
- Kipling C, Le Cren ED (1984) Mark-recapture experiments on fish in Windermere,
 1943–1982. J Fish Biol 24: 395-414.
- Bodaly RA, Ward RD, Mills CA (1989) A genetic stock study of perch, *Perca fluviatilis* L., in Windermere. *J Fish Biol* 34: 965-967.
- Persson L, Amundsen PA, De Roos AM, Klemetsen A, Knudsen R, *et al.* (2007)
 Culling prey promotes predator recovery alternative stable states in a whole-lake
 experiment. *Science* 316: 1743-1746.
- Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, et al. (2005)
 Body size in ecological networks. *Trends Ecol Evol* 20: 402-409.
- May RM, Anderson RM (1983) Epidemiology and genetics in the coevolution of parasites and hosts. *Proc R Soc Lond B* 219: 281-313.
- 35. Fussmann GF, Loreau M, Abrams PA (2007) Eco-evolutionary dynamics of communities and ecosystems. *Funct Ecol* 21: 465-477.

- 36. R Development Core Team (2005) *R: A language and environment for statistical computing* (R Foundation for Statistical Computing, Vienna, Austria)
- Stige LC, Ottersen G, Brander K, Chan KS, Stenseth NC (2006) Cod and climate:
 effect of the North Atlantic Oscillation on recruitment in the North Atlantic. *Mar Ecol Prog Ser* 325: 227-241.
- 38. Ricker WE (1954) Stock and recruitment. J Fish Res Board Can 11: 559-623.

Figure legends

Figure 1. Background information for pike (*E. lucius*), perch (*P. fluviatilis*) and for expansion of a perch-specific pathogen in Windermere (UK). Vertical solid lines indicate the first massive perch kill from the pathogen in 1976. (**A-B**) Time series for population size of perch (**A**) and pike (**B**) in the north and south basins of the lake, separated into small (age-2 years) and large (age \geq 3 years) individuals. Horizontal lines show mean abundances before and after pathogen invasion, separately for small (dashed and dotted lines) and large (solid lines) individuals. (**C-D**) Time series for perch mean age (**C**) and mean body length (**D**) with 95% confidence intervals, separated by sex and basin.

Figure 2. Effects of predator (pike, E. lucius)- and pathogen-induced selection on perch (P. *fluviatilis*) trait-change and resultant impacts on pike-perch-pathogen interactions in Windermere (UK). Vertical solid lines indicate the first massive perch kill from the pathogen in 1976. Note that a peak in the predation pressure coincided with the perch kill. (A) Time series for the predation pressure from pike on perch in each basin of Windermere. (B) Effect of the perch pathogen on the link between number of pike spawners (SSB) and pike recruitment rate (i.e. natural log of number of age-2 recruits per spawner) in each basin of the lake (see also Table 1). Points represent observed data and lines represent predicted values with 95% confidence intervals. (C) Nonlinear temporal trends for perch somatic growth rate (in partial residuals units) with 95% bootstrap confidence intervals, accounting for the effects of environmental variation in growth conditions. Gray points represent the partial residuals for the smooth term (i.e. residuals that would be obtained by dropping the focal term from the model while leaving all other estimates fixed). Trends are provided separately for each sex and basin of the lake. (D) Effect of the perch pathogen on the link between perch density and pike recruitment rate (see also Table 1). Points represent observed data and lines represent predicted values with 95% confidence intervals.

Figure 1.

Figure 2.

Table legend

Table 1. Model parameter estimates and their statistical significance (df: degrees of
freedom, edf: estimated degrees of freedom of smooth term).

Response	Effects	Estimate*	df (linear effect) or edf (smooth term)	F value	P value¶
Perch body length (n = 67,457)	f(Age)	none	1.992; 67,445.17	53593	< 0.0001
	Basin (south relative to north)	2.987	1; 67,445.17	249.97	< 0.0001
	Sex (females relative to males)	5.297	1; 67,445.17	566.25	< 0.0001
	Temperature	1.210 e+1	1; 67,441	2366.4	< 0.0001
	Phosphorus	-8.071	1; 67,441	919.3	< 0.0001
	Perch density	-3.688 e-5	1; 67,441	4277.9	< 0.0001
	Phosphorus * Temperature	7.016	1; 67,445.17	999.74	< 0.0001
	Perch density * Temperature	-6.223e-06	1; 67,445.17	134.01	< 0.0001
	f(Year class)	none	4.749; 67,445.17	3877	< 0.0001
Ln(Pike recruits/SSB), North basin (n = 50)	SSB (spawning stock biomass)	-1.517e-04	1,45	20.4	< 0.0001
	Temperature	2.860e-01	1,45	4.8	0.0344
	Perch density	-7.819e-07	1,45	1.2	0.1259
	Pathogen (presence/absence)	8.704e-01	1,45	8.7	0.0051
	SSB * Pathogen	-8.831e-05	1,44	1.1	0.3016
	Perch density * Pathogen	7.934e-06	1,44	7.7	0.0080
Ln(Pike recruits/SSB), South basin (n=50)	SSB (spawning stock biomass)	-1.994e-04	1,45	16.6	< 0.0002
	Temperature	4.532e-01	1,45	6.1	0.0172
	Perch density	-9.134e-07	1,45	4.2	0.0458
	Pathogen (presence/absence)	7.247e-01	1,45	5.6	0.0220
	SSB * Pathogen	7.568e-05	1,44	0.9	0.3577
	Perch density * Pathogen	1.273e-06	1,44	0.5	0.4985

* Parameter estimates for main effects are from models without interaction terms. \P Sequentially tested in case of stock-recruitment models.