
 
 
 
 
 
 

Wave modelling – the state of the art 
 
 
 
 
 

The WISE Group1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14 July, 2006 

                                                 
1 Corresponding author: Luigi Cavaleri, ISMAR-CNR, San Polo 1364, 30125 Venezia, Italy 
Ph. +39 041 5216810, Fax +39 041 2602340, E-mail: luigi.cavaleri@ismar.cnr.it 



 
 
 
 

Abstract 

This paper is the product of the wave modelling community and it tries to make a picture of 

the present situation in this branch of science, exploring the previous and the most recent 

results and looking ahead towards the solution of the problems we presently face. Both theory 

and applications are considered. 

The many faces of the subject imply separate discussions. This is reflected into the single 

sections, seven of them, each dealing with a specific topic, the whole providing a broad and 

solid overview of the present state of the art. After an introduction framing the problem and 

the approach we followed, we deal in sequence with the following subjects: (Section) 2, 

generation by wind; 3, non-linear interactions in deep water; 4, white-capping dissipation; 5, 

non-linear interactions in shallow water; 6, dissipation at the sea bottom; 7, wave propagation; 

8, numerics. The two final sections, 9 and 10, summarize the present situation from a general 

point of view and try to look at the future developments. 
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1. Introduction 
 
by 



Luigi Cavaleria∗

 
Along the progressive development of the art of wave modelling we have witnessed periods 

of great advances usually followed by periods of consolidation, when the focus of activity 

was mainly on the application of the newly developed tools and artifices. Wave modelling is a 

great art containing two aspects of human knowledge: theory, often touching basic principles 

from more fundamental sciences, and practical applications. Our ever increasing interaction 

with the sea has offered endless opportunities to apply to the everyday problems what the 

theory had just revealed. Granted a certain degree of maturity has been reached, advances are 

often rapid at the beginning of a science. With a bit of low pass filtering, we can easily 

recognise in the last sixty years the periods when more fundamental advances in wave 

modelling have taken place, followed by periods of application and a proliferation of small 

scale improvements. Unavoidably, the rate with which we advance tends to decrease. The 

basic pieces of information, at least within the present perspective, have been brought to light, 

and we are much closer to providing satisfactory results on a large scale. Somehow, the wave 

modelling community is asking to itself if and when new basic pieces of knowledge will 

appear. The alternative would be to carry on with technological and engineeristic 

improvements, edging our way towards more satisfactory results. 

 
At this stage we feel the need to understand better where we are, and to get a better 

perspective of the evolution of the problem and of the state of the art of the science we deal 

with. In this paper we make a picture of the present situation, when necessary with some 

historical perspective, and we try to give indications, in some cases hints, of where wave 

modelling should or it is expected to go in the future. Following a common conceptual model, 

we have split the discussion into separate subjects. To a good degree of approximation this 

corresponds to how the problem is presently formulated in its basic equations and physical 
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description. About this point a more extensive comment will be given in the final discussion. 

We consider progressively the following subjects. 

Input by wind is the essential process without which wind waves would not exist. Witnessed 

by man since the early ages, this elusive process has defeated for a long while human 

intuition. The theoretical and practical difficulties cannot be overestimated. 

Nonlinear interactions are probably the most solid piece of information in wave modelling. 

Inspired by fundamental physics, and brought to light more than forty years ago, it is well 

defined. The problem is practical, in that the necessary computer time for its proper 

evaluation is not yet available. 

White-capping, or dissipation in deep water, is the third basic physical process that governs 

the evolution of wind waves in the open oceans. It is the least understood part of wave 

evolution, and, combining some intuition with a pragmatic approach, it has been for a while, 

and still is, the tuning knob of any wave model.  

Once in shallow water, nonlinear interactions become a more active subject of theoretical 

research. This section provides a summary of the recent advances, with substantial 

expectations for practical applications. 

Bottom dissipation represents the interaction and energy sink of wind waves with/at the sea 

bottom. It summarises a number of different processes. Although bottom friction represents 

the most commonly used term, the relevance of each process depends on the local 

characteristics of the sea floor. 

Wave propagation in non-homogeneous media, and in particular wave-current interactions, 

are the first link between these two more evident characteristics of the sea. The related 

interests and practical improvements have gone in one with the available knowledge of the 

distribution of currents at the coasts and in the open oceans. 



Finally, numerics represents the practical description and application of the above processes. 

The discrete description of the sea we use in wave modelling leads to a number of problems 

whose solution we try to optimise. 

Each of the above subjects may, and often does, represent the focus of activity of the single 

modeller.  Hence each section has been written by a different group of persons, with their own 

style. Although we have applied a minimum of homogenisation, there are obvious differences 

in the way each section is dealt with. In a way, this reflects the multi-dimensional approach to 

the problem. Granted the constant flow of information to the whole community, each person 

or subgroup contributes autonomously with his/their own initiative. The joining force of our 

group is the common interest in waves and the wish to improve our results with a permanent 

exchange of information. 

It has been suggested that a more unified and controlled approach would be more effective. 

Apart from the obvious financial and institutional difficulties, this could be true in the short 

term, for a specific problem. With a wider perspective and in the long term, we need the wild 

horse that comes out with unconventional ideas, one of which may become the seed for 

further advancements. As human beings, we are far from being a perfect organisation, but we 

are joined by our common desire to understand the essence and beauty of nature. 

The paper is organised in the logical sequence outlined above. Sections from 2 to 8 deal 

progressively with wind input, nonlinear interactions, white-capping, nonlinear interactions in 

shallow water, interactions with the sea bottom, motion in non-homogeneous media and 

wave-current interactions, and numerics. In section 9 we summarise the situation, pointing out 

the well established results and, more interestingly from the scientific point of view, the 

problems we are still left with. Finally in section 10 we discuss the challenges and the 

openings we expect for the future. 



Although not up to the level of a paper, each section is self-standing, and it can be easily read 

autonomously. However, a progressive reading of the various sections will made clearer both 

the difficulties of the overall problem and how far we have been able to go. 

The paper is authored by the whole Group, as we consider any advancement as a collective 

achievement. The continuous interactions and exchange of information are an essential part of 

our activity. However, each single section has been written by a definite sub-group, whose 

components are listed after each sub-title. Their affiliations are given, all together, at the end 

of the paper 

 
2. Brief Review of Wind-Wave Generation 
 
by 
Peter A.E.M. Janssenb, Luigi Cavaleria, Donald Resioc, Hendrik L. Tolmand

 
The problem of the growth of ocean waves by wind and the consequent feedback of the ocean 

waves on the wind has led to quite some controversy and many debates in the literature. 

Nevertheless, the combination of observations from field campaigns in the 1970's and the 

theoretical work on the critical layer mechanism which started in the 1950's has resulted in 

parameterizations of the wind-input source function that provide good results in operational 

wave models.. Together with a realistic representation of the high-wave number part of the 

wave spectrum, these parameterizations of wind-input have the potential to yield realistic 

estimates of the air-sea momentum transfer. The mutual interaction of ocean waves and the 

atmosphere has resulted in improved forecast skill for wind and ocean wave height, in 

particular in documented cases at ECMWF.  

In this section, after reviewing the present state of the art of our knowledge on the wind-input 

source function and the feedback of ocean waves on the wind, we discuss a number of open 

issues which may need to be addressed in the near future. These concern the problem of high-

frequency variability in atmospheric models and the modelling of the extreme cases of large 



winds and low winds. In particular, it is becoming increasingly clear that the drag coefficient 

may not be well specified in extreme situations such as hurricanes. 

 
2.1. Linear theory 

Understanding the growth of water waves by wind is a very challenging task. On the one 

hand, from the theoretical point of view it should be realized that one deals with a difficult 

problem because it involves the modelling of a turbulent airflow over a surface that varies in 

space and time. On the other hand, from an experimental point of view it should be pointed 

out that it is not an easy task to measure growth rates of waves by wind in a direct manner. 

Nevertheless, considerable progress has been made over the past forty years. The history of 

the subject of wind-wave generation started in the beginning of the 20th century when 

Jeffreys (1924, 1925) assumed that air flowing over the ocean surface was sheltered by the 

waves on their lee side. This would give a pressure difference, so that work could be done by 

the wind. Subsequent laboratory measurements on solid waves showed that the pressure 

difference was much too small to account for the observed growth rates. As a consequence, 

the sheltering hypothesis was abandoned, and one's everyday experience of the amplification 

of water waves by wind remained poorly understood. This changed in the mid-1950's, when 

Phillips (1957) and Miles (1957) published their contributions to the theory of wave 

generation by wind. Both theories had in common that waves were generated by a resonance 

phenomenon: Phillips considered the resonant forcing of surface waves by turbulent pressure 

fluctuations, while Miles considered the resonant interaction between the wave-induced 

pressure fluctuations and the free surface waves. Miles' mechanism looked more promising, 

because it implied exponential growth, and it is of the order of the density ratio of air and 

water.  

However, there was also a considerable confusion and controversy. One of the main reasons 

for the controversy was that Miles' theory oversimplified the problem by following the quasi-



laminar approach. This approach assumes that the airflow is inviscid and that air turbulence 

does not play a role except in maintaining the shear flow. Another reason is that Miles 

neglected nonlinear effects such as wave-mean flow interaction, which are expected to be 

important at the height where the wind speed matches the phase speed of the surface waves 

wind speed (the so-called critical height). Also, early field experiments, in particular by 

Dobson (1971), gave rates of energy transfer from wind to waves that were an order of 

magnitude larger than predicted by Miles (1957). More recent field experiments (Snyder, 

1974; Snyder et al, 1981; Hasselmann and Bosenberg, 1991) show order of magnitude 

agreement with Miles' theory, although the theory still predicts energy transfer rates that are 

smaller than the measured values, especially for relatively low-frequency waves with a phase 

speed that is close to the wind speed at 10 m height.  

There have been several attempts to overcome these shortcomings by means of numerical 

modelling of the turbulent boundary layer flow over a moving water surface. With suitable 

turbulence closure assumptions the interaction of the wave-induced flow with the mean flow 

and the boundary-layer turbulence can then be simulated explicitly. One such approach (see, 

for example, Gent and Taylor, 1976; Makin and Chalikov, 1979; Riley et al, 1982; Al-Zanaidi 

and Hui, 1984; Jacobs, 1987; Chalikov and Makin, 1991; Chalikov and Belevich, 1993) 

considers the direct effects of small scale turbulence on wave growth. Mixing length 

modelling or turbulent energy closure is then assumed to calculate the turbulent Reynolds 

stresses. The resulting diffusion of momentum is then so large that essentially Miles' critical 

mechanism becomes ineffective. In addition, in adverse winds or when waves are propagating 

faster than the wind speed these theories give a considerable wave damping, while in Miles' 

theory damping is absent. There are, however, no convincing field observations of wave 

damping (Snyder et al (1981) and Hasselmann and Bosenberg (1991)), presumably because 

the actual damping time scales are quite long.  



The above turbulence models rely on the analogy with molecular processes. Van Duin and 

Janssen (1992) pointed out that this approach fails for low-frequency waves. Mixing length 

modelling assumes that the momentum transport caused by turbulence is the fastest process in 

the fluid. This is not justified for low-frequency waves which interact with large eddies whose 

eddy-turnover time may become larger than the period of the waves. In other words, during a 

wave period there is not sufficient time for the eddies to transport momentum. For these large 

eddies (which are identified here with gustiness) another approach is needed. Nikolayeva and 

Tsimring (1986) considered the effect of gustiness on wave growth, and a considerable 

enhancement of energy transfer was found, especially for long waves with a phase speed 

comparable to the wind speed at 10 m height.  

Belcher and Hunt (1993) have pointed out that mixing length modelling is even inadequate 

for slowly propagating waves. They argue that far away from the water surface turbulence is 

slow with respect to the waves so that again large eddies do not have sufficient time to 

transport momentum. This results then in a severe truncation of the mixing length in the so-

called outer layer of the flow. In fact, the greater part of the flow may now be regarded as 

approximately inviscid and the energy transfer from wind to slow waves only occurs in a thin 

layer above the surface. Note that the main mechanism for wave growth in the Belcher and 

Hunt model is the so-called non-separated sheltering: the Reynolds stresses close to the 

surface cause a thickening of the boundary layer on the leeside of the waves which would 

result in flow separation when the slope is large enough. This mechanism is akin to Jeffreys' 

sheltering hypothesis, which was originally developed for separated flows over moving waves 

of large slope. The approach of Belcher and Hunt has been further developed by Mastenbroek 

(1996) in the context of a second-order closure model for air turbulence, confirming the ideas 

of rapid distortion.  

In short, the developments over the past 40 years may be summarized as follows. Miles' 

quasi-laminar theory was the first model to give a plausible explanation of the growth of 



waves by wind. Because of the neglect of turbulence on the wave-induced motion the quasi-

laminar model has been criticized as being unrealistic, therefore questioning the relevance of 

the critical layer mechanism for wind-wave growth. First attempts to describe the effects of 

turbulence by means of a mixing length model have been criticized as well, however, mainly 

because the eddies in the outer layer in the air are too slow to transfer a significant amount of 

momentum on the time scale of the wave motion. But, according to rapid distortion models 

such as the one of Belcher and Hunt (1993) or Mastenbroek (1996), the critical layer 

mechanism is only relevant for very fast moving ocean waves with a dimensionless phase 

speed, defined as c/u*, of the order of 30.  

Recently there is evidence that even the rapid distortion approach of Belcher and Hunt 

overestimates the effects of eddies on the wave-induced flow. Sullivan et al (2000) studied the 

growth of waves by wind in the context of an eddy-resolving numerical model. Although the 

Reynolds number was, compared to nature, too small by an order of magnitude, clear 

evidence for the existence of a critical layer was found for a wide range of dimensionless 

phase speeds. As expected from the Miles mechanism, a rapid fall-off of the wave-induced 

stress was seen at the critical height. Furthermore, nowadays, there is even direct evidence of 

the existence and relevance of the critical layer mechanism from in-situ observations (Hristov 

et al, 2003) obtained from FLIP (a FLoating Instrument Platform created by two Scripps 

scientists some 40 years ago). This is quite a challenge because one has to extract a relatively 

small wave-coherent signal from a noisy signal. Nevertheless, for the range 16< c/u*<40, 

Hristov et al (2003) did see a pronounced cat's-eye pattern around the critical height where the 

wave-induced stress showed a jump. As shown in Figure 2.1 there is a good agreement 

between observed and wave-induced profiles as obtained from the critical layer solution. Note 

that there is no observational evidence of a critical layer for dimensionless phase speeds less 

than 16. These conditions can only be observed by means of a wave follower when 

measurements are taken close enough to the ocean surface, in between the ocean waves.  



A reason for the overestimation of the effect of eddies on the wave-induced motion has been 

discussed in Janssen (2004).  Following the rapid-distortion ideas of Belcher and Hunt it is 

argued that the large eddies are too slow to transport a significant amount of momentum 

during one wave period. The outer layer is approximately inviscid and only in a 'thin' layer 

above the surface mixing length modelling applies [so-called 'inner' layer].  

An appropriate wave time scale is TA= 1/k(U0(z)-c), while Belcher and Hunt take as turbulent 

time scale: TL=kz/u*. The thickness zt of inner, turbulent layer then follows from equating the 

two time scales, TA=T  and the mixing length is truncated to the value kzL t (truncated mixing 

length model). 

However, momentum transfer by eddies occurs on a time scale that is larger than the eddy-

turnover time. Indications for this follow from observations of flow over a hill (Walmsley and 

Taylor, 1996), which gives a much thinner layer, and from estimation of the time scale from  
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This estimate gives, compared to the Belcher and Hunt approach, the much longer time scale 

TM=kz/ε(z)u , since ε(z)=u* */U (z) is a small parameter. The time scale T0 M gives rise to a 

much thinner inner layer. The resulting eddy viscosities are so small that the corresponding 

turbulent momentum transport can be neglected in lowest order. As a consequence, applying 

the truncated mixing length model with turbulent time scale  TM  one rediscovers in lowest 

significant order Miles critical layer result while in next order the turbulent momentum 

transport will give small corrections to the growth rate of the surface gravity waves. In 

particular, the long waves will have a weak damping.  

The resulting growth rate becomes the sum of Miles' critical layer effect and a (small) 

damping term caused by the inner layer viscosity:  
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The parameter β is plotted as function of the dimensionless phase speed c/u* in Figure 2.2.  

The analytical form for the critical layer term was checked against the numerical solution of 

Rayleigh's equation and with the present choice of α the agreement is fair for short waves. For 

long waves the analytical formula, however, seriously underestimates the numerically 

obtained growth rate. The observations compiled by Plant (1982) gives for short waves an 

average value of β of about 30, hence the short wave limit of equation (4.2) is in fair 

agreement with observed values of wave growth.  

 
2.2. Nonlinear effects 

For a given wind profile quasi-laminar theory is fairly successful in predicting growth rates 

and wave-induced profiles. It ignores, however, a possible change of wind profile while the 

ocean waves are evolving. The momentum transfer from wind to waves may be so large that 

the associated wave-induced stress becomes a substantial fraction of the turbulent stress 

(Snyder, 1974, Snyder et al, 1981). The velocity profile over sea waves is controlled by both 

turbulent and wave-induced momentum flux. Therefore, deviations from the profile of 

turbulent airflow over a flat plate are to be expected. In addition, the energy transfer from the 

air to the waves may be affected  by the sea state, so that one expects a strong coupling 

between the turbulent boundary layer and the surface waves.  

Observations confirm this expectation. Measurements by, for example, Donelan (1982), 

Smith et al (1992), Drennan et al (1999) and Oost et al (2002) indicate that the drag 

coefficient depends on the sea state through the wave age. The theory of the interaction of 

wind and waves was elaborated by Fabrikant (1976) and Janssen (1982). The so-called quasi-



linear theory of wind-wave generation keeps track of the slow evolution of the sea state and 

its effects on the wind profile. At each particular time the wave growth follows from Miles' 

theory. It turns out that quasi-linear theory permits an explanation of the observed dependence 

of the airflow on the sea state. The resulting parameterization of the roughness length in terms 

of the wave-induced stress shows a fair agreement with observed roughness (Janssen, 1992). 

Incorporating a wave prediction model in a weather forecasting system, it is possible to 

determine every time step how much momentum the air flow is transferring to the ocean 

waves. Extensive research at ECMWF has shown that the sea-state dependent momentum 

transfer  has resulted in improved forecast skill for both wind and waves (Janssen, 2004). 

Despite the relative success of quasi-linear theory it still cannot be claimed that the problem 

of wind-wave generation and the feedback of ocean waves on the wind is well-understood. 

For example, because the short waves are the fastest growing waves, the wave-induced stress 

is to a large extent determined by the spectrum of the high-frequency waves (see, e.g. Janssen, 

1989; Makin et al 1995). There is presently hardly any evidence of the wave age dependence 

of the short wave spectral levels. However, using a wavelet analysis Donelan et al (1999) did 

find that the wavenumber spectrum of the short waves depends in a sensitive manner on wave 

age: 'young' windsea shows much steeper short waves than 'old' windsea. Nevertheless, the 

physics behind the wave age dependence of the spectrum is not well-understood presently. 

Four-wave interactions could play an important role in this issue because the negative lobe of 

the nonlinear transfer transports energy from the wavenumber region above the peak of the 

spectrum towards the longer waves beyond the peak of the spectrum. But this probably will 

not explain the wave age dependence of the spectral levels of the really short waves. On the 

other hand, it is well-known that the dispersion relation of the short waves is affected by the 

orbital motion of the long waves and/or the Stokes drift. Such a surface drift may have a 

considerable impact on the spectral levels of the short waves (see, for example, Janssen, 

2004), giving an alternative explanation of its sea-state dependence.  



Furthermore, the quasi-linear approach assumes that the short waves are linear, but most 

likely those waves are fairly steep. Therefore the nonlinear process of airflow separation, 

similar to what Jeffreys (1924, 1925) envisaged, may play a role in air-sea momentum 

transfer. According to Makin and Kudryavtsev (2002) this could provide an alternative 

explanation of the sea-state dependence of the drag over sea waves. However, this explanation 

requires that a considerable part of the drag is determined by airflow separation over 

dominant waves, but it is very unlikely that these large waves are breaking frequently. Even 

in the absence of flow separation, there may be  concern about the basic hypothesis of 

linearity in generation by wind. Miles’ (1957) theory was derived for unidirectional, 

monochromatic waves. It has been assumed that the wind-wave interactions are sufficiently 

linear that the wind input  to each spectral component can be considered independently. This 

topic was investigated by Tsimring (1983) who studied the interaction of two waves and the 

mean air-flow, which is basically the most simple case of a wave group. The resulting wave 

growth to one spectral component now depends on the presence of other components. 

Numerically, the effect is small, however,  as it is proportional to the air-sea density ratio time 

the square of the wave spectrum. 

Finally, what about evidence in the field for the sea state dependence of the drag coefficient? 

It is customary to try to relate the Charnock parameter to a measure of the stage of 

development of windsea, e.g. the wave age c_p/u*, with cp the phase velocity of the peak of 

the spectrum. Here, the Charnock parameter is estimated from observations of  u* and   the 

windspeed at 10 metre height, U10, through the Charnock relation and the logarithmic surface 

wind profile. As a consequence, the Charnock parameter depends in an exponential manner 

on the drag coefficient at 10 m height, CD(10), and is therefore very sensitive to errors in the 

observations for friction velocity and windspeed.  In addition, at a particular measurement site 

the range of phase velocities is usually limited compared to the range of friction velocities and 

as a result, based on observations from one measurement site, an empirically obtained relation 



between the Charnock parameter and the wave age may be spurious because it is in essence a 

relation between Charnock parameter and the friction velocity.  A way to avoid the problem 

of self-correlation is to combine observations from a number of measurement campaigns so 

that the range of phase speeds becomes larger (Johnson et al., 1998; Lange et al., 2004).  This 

approach was followed by Hwang (2005). In addition,  rather then obtaining a 

parameterization for the Charnock parameter, which is prone to errors in observed friction 

velocity, Hwang sought a relation between the drag coefficient and the wave age. The usual 

reference height for the drag coefficient is 10 m, but Hwang argued that from the wave 

dynamics point of view (see also Eq.(2.2)) a more meaningful reference height should be 

proportional to the wavelength lambda_p of the peak of the wave spectrum. Using wavelength 

scaling Hwang (2005) found 

 
           CD(λ/2)=A(cp/u*)a                                                                                (3) 
 
with A= 1.220 10-2 and a=-0.704, reflecting the notion that the airflow over young windsea is 

rougher than over old windsea.  As shown in Fig.2.3  the ECMWF version of the WAM 

model, the physics of which was developed in the 1980’s, gives, compared to Hwang’s 

parameterization (2.3), a realistic representation of the drag coefficient at half the wave 

length.  

Therefore, for windsea it is possible to find a convincing parameterization of the sea state 

dependence of the surface stress. The drag coefficient and dynamic roughness under mixed-

sea conditions remain difficult to parameterize at this stage. 

 
2.3. Gustiness 

In the previous sub-sections the relevance of air turbulence has been discussed as related to 

the physics of interaction between wind and a wavy surface. Once this physics has been 

translated into formulas for practical applications in wave modelling, wind is considered 

constant during each time step and at each grid point of the numerical integration procedure. 



However, there is wind variability with a time scale longer than wind generated waves, but 

still below the synoptic scale resolved by the meteorological models, that may have a 

substantial effect on wave growth.  

It is common to assume that the energy transfer from wind to waves is a function of the 

difference between the nominal wind speed U and the phase speed c of the wave component 

of interest. If this dependence would be a linear function then an oscillation of U with respect 

to its mean value Um would have on average no effect. However, as is evident from Figure 

2.2, wave growth depends in a nonlinear manner on U-c, in particular when the phase speed is 

close to the value of Um. For c>Um there is practically no interaction between the wind and 

the waves, hence wave growth depends in an almost discontinuous manner on U-c. Consider 

now a wave with phase speed close to Um, which is the case when wind sea is well-developed. 

For these long waves a positive fluctuation in wind speed will result in enhanced wave growth 

but a negative fluctuation will not give rise to reduced growth. The growing waves act as a 

rectifier (Abdalla and Cavaleri, 2002) call it the `diode' effect) and therefore gustiness may 

have a considerable impact on wave growth. The implications are that, when waves reach a 

mature stage, they keep growing, although at a progressively reduced rate, well above the 

limit of a fully developed sea obtained in steady wind conditions. How much the gain in wave 

height, denoted by ΔHs/Hs,  is  depends on the variability σ of the wind field (percent r.m.s. 

deviation from Um). With σ = 10% there is only a small increase of Hs. However, this grows 

rapidly with σ, and in very unstable conditions, with σ= 30%,  ΔHs/Hs may reach values as 

large as 0.3.  

Apart from the fluctuation level, the gain in wave height also depends on the correlation time 

scale of the fluctuating wind. If the wind gustiness has a correlation time scale that is shorter 

than or similar to the integration time step (similar considerations apply in space), the growth 

curve for wave height will be smooth. However, if the time scale is longer, the growth curve 

will reflect this variability, giving large oscillations around the mean growth curve. This 



implies that the significant wave height can achieve values larger than expected even from the 

gusty growth.  

In practical applications the diode effect can be taken into account following a procedure 

described by Janssen (2004), who followed Miles (1997). However, the Hs oscillations due to 

the coherence in wind variability are not deterministic and are presently not considered in 

operational models. The same remark applies to the correlated part of the oscillations of the 

wind speed. This introduces a certain level of randomness in the comparison between 

observed and modelled Hs values. Together with the common lack of information on the level 

of gustiness in the input wind fields, this complicates the validation of wave prediction 

systems. While there are good theoretical and practical reasons to believe that  the effect is 

indeed present, a full quantification of its actual relevance is still missing. 

 
2.4. Open issues 

Here, we briefly discuss a number of interesting future developments.  

 
Damping of low-frequency swells 

First, the problem of the interaction of low-frequency swells and the atmosphere. This process 

happens typically in the Tropics in areas of low wind speed, but it concerns also the extra-

tropical areas. Swell is an almost permanent feature of the oceans. This is an interesting 

problem because surface gravity waves may transfer energy and momentum to the 

atmosphere. In those circumstances the usual Monin-Obukhov similarity theory is not valid 

(Drennan et al, 1999). There is, however, some uncertainty regarding the damping rates of the 

low-frequency swells.  

Observations in the field from Snyder et al (1981) and Hasselmann and Bosenberg (1991) do 

not support the idea that there is a substantial wave damping for waves propagating faster 

than the wind. In the lab, however, Donelan (1990) did find evidence for wave damping 

according to the following empirical formula  
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which parameterizes growth and damping in terms of the wind speed at height λ/2. Here cβ 

equals 0.11 for opposing winds, and 0.28 for following winds. However, when applied to 

swell cases in the field the damping is far too large: for 15 seconds waves one finds spatial 

damping scales of the order of  75 km. These damping scales are so small that swells 

generated in the extra-tropical storms would never arrive in the Tropics. In one of the earlier 

versions of  the Wavewatch wave prediction model damping rates comparable to Eq. (2.3) 

were used and the modelled tropical wave climatology seriously underestimated the observed 

climatology (Tolman, et al.,2002). Consequently, damping rates were reduced by an order of 

magnitude. Thus, for wave damping in the field there is no real guidance: spatial damping 

scales are expected to be large, of the order of a few 1000 km. Presumably, laboratory 

experiments are not representative for what is happening in the field. For example, in the 

laboratory there may be currents with considerable vertical shear while in the field the vertical 

shear is much less. Note that straightforward mixing length modelling supports the 

formulation of wave growth and damping of equation (2.3) (Al-Zanaidi and Hui, 1984), but 

rapid-distortion arguments suggest that such turbulence models overestimate the effects of 

momentum transport by the  eddies. As a consequence, there results an overestimate of wave 

damping. In contrast, equation (2.2) is based on a truncated mixing length model and 

probably results in a more realistic estimate of wave damping in the field. However, it is 

emphasized that reliable observations of wave damping in the field are to be preferred.  

 
Momentum transfer for high wind speeds 

Another important issue is the understanding of air-sea momentum transfer under high wind 

speed conditions such as occur for typical hurricanes and typhoons. Not surprisingly, not 

many observations of wave growth and momentum transfer are available. The recent work by 



Powell et al (2003) and Donelan et al (2004) suggests however that in those extreme 

circumstances the drag decreases with wind speed or saturates. But, the understanding of the 

physics of such extreme events is only beginning. What is clear, however, is that because of 

the strong interaction and interplay between momentum, latent, sensible heat fluxes and 

spray, each transport process cannot be considered in isolation. In particular, in hurricanes 

spray production is expected to be an important process which may have some unexpected 

consequences for the momentum transfer. Following Makin (2005) one may regard spray as 

suspended particles. In the so-called suspension layer the heaviest particles remain, on 

average, closer to the surface so that the particle concentration should decrease monotonically 

with height. Hence, the spray droplets form a very stable boundary layer close to the surface, 

and such a stable layer  may suppress the air turbulence near the ocean surface. In other 

words, spray production may, in extreme conditions, give rise to a reduction of the drag 

coefficient for increasing wind speed. Note that Andreas (2004) sketches a somewhat 

different picture of the impact of spray on the airflow. He argues that when spray droplets 

enter the airflow they will be accelerated. As a consequence, spray exerts a stress on the 

airflow which for wind speeds above 30-35 m/s becomes comparable to the interfacial stress. 

This would result in a sharp increase of the drag with wind speed. Hence, Andreas (2004) 

proposes that spray has a direct impact on the mean airflow, while Makin (2005) suggests that 

spray, while forming a stable layer, suppresses the turbulent fluctuations thus inhibiting 

momentum transfer to the surface. Evidently, more research is required to sort out this 

delicate issue.  

There are other possibilities that could explain that for extreme conditions the drag coefficient 

is smaller than expected from a straightforward extrapolation of the familiar linear drag law 

(e.g. Smith, 1980). Donelan et al (2004) have suggested a fluid mechanical explanation: for 

strong winds flow separation may be present. Thus, the outer airflow, unable to follow the 

wave surface, does not ``see'' the troughs of the waves and skips from breaking crest to 



breaking crest. Thus in conditions of continuous breaking of the largest waves the 

aerodynamic roughness of the surface is limited giving a reduced drag. On the other hand, 

Andreas (2004) has proposed that when spray returns to the water, short waves will be 

extinguished. This will no doubt reduce the drag considerably as the short waves carry most 

of the wave-induced stress. Furthermore, it should be realized that in the most intense part of 

a hurricane the wind field is strongly curved, hence the effective fetch for wind-wave 

generation is short  and the sea state is extremely young. For extremely young sea states the 

drag is also reduced quite considerably as explained in Komen et al (1998).  

 
Quality of modelled wind fields 

During the past 10-15 years we have seen a substantial improvement in the quality of the 

surface wind speed as follows, for example, from the validation of the analysed ECMWF 

surface wind against Altimeter wind speed observations from ERS-2 (Janssen, 2004).  

Despite these impressive improvements it should be pointed out that modelled fields lack a 

considerable amount of variability in the short scales. This lack of variability is most 

prominent in the upper layers of the model atmosphere, near the tropopause. Observations of 

the kinetic energy spectrum obtained from aircraft data (Gage and Nastrom, 1985) show that 

in the synoptic scales the spectrum shows a k-3 power-law behaviour (corresponding to a 

potential enstrophy cascade) while in the mesoscales (less than about 600 kilometres) the 

spectrum behaves as k-5/3, consistent with an energy cascade to even smaller scales (Cho and 

Lindborg, 2001). Global atmospheric models typically miss the k-5/3 power law, presumably 

because the interpolation in the (semi-Lagrangian) advection scheme acts as a smoother. Also 

near the surface there is a considerable lack of variability of modelled wind as follows from a 

comparison with kinetic energy spectra derived from QuikScat scatterometer winds. Because 

of this lack of variability in modelled surface winds, ECMWF introduced in April 2002 the 

average effects of gustiness on wave growth. This change had a beneficial impact on the wave 



height field, in particular its spatial and temporal variability. Note, however, that presently no 

theory of the atmospheric boundary layer can justify the level of wind variability measured in 

the field in certain conditions. 

 
3. Modelling Nonlinear Four-wave Interactions in Discrete Spectral Wave Models 
 
by  
Gerbrant van Vleddere, Michel Benoitf, Igor V. Lavrenovg, Miguel Onoratoh, Vladislav 
Polnikovi, Donald Resioc, and Hendrik L. Tolmand 

 
It is nowadays widely accepted that resonant weakly nonlinear interactions between sets of 

four waves play an important role in the evolution of the energy spectrum of free surface 

gravity waves propagating at the ocean’s surface. This role became clear as a result of the 

JONSWAP project (1973). It is described and discussed in e.g. Phillips (1981a), Resio and 

Perrie (1991), Young and Van Vledder (1993), Banner and Young (1994) and Resio et al. 

(2001).  

In this section we summarize the state-of-the art in the understanding and modelling of non-

linear four-wave interactions. Despite considerable progress, many questions remain. These 

are summarized at the end of the section, together with suggestions for further research.  

 
 
3.1.  Theory 

The basic equation describing these interactions is the Boltzmann integral proposed by 

Hasselmann (1962) and a couple of years later by Zakharov (1968) who derived it in a form 

known as the kinetic equation. 

Hasselmann (1962; 1963a,b) developed the theoretical framework for nonlinear four wave 

interactions for homogeneous seas with a constant depth. He formulated an integral 

expression for the computation of these interactions, which is known as the Boltzmann 

integral for surface gravity waves.  



Hasselmann (1962) found that a set of four waves, called a quadruplet, could exchange energy 

when the following resonance conditions are satisfied: 
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in which iω  is the angular frequency and  the wave number vector (i=1,..,4). The linear 

dispersion relation relates the radian frequency ω and the wave number k: 

 
                                                                                          (3.3) 2 tanh( )gk khω =
 

which reduces to  in deep water conditions 2 gkω =

Here, g is the gravitational acceleration and h the water depth. The configurations of 

interacting quadruplets are often described by a so-called figure of eight diagram, as 

illustrated on Figure 3.1 for the deep water case. 

Hasselmann (1962, 1963a,b) describes the nonlinear interactions between wave quadruplets in 

terms of their action density , where ω/)k(E)k(n
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where  is the action density at wave number ( )in n k=
r

 and G is the coupling coefficient. 

This integral is six-fold in wave number ordinates. The δ-functions in (3.4) ensure that 

contributions to the integral only occur for quadruplets satisfying the resonance conditions, 

and thus formally reduce this expression to a three-fold integral.  



It is worth noting that these resonant interactions basically reflect weak nonlinear 

transfers in the evolution of the wave spectrum for the case of homogeneous conditions. 

Recent work by Janssen (2003) suggests that quasi- resonant four-wave interactions play a 

major role in uni-directional wave field, in relation to the development of modulational 

instabilities and the occurrence of freak waves. Yet unclear is the role of non-resonant 

interactions in two-dimensional cases.  

In (3.4) the δ-functions also ensure conservation of wave energy, wave action and wave 

momentum.  

 

The coupling coefficient is given by 
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In this expression  is the interaction coefficient, and ρ is the density of water. 

The deep-water expression for the interaction coefficient was first given by Hasselmann 

(1962). Webb (1978) used an algebraic manipulator to simplify the mathematical structure of 

this coefficient. However, his expression contained some misprints. Corrected expressions are 

given in Dungey and Hui (1979). Herterich and Hasselmann (1980) derived a finite depth 

version of the interaction coefficient. Zakharov (1999) re-derived the coupling coefficients for 

deep and finite depth water, and expressed them in a form similar to those of Webb (1978). 

Unfortunately, his paper contains a number of yet unresolved misprints. Gorman (2003) 

provides a detailed analysis of the finite depth interaction coefficient and he derived 

expressions for the treatment of discontinuities.  

A remarkable property of (3.4) is that it possesses exact stationary isotropic analytical 

solutions of the form of power laws that correspond to a constant flux of energy towards high 

wave numbers and constant flux of wave action to small wave numbers. These solutions have 



been found by Zakharov and Filonenko (1966). The constant energy flux solution corresponds 

in the frequency wave spectrum to a power law of the form of ��, in agreement with 

experimental observations starting from Toba (1973). 

In paper (Lavrenov et al, 2002) a direct numerical simulation of the Hasselmann kinetic 

equation for gravity waves in water surface confirms basic predictions of the weak-turbulent 

theory. The kinetic equation for surface gravity waves is investigated numerically taking into 

account an external generating force and dissipation. An efficient numerical algorithm for 

simulating non-linear energy transfer is used to solve the problem. Three stages of wave 

development are revealed: unstable wave energy growth within a range of external force 

impact, fast energy spectrum tail formation in high frequency range and establishment of a 

steady state spectrum. In both isotropic and non-isotropic cases the spectra are found out to be 

close to the Zakharov-Filonenko spectrum ω-4, in the universal range. Reliable estimations of 

the Kolmogorov constants are found out as α0 =0.303±0.033 in an isotropic case and as α1 = 

0.239 ±0.023 in a non-isotropic case. Formation of this asymptotic spectrum happens 

explosively. Accurate estimations of the first and second Kolmogorov constants are obtained. 

A good agreement between the Toba experimental data and our results obtained with the help 

of direct numerical simulation is observed. 

In recent numerical simulations of equation (3.4), Pushkarev et al. (2003) have shown that 

nonlinear interactions generate an �� wave spectrum also in anisotropic conditions. 

Moreover, they have also shown the formation of the bimodal angular distribution of energy, 

in agreement with field and laboratory experiments.  

It should here be mentioned that many properties of the kinetic equation (for example power 

laws solutions) are consistent with the fully nonlinear water wave equations. In this context, 

recently a number of direct numerical simulations of those deterministic equations have been 

performed in order to study the validity and the limitations of the approximations under the 

kinetic equation (3.4), see Onorato et al. (2002), Dyachenko et al. (2004), Yokoyama (2004).  



 

3.2.  Solution methods 

The full solution of the Boltzmann integral (3.4) is rather time consuming due to its 

complexity, in spite of numerical optimisation efforts such as e.g. Snyder et al. (1993), Lin 

and Perrie (1998). It is therefore not yet applicable in operational wave prediction models. To 

overcome this disadvantage of exact methods, Hasselmann et al. (1985) developed the 

Discrete Interaction Approximation (DIA). They show that the DIA preserves a few but 

important characteristics of the full solution, such as the slow downshifting of the peak 

frequency and shape stabilisation during wave growth. The development of the DIA triggered 

the development of third generation (3G) wave prediction models, like the WAM model 

(WAMDI, 1988), WAVEWATCH (Tolman, 1991b, 2002c), TOMAWAC (Benoit et al., 

1996), the SWAN model (Booij et al., 1999), and the recently developed CREST model 

(Ardhuin et al., 2001).  

The DIA was initially developed for deep water. The WAM Group (WAMDI, 1988) 

introduced a scaling technique to estimate the nonlinear transfer for an arbitrary water depth. 

This technique contains a parameterisation of the magnitude scaling derived by Herterich and 

Hasselmann (1980). With this technique the finite-depth source term is simply obtained by 

multiplying the deep-water source term with a constant factor. This factor is a function of the 

relative water depth  where  is the mean wave number of the wave spectrum: khk
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This simple modification has however exhibited a number of shortcomings in shallow water 

conditions. As pointed out by Herterich and Hasselmann this approximation is only applicable 

for , which is still relatively deep water for most coastal applications. Also, this 

approximation retains a stationary 

1.0pk h ≥

4ω− form independent of depth; whereas observations and 



theory support the existence of a general form in arbitrary-depth water (Resio et al, 

2001, 2004). Due to these inherent problems, we recommend that methods be developed 

which take account of finite water depth effects in a more complete way. For instance Van 

Vledder (2001a) presents a shallow-water version of the DIA (referred to as the SDIA). 

5/ 2k −

 

3.3.  Properties  

A summary of the role of non-linear four-wave interactions is given in Young and Van 

Vledder (1993). The main features of nonlinear four-wave interactions are illustrated on a 

particular case in deep water from Benoit (2005). In this example we consider the directional 

wave spectrum corresponding to case 3 of Hasselmann and Hasselmann (1981). This 

spectrum combines a JONSWAP frequency spectrum (with Phillips constant � = 0.01, peak 

frequency fp = 0.3 Hz, peak enhancement factor � = 3.3) and a (frequency independent) 

angular spreading function of the form cos4(�). The input spectrum is plotted on Figure 3.2.  

For this spectrum the non-linear transfer term due to four-wave interaction is evaluated 

“exactly” by the WRT method (see below) and by the standard DIA approximation. The 

computed frequency-direction nonlinear terms Qnl4(f,�) are plotted on Figure 3.3. The upper 

panel (exact evaluation with the WRT method) shows the typical signature of four-wave 

interactions: first, there is a positive lobe below the peak frequency in the main wave 

direction, which corresponds to an increase of wave energy for these frequencies lower than 

the peak frequency. Then one can see a large negative lobe for the frequencies above the peak 

still in the main wave direction. In this region of the spectrum the nonlinear interactions pump 

energy. Finally there are also positive lobes for frequencies higher than the peak but about 45 

degrees off the main direction. 

The lower panel of Figure 3.3 shows that the DIA computation produces a term with some 

similarities in the general shape, but also significant differences. The first (positive) lobe is 

lower and shifted about 40 degrees off the main direction. The second (negative) lobe is much 



higher than the exact one and it is shifted to higher frequencies. Finally the positive lobes at ± 

45 degrees off the main direction are present, but at lower frequencies and they are clearly 

higher than the exact ones. The position and magnitude of the positive lobes result for the 

DIA in a trend to excessively spread the energy over directions, making the spectrum broader 

than it should be. The frequency nonlinear terms (after integration over wave directions) are 

plotted on Figure 3.4. Again the differences between DIA and exact evaluation (EXACT-NL 

and WRT) are clear, in particular for the negative lobe, which is twice higher than the exact 

one and also shifted towards higher frequencies. 

 

3.4.  Development in computational methods 

The development of the Discrete Interaction Approximation partly resolved the limitations of 

an exact computation. However, as shown on the above example, experience reveals many 

deficiencies of the DIA, which hamper the further development of third-generation models. 

More specifically, deficiencies of the DIA are masked by tuning of the other source terms. 

Experience with an exact computational method in 1D and 2D applications shows improved 

prediction of spectral shapes. Thus, we face the dilemma of having a fast but inaccurate DIA 

and an accurate and time-consuming exact method. Therefore a need exists for a 

computational method that would be both operationally feasible and accurate enough for 

application in operational 3G wave models.  

Various attempts have been made to develop such methods. Progress has been made at four 

fronts.  

First, extensions to the DIA have been proposed by adding more interacting wave number 

configurations. Van Vledder (2001b) describes the general framework for such extensions. 

Proposals for multiple DIA’s were made by Van Vledder et al. (2000), Hashimoto and 

Kawagushi (2001) and more recently by Tolman (2004). These attempts are promising, but 



not yet successful in the sense that extensions are generally applicable. The main reason is 

that each MDIA is developed for a specific set of test spectra.  

It is noted that alternative DIA’s have been developed by Abdalla and Özhan (1993). 

Komatsu (1996) (referred to Hashimoto et al., 2002) developed the SRIAM, which is a 

multiple DIA based on the exact RIAM method. Polnikov and Farina (2002) proposed a 

version of the fast DIA, which doubles the speed of calculations without loss of accuracy. 

Moreover, in Polnikov (2003) it was found some other simple configurations which have 

lower errors than the original version of DIA; however, a major remaining problem is that 

these interactions represent only a small subset (in which 2 of the interacting wave number 

vectors are equal, rather than the more general case of 4 unequal wave number vectors) of the 

total interactions contributing to the complete integral.  For this reason, the DIA will continue 

to require tuning for different classes of spectra. 

The second line of development consists in starting from exact methods and making some 

simplifications and/or reductions of the integration space in the evaluation of the Boltzmann 

integral. Such methods can reduce the workload by a combination of smart integration 

techniques, coarser interpolation techniques and filtering out unimportant parts of the 

integration space. These methods differ in the way the delta-functions of the Boltzmann 

integral have been removed and the final set of equations obtained, and in the treatment of 

singularities. The following groups of ‘exact’ methods exist: 

• EXACT-NL (Hasselmann and Hasselmann, 1981, 1985, Van Vledder and Weber, 

1988, Van Vledder and Holthuijsen, 1993); 

• Webb (1978) as implemented by Tracy and Resio (1982), Resio and Perrie (1991) and 

Van Vledder (2005), referred to as the WRT method. From this computational method 

Lin and Perrie (1998) developed the Reduced Interaction Approximation (RIA); 



• Masuda (1980) as extended to finite depth by Hashimoto et al. (1998) or adapted by 

Polnikov (1997), the RIAM method by Komatsu and Masuda (1996); 

• Lavrenov (2001), the algorithm is based on a numerical integration method of high 
precision. 

 

Each of these approaches solves the Boltzmann integral with some method. Differences exist 

in the transformations applied to the Boltzmann integral to remove the delta-functions, and in 

numerical integration technique applied to them. At present it is not clear which of these 

methods produces the best results in terms of accuracy and computational requirements. 

Therefore, an objective inter-comparison between the various methods is needed to confirm 

or reject claims about their performance.  

The third approach is based on neural networks. Tolman and Krasnopolsky (2004) present a 

method based on a neural network. It appears that the NN approach can result in stable wave 

growth in model integrations. However, much development work still needs to be done before 

this approach is suitable for general model applications (Tolman and Krasnopolsky, 2004).  A 

problem that arises in this class of approximation is the difficulty in using any set of functions 

to linearly represent nonlinear interactions. The cubic dependence of the interactions on the 

energy/action densities typically produces very strong “cross-interactions” among the 

different “basis” functions. 

The fourth approach comprises diffusion operators. Examples are those presented by 

Zakharov and Pushkarev (1999), Jenkins and Phillips (2001), and Pushkarev et al. (2004). 

They developed methods based on a diffusion operator. Some properties of this 

approximation were revealed in Polnikov (2002), where he found a reasonable 

correspondence of the diffusion approximation to the exact calculations of the integral. 

Properly posed, simulations based on this approach can be shown to conserve all constants of 

motion over time (Pushkarev et al, 2004) and can preserve the basic 4ω− characteristic form 

during evolution. However, this approximation does not provide a very accurate general 



approximation to the total integral and must be specifically tuned to fit each different spectral 

form. Although attractive for its computational simplicity, it is not flexible enough for 

application in a discrete spectral wave model, since a coefficient of proportionality needs to 

be determined for the class of spectra under consideration.  

 

3.5. Inter-comparison of computational methods 
Up till now no objective comparison has been performed to determine the best (in terms of 

performance and accuracy) method for computing the non-linear four-wave interactions in a 

discrete spectral model. Still, a number of attempts have been made to intercompare different 

computational methods.  

Lavrenov (2001, 2003) made comparisons between his method and those of Hasselmann, 

Polnikov, Masuda's, and Resio. Lavrenov claims that his method produces accurate results 

with relatively small computational requirements. A comparative study of different 

approximations for the Boltzmann integral was carried out in a series of papers (Polnikov and 

Farina, 2002; Polnikov, 2003). Using a certain definition of the error measure, it was shown 

that the DIA approximation is the best one among some other theoretical approximations: the 

diffusion approximation (Zakharov and Pushkarev, 1999) and the reduced integration 

approximation (Lin and Perrie, 1999). Inter-comparisons of results from some of these 

methods are presented in, e.g., Benoit (2005) for a few wave spectra in deep water. 

These claims need further attention and an objective verification under controlled 

experiments. Most of the comparisons were made for a small set of academic spectra. In the 

case these spectra are smooth, some numerical integration technique might benefit from this 

smoothness. Another approach is to implement these computational methods into a wave 

model and to perform fetch-limited or duration limited growth experiment. The resulting 

spectra will vary and will often be different from theoretical spectra (cf. JONSWAP). In 



addition, an objective comparison is often hampered by differences in compilers and 

computer hardware.  

 

3.6.  Questions and actions 

Concerning four-wave interactions in surface gravity waves the following questions arise: 

1. In what stage of sea-state history (wave-sea growth, propagation of swell, etc..) are 

four wave interactions most important for modelling the evolution of wave spectrum ? 

2. Are quasi-resonant interactions important in 1D and 2D cases, in deep water? 

3. What is the range of validity of the Boltzmann integral derived by Hasselmann ? 

4. Is there any verification possible of the Boltzmann integral (numerical of field data) ? 

5. Do all numerical exact methods for evaluating the Boltzmann integral converge to the 

same result? 

6. Which of these method produces the best results in terms of accuracy and 

computational requirements? 

7. Do the various expressions proposed for the coupling coefficient yield the same 

results? What are the effects on the singularities of this coupling coefficient on the 

Boltzmann integral? 

8. Compare the relative importance of nonlinear interactions in deep and shallow water 

in wave spectrum evolution. 

9. What is the best way to obtain an attractive approximation of the Boltzmann integral 

(extending DIA, reducing exact methods, neural networks, diffusion operator) ? 

10. What is the role of nonlinear interactions in establishing the characteristic observed 

angular behaviour in wave spectra? 

11. What is the role of nonlinear interactions in modifying swell spectra over very long 

propagation distances? 



12. What is the role of nonlinear interactions in providing a decay mechanism (via 

increased fluxes to high-frequency breaking) in wave spectra approaching the coast? 

13. What is the role of nonlinear interactions in slanting fetch experiments? (cf. 

Pettersson, 2004, and Bottema and Van Vledder, 2005)  

The above questions require some specific actions to be taken: 

1. Determine the range of validity of the Boltzmann integral. 

2. Investigate the role of quasi- resonant interactions in 2D-situations. 

3. Collect evidence for the role of nonlinear four-wave interactions (spectral shape, wave 

development, statistical properties of sea surface, etc.), e.g. by incorporating exact 

methods in model studies. 

4. Examine shallow-water effects on the nonlinear four wave interactions and the role of 

these interactions in spectral evolution in coastal areas, 

5. Perform systematic inter-comparison of (quasi-)exact methods as well as 

approximations. Develop work plan for such an inter-comparison. 

6. Design and perform laboratory studies of spectral evolution to validate both quasi-

resonant and kinetic equation forms of nonlinear interactions. 

7. Further development of fast and accurate computational methods for the evaluation of 

the Boltzmann integral in discrete spectral wave models, and eventually update the 

parameterisations of other source and sink (wind input, whitecapping, etc.) terms in 

the wave spectrum evolution equation to accommodate this change. 

 

4 - Spectral Dissipation in Deep Water 
 

by 
Alexander Babaninj, Ian Youngk, Fabrice Ardhuinl, Mark Donelanm, Paul Hwangn, Vladislav Polnikovi, 
Michael Bannero and José-Henrique Alvesp

 
Spectral wave energy dissipation represents the least understood part of the physics relevant 

to wave modelling. There is a general consensus that the major part of this dissipation is 



supported by the wave breaking, but physics of this breaking process, particularly for the 

spectral waves, is poorly understood. How much energy is lost due to white-capping and 

where in the spectrum? What causes waves to break and what causes them to stop breaking? 

What does the breaking severity depends on? Recent field observations (Banner et al., 2000; 

Babanin et al., 2001; Banner et al., 2002) have found a threshold-like behaviour of breaking 

probabilities across the spectrum in terms of spectral steepness parameters, but these results 

are still to find their way into operational formulations that, today, are often just tuning knobs 

even in the simplest case of pure wind sea.  

Dissipation due to interaction of waves with turbulence is arguably the second most important 

wave energy sink, certainly most persistent. Whether this is a background turbulence or 

turbulence generated by wave breaking, it is ,another source of dissipation that can account 

for an appreciable fraction of the wave energy loss (Drennan et al., 1997; Ardhuin and 

Jenkins, 2005, among others). This sink term, however, is still to find a consistent way of 

parameterisation in wave models. 

Many more other possible energy sink mechanisms can be formulated for the spectral wind-

wave environment. For example, short wave modulation by long waves may also contribute 

to the dissipation of swell propagating against the wind, by a combination of Longuet-Higgins 

maser mechanism and Hasselmann's theory for the exchange of potential energy between 

short and long waves. All these theories need a modern re-evaluation (e.g. Garrett and Smith, 

1976; Ardhuin and Jenkins, 2005).. 

Also, our general description of dissipation completely ignores the interaction of waves with 

the vertical structure of the upper layers of the ocean. One step back on the mechanics of 

wave motion is probably necessary. Indeed, many mechanisms can be proposed for wave 

dissipation at this level. These include, for example, interaction with internal waves, which 

can be significant when the orbital motion due to waves is felt well below the thermocline. 

This leads to an increased mixing of the upper layers. In turn, the latter leads to the 



attenuation of swell and to consequences presently not considered in wave models, but a 

sound theoretical basis is available (e.g. Kudryavtsev, 1994).  

While a loss for the wave system, whitecapping is a source of momentum and turbulent 

kinetic energy for the ocean currents or longer waves. Presently this two-step transfer is not 

considered, and modelled currents are driven directly by the atmospheric stresses. A properly 

defined body-force representing the momentum flux of waves to the mean flow combined 

with a surface flux of turbulent kinetic energy apparently leads to reasonable profiles of 

Eulerian currents, TKE dissipation, and eddy viscosity (e.g. Terray et al., 2000; Sullivan et al., 

2004). 

Theoretical and experimental knowledge of the spectral wave dissipation is so insufficient 

that, to fill the gap, spectral models have been used to guess the spectral dissipation function 

as a residual term of tuning the balance of better known source functions to fit known wave 

spectrum features. In this section, studies of the physics of the dissipation and the numerical 

simulations of the spectral dissipation are separated into different subsections. The two 

approaches target the same objective but should not be confused, as the simulations cannot 

prove or disprove the physics, and in fact may even disregard the physics and still be 

successful. Physics, on the other hand, is the ultimate truth. Discovered physical mechanisms 

certainly exist, but their relative importance with respect to the real waves and therefore their 

relevance for the models is often not clear. 

 
4.1.  Theoretical and experimental research of physics of the spectral dissipation 

Physics of the spectral dissipation is an elusive subject, and theoretical and even experimental 

results in this area are few and often contradictory. Three dissipation sources are considered in 

this section: those due to wave breaking, wave-turbulence interaction and wave-wave 

modulation. 

 
Spectral dissipation due to wave breaking 



Theories of breaking dissipation, having started with the work of Longuet-Higgins (1969a), 

underwent some two decades of relatively extensive attention, but have enjoyed very little 

development in the past 10-15 years. This section is mainly dedicated to recent progresses in 

the field of wave dynamics, but a brief review of those older analytical theories of the spectral 

dissipation is necessary to understand where we currently stand. The review provided here 

uses extensively reviews of Donelan and Yuan (1994) and Young and Babanin (2006), but 

also accommodates most recent advances in the field. 

It is generally assumed that  is a function of the wave spectrum E:  dsS

n
ds ES ~  (4.1) 

but there is no agreement on whether the spectral dissipation  is linear in terms of the 

spectrum E or not, i.e. whether n=1 or n>1. Donelan and Yuan (1994) classified theoretical 

models of the spectral dissipation into three types: whitecap models, quasi-saturated models 

and probability models. We would add a turbulent model class to this classification (Polnikov 

1993). None of these models, however, deals with the physics of wave breaking which 

governs the wave energy loss. This physics, to a major extent, is unknown, although relating 

wave breaking to nonlinear wave group modulations is providing encouraging new insight 

(Banner et al. 2000, Song and Banner 2004). Present analytical models for  try to employ 

either the wave state prior to the breaking or the residual wave and turbulence features after 

the breaking to derive conclusions on the dissipation due to the breaking. 

dsS

dsS

Of the models which consider the waves prior to the breaking, the first analytical type 

developed was a probability model suggested by Longuet-Higgins (1969a) and further 

developed by Yuan et al. (1986) and Hua and Yuan (1992). All of these studies used the 

Gaussian distribution of surface elevations to predict the appearance of wave heights 

exceeding the height of the Stokes' limiting wave or its limiting acceleration g/2 at the crest (g 

is the gravitational acceleration). Such waves were assumed to break until the wave height is 



reduced back to a limiting value, and the difference was attributed to the dissipation. The 

limiting value used varied from the extreme Stokes value (Longuet-Higgins, 1969a; Yuan et 

al., 1986) to the mean value at a particular frequency derived from the Phillips (1958) 

equilibrium spectrum. The dissipation was found to be a linear function of the wave spectrum. 

More recently, however, it has been shown that the waves do not necessarily have to reach the 

g/2 acceleration limit to break (Holthuijsen and Herbers, 1986; Hwang et al., 1989; Liu and 

Babanin, 2004). In addition, once they are breaking they do not stop at the Stokes limiting 

steepness but may keep losing energy until their steepness is well below the Stokes limit and 

even below the wave mean steepness (Liu and Babanin, 2004). Therefore, even though 

conceptually attractive, the probability models, as they have been derived, are not 

quantitatively plausible. 

The second type of prior-to-breaking class of models is what Donelan and Yuan (1994) called 

quasi saturated models (Phillips, 1985; Donelan and Pierson, 1987). These models rely on the 

equilibrium range of the wave spectrum, where some sort of saturation exists for the wave 

spectral density. In this region, the wind input, the wave-wave interactions and the dissipation 

are assumed to be in balance. Therefore, at each wave scale (wavenumber), any excessive 

energy contributed by combined wind input and non-linear interaction fluxes, does not bring 

about spectral growth but wave breaking and can be interpreted as the spectral dissipation 

local in wavenumber space. Phillips (1985) found that such dissipation is cubic in terms of the 

spectral density. 

Donelan and Pierson (1987) added consideration of wave directionality to the energy balance 

of the equilibrium range, arguing that a simple balance between wind input and dissipation is 

not observed at large angles to the wind. They also separated dispersive (gravity and 

capillary) waves and non-dispersive (gravity-capillary) waves as the nature of breaking differs 

for them because of different speeds of propagation relative to wave groups. Donelan and 

Pierson (1987) obtained a local-in-wavenumber-space dissipation function, similar to that of 



Phillips (1985) but their exponent n depends on the wave spectrum E and wavenumber k. 

According to them, n can vary significantly: n=1-5. It is essential, however, that n~5 in most 

ranges of interest - both for gravitational and for capillary waves. 

This model type has multiple shortcomings. Firstly, the very concept of the quasi-saturated or 

equilibrium interval is now subject to doubt (Donelan, presentation at WISE-10, 

Florianopolis, Brazil, 2003). Even if it exists, the Phillips saturation level is not constant, but 

depends on environmental conditions (Babanin and Soloviev, 1998a). And even more 

importantly, none of the source terms which shape the spectral balance are known explicitly 

and accurately enough to provide a reliable determination of the dissipation as a residual sink 

term. Also, a dissipation function based on the breaking of short waves in the equilibrium 

interval does not account for dissipation due to dominant wave breaking, near the spectral 

peak, which may be more severe and can be quite frequent (Babanin et al., 2001; Young and 

Babanin, 2006). Finally, there is growing evidence that dominant waves and the breaking of 

dominant waves affect dissipation at smaller scales (Banner et al., 1989; Meza et al., 2000; 

Donelan, 2001; Young and Babanin, 2006). If that is true, dissipation in the saturation interval 

will not be a function local in wavenumber space.  

The most mathematically well-advanced and most frequently utilised dissipation model is that 

due to Hasselmann (1974). This is an after-breaking class model as it relies on the distribution 

of well-developed whitecaps situated on the forward faces of breaking waves. According to 

Hasselmann (1974), once there is an established random distribution of the whitecaps, it does 

not matter what caused the waves to break: the whitecaps on the forward slopes exert 

downward pressure on upward moving water and therefore conduct negative work on the 

wave. This model produces a linear dissipation. 

Two main assumptions of the model are that the dissipation, even if it is strongly nonlinear 

locally, is weak in the mean and that the whitecaps and the underlying waves are in geometric 

similarity. Both assumptions are not always strictly accurate. For example, Babanin et al. 



(2001) investigated wave fields with over 10% dominant breaking rates, Young and Babanin 

(2006) examined a 60% dominant breaking case. It is not clear whether the weak-in-the-mean 

approach is still applicable in such circumstances, which are apparently a regular feature of 

wind seas. 

The geometric similarity is also an approximation for real unsteady breakers. The 

whitecapping commences at some point on the incipient breaking crest and then spreads 

laterally and longitudinally (Phillips et al., 2001) and may or may not satisfy the similarity 

assumption even in the mean. Therefore, both assumptions need experimental verification. 

We should also point out that, before the distribution of established whitecaps is formed and 

they commence the negative work on the wave, some energy is already lost from the wave to 

form the whitecaps, which is not accounted for by such a model. 

Polnikov (1993) suggested another type of an after-breaking model. He argued that, no matter 

what the cause of the breaking, the result is turbulence in the water. In his approach the rate of 

wave spectrum dissipation is governed by the effective turbulent viscosity Tν . Therefore, to 

describe the wave energy dissipation in a wave spectrum form, it is sufficient to find a link 

between the wave spectrum and the water turbulence spectrum. To do this, he wrote the 

dynamic equations, performed an averaging, and introduced a Reynolds stress.  Then, the 

Reynolds stress was expanded into a series with respect to wave velocity components and 

their spatial derivatives. The Prandtl hypothesis was used to close the turbulent terms in these 

series. Finally, Polnikov found that the effective viscosity due to turbulence has a form of 

series with respect to wave spectrum in which the quadratic term should dominate.  Therefore, 

the dissipation should be quadratic in the spectrum.  

Again, the idea is attractive, but the theory needs further development. Polnikov (1993) 

assumes a simplified representation of wave dynamics equations with the efficient stress 

attenuation that is appropriate for monochromatic waves. But spectral waves of different 

scales interact, and the turbulent vortexes of particular scales are not only generated as a result 



of dissipation of counterpart waves, but also as a result of the collapse of larger vortexes 

(Kolmogorov cascade). Besides, we should point out that application of the eddy viscosity to 

the wave-induced motion in contradiction with accepted approaches in this field (see sub-

section on wave-turbulence interactions below).  

Most importantly, however, generation of the turbulence is not the only outcome of 

dissipation of wave energy. Melville et al. (1992) showed that 30% to 50% of energy lost by 

breaking waves is expended on entraining bubbles into the water against buoyancy forces. 

This contribution, relative to the turbulence generation, is not constant across the spectrum. 

For example, microscale breakers do not cause air entrainment and therefore should expend 

relatively more energy on generating the turbulence. 

To summarize this brief overview of existing theories of spectral dissipation, we find several 

studies which offer four different analytical models. None of the models deals with the 

dynamics of wave breaking, which is responsible for dissipation. Rather, they suggest 

hypotheses to interpret either pre-breaking or post-breaking wave field properties. All of the 

hypotheses lack experimental support or validation. Results vary from the dissipation being a 

linear function of the wave spectrum to the dissipation being quadratic, cubic or even a 

function of the spectrum to the fifth power.  

Experimental confirmation should be an important element of the development of a theory. 

There have, however, been few experimental studies of wave dissipation. Thorpe (1993), 

Melville (1994), Terray et al. (1996), Hanson and Phillips (1999), among others, addressed 

the total dissipation. Experimental investigations of the spectral dissipation are all very recent: 

Donelan (2001), Phillips et al. (2001), Melville and Matusov (2002), Hwang and Wang 

(2004), Babanin and Young (2005), Young and Babanin (2006) have made first attempts to 

obtain spectral dissipation functions on the basis of field measurements. 

Phillips et al. (2001) used high range resolution radar measurements and Melville and 

Matusov (2002) used aerial imaging to study distributions of the length of breaking wave 



fronts Λ(c) where Λ(c)dc is the average length of breaking crests per unit area of ocean 

surface travelling at velocities from c to c+dc (Phillips 1985). They inferred a spectral 

function for the dissipation in terms of the phase speed c as the spectral parameter. Phillips et 

al. (2001) obtained it for a single wind speed and Melville and Matusov (2002) included a 

wind dependence of  into the Λ function: 3
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where the wind speed  has to be expressed in m/s. Connection of this dissipation with the 

wave spectrum was not obtained explicitly and therefore it cannot be directly compared with 

other dissipation functions below. 

3
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Donelan (2001) (as did Phillips (1985) and Donelan and Pierson (1987) in analytical models 

described above) used the balance of source terms to derive . He argued that, for 

stationary fetch-limited no-current conditions,  and  are more than an order of 

magnitude larger than the advection and the non-linear interaction terms in some parts of the 

wave spectrum. Therefore there are wavenumbers in the wave spectrum  where the 

balance is totally dominated by the wind input and the dissipation. If spectra of young fetch-

limited waves are considered and an appropriate hypothesis about the form of the dissipation 

function is used, the spectral dissipation can be obtained from the spectral wind input 

function. Using only peak values of his spectra, Donelan (2001) obtained the dissipation as 

dsS

inS dsS
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where  is termed the saturation spectrum (Phillips 1984). Here, the dissipation 

remains local in wavenumber space.  

)()( 4 kEkkB =

However, once Donelan (2001) applied his function to the measured spectra at wavenumbers 

above the spectral peak, the  and  balance could not be satisfied. The two energy 

source functions could only be brought into balance by assuming that the mean square slope s 

inS dsS



of long waves modifies the dissipation rate at shorter waves. The dissipation function was 

adjusted accordingly: 

5.22 )]())(5001)[(()(36 kBkskEkSds += ω  (4.4) 

The dissipation (4.4) is not local in wavenumber space, due to the s term, - as the quasi-

saturated theories suggested, - but on the contrary, acknowledges the importance of influence 

of longer waves on the dissipation of short waves. 

The influence, according to Donelan (2001), is due to the fact that dissipation rates for the 

short quasi-saturated waves are modulated by the straining action of longer waves. On the 

forward faces of longer waves, the short-wave steepness increases causing frequent breaking 

and correspondingly a net reduction in the energy density.  

The factor 500, however, may appear too large. A rather large swell of 2 m significant height 

and 10 s period gives a dissipation which is greater by a factor 2.3 compared to the case 

without swell. Such a large dissipation would result in a lower wave growth, which does not 

seem consistent with the data (e.g. Dobson et al. 1989), although a detailed hindcast would be 

necessary.  

Apart from this mechanism for longer waves affecting dissipation at shorter scales, other 

mechanisms have also been suggested by experimentalists. The other mechanisms involve 

effects due to breaking of large waves. Banner et al. (1989) showed that the large scale 

breaking brings about rapid attenuation of short waves in its wake and therefore may cause 

the spectral dissipation function to depend on frequency relative to the peak. Meza et al. 

(2000), in a laboratory experiment with forced isolated breakers within transient wave trains, 

showed that large breakers do not cause energy loss from dominant waves - but almost 

exclusively from wave components well above the spectral peak. An unresolved effect here is 

whether the loss is predominantly from bound harmonic nonlinearities of the steep dominant 

waves, or from the shorter free waves. 



Hwang and Wang (2004), like Donelan (2001), used the source term balance idea to derive 

. The approach follows closely the discussions of Phillips (1984) who suggested that 

knowledge of the spectrum dependence on wind speed can be used to understand the 

behaviour of the dissipation function. They applied the source term balance approach to the 

spectra of short waves, twice the peak frequency and above, with wavelengths from 2cm to 

6m, collected in the ocean using a free-drifting measurement technique to mitigate the 

problems associated with Doppler frequency shift of short-scale waves. A unique feature in 

their result is a non-monotonic behaviour of the dissipation function, proportional to 

dsS

3.2E  for 

capillary waves, approaching 3E  at the other end of the wavelength scale, and reaching up to 

10E  in the middle wavelength range (0.2m to 1.5m long). They suggest that the quasi-singular 

behaviour of the dissipation in the middle wavelength range may be an indication that the 

important spectral signature of wave breaking has a maximum in the wavenumber domain.  

Why would the maximum of spectral restoration occur in the intermediate scale waves with wavelengths 

between 0.2 to 1.5 m? The approach is based on the assumption of local spectral balance between the 

wind input and dissipation and, since their spectral wind input is a linear function of the wave spectrum, 

the sudden rise of the dissipation to being ~ 10E  apparently reflects the sudden rise of the responsiveness 

of wave breaking to the wave spectral density disturbances at the respective scales. This enhanced 

spectral density responsiveness at the middle wave-length range is suggestive that the wind input, which 

is assumed a monotonic function of wavenumber, is not the only mechanism that generates intermediate 

scale waves. Detachment of breaking jet, impulsive impact and the waveform deformation due to wave 

breaking will produce spectral signature in the intermediate wavelengths. Hwang (2005) argues that the 

excessive generation at these scales of shorter waves is perhaps brought about by breaking of larger 

dominant waves. Such excessive generation is not accounted for in our present formulation of the action 

or energy density conservation equation. As a result, it is compensated artificially by an excessive 

dissipation function, and subsequently manifests itself via enhanced level of breaking of shorter waves. 



The correlation between the dominant breaking and the short-scale breaking was observed by means of 

radar and acoustic sensing of the ocean surface (Hwang 2005). Thus, if the balance approach remains 

valid in such circumstances, it is not only the spectral energy dissipation appears to be a function not 

local in wavenumber space, but the spectral energy input as well. In a way, such mechanism is supportive 

of the idea of the cumulative term described above. 

Young and Babanin (2006), based on Lake George field data, conducted a direct attempt to 

estimate the spectral distribution of the dissipation due to breaking of dominant waves. A 

field wave record with approximately 50% dominant breaking rate was analysed. Segments of 

the record, comprising sequences of breaking waves, were used to obtain the “breaking 

spectrum”, and segments of non-breaking waves to obtain the “non-breaking spectrum”. The 

clearly visible difference between the two spectra was attributed to the dissipation due to 

breaking. This assumption was supported by independent measurements of total dissipation of 

kinetic energy in the water column at the measurement location.  

It was shown that the dominant breaking causes energy dissipation throughout the entire 

spectrum at scales smaller than the spectral peak waves. The dissipation rate at each 

frequency appears linear in terms of the wave spectral density at that frequency, less a spectral 

threshold value, with a correction for the directional spectral width A(f) (Babanin and 

Soloviev 1998b). The spectral dissipation source term can be represented by: 
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Here, the integral reflects a contribution to the dissipation at each frequency  from waves 

breaking at frequencies <f< , and 

rf

pf ))())()((( fAfEfEX thr−rf  is a yet unknown function 

that controls inherent wave breaking at each frequency (perhaps a function of the form 

described by (4.1) with n=1, see Babanin and Young, 2005). The experimental coefficients a 

and b were found to be 0.0065, but these parameters may be also dependent on environmental 

conditions (only a single record was analysed in the paper). 



Thus, the only two experimental dissipation function available, which cover the entire spectral 

frequency band, (4.4) and (4.5) exhibit a common feature: cumulative term that puts 

whitecapping dissipation at smaller spectral scales in dependence on what happens at larger 

scales. Consistency of this feature has been confirmed by further investigations of the Lake 

George wave breaking data by independent means (Babanin and Young, 2005; Manasseh et 

al., 2006) where the two-phase behaviour of the spectral dissipation has also been obtained.  

A passive acoustic method of detecting individual bubble-formation events developed by 

Manasseh et al. (2006) was found promising for obtaining both the rate of occurrence of 

breaking events at different wave scales and the severity of wave breaking. A combination of 

the two should lead to direct estimates of the spectral distribution of wave dissipation.  

If the wave energy dissipation at each frequency were due to breaking of waves of that 

frequency only, it should be a function of the excess of the spectral density above a 

dimensionless threshold spectral level, below which no breaking occurs at this frequency. 

This was found to be the case around the wave spectral peak. A more complex mechanism 

appears to be driving the whitecapping dissipation at scales smaller than those of the 

dominant waves where enhanced breaking frequency and dissipation rates are observed when 

expressed in terms of the wave spectrum. This signifies a two-phase behaviour:  being a 

simple function of the wave spectrum at the spectral peak and having an additional 

cumulative term at all frequencies above the peak. 

dsS

The nature of the induced dissipation above the peak can be due to either enhanced induced 

wave breaking or additional turbulent eddy viscosity (see the next sub-section on the wave-

turbulence interactions) or both. If the latter is true, the dimensionless spectral threshold 

below which no dissipation occurs, may not be universal (or at least may not have a simple 

identifiable functional form) across the spectrum. 

Young and Babanin (2006) also compared directional spectra of the breaking and non-

breaking waves whose difference should be indicative of the directional distribution of the 



dissipation. They showed that directional dissipation rates at oblique angles are higher than 

the dissipation in the main wave propagation direction and therefore the breaking tends to 

make the wave directional spectra narrower. If confirmed, this conclusion may have very 

significant implications for the directional shape of : unlike , it would be bimodal with 

respect to the wind direction, and the main wave direction would be characterized by a local 

minimum of the directional spectrum of dissipation. 

dsS inS

Hence, the experimental evidence indicates that the dissipation function is likely to be not 

local in wavenumber space and is rather a functional of the wave spectrum. The experiments 

do not support any of the suggested theoretical forms for the dissipation as no analytical 

theories have produced the cumulative dissipation term. There are disagreements between 

experimental results as well: they offer different conclusions as to the mechanisms by which 

dominant waves affect smaller-scale dissipation. Banner et al. (1989), Meza et al. (2000), 

Young and Babanin (2006) attribute the effect to breaking waves, whereas, Donelan (2001) 

attributes the effect to non-breaking waves. On the other hand, results of Hwang and Wang 

(2004) indicate that, if the local balance of wind generation and breaking dissipation is true, 

then the dissipation function exhibits quasi-singular behaviour at the intermediate wave 

scales. 

To conclude the review, we have to summarize that 1) there is no consensus among analytical 

theories of the spectral dissipation of wave energy due to wave breaking, even with respect to 

the basic characteristics of the dissipation function, 2) the theoretical dissipation functions 

strongly disagree with the experiment, and 3) experimental results, even though exhibit some 

common features, are often in serious disagreement with each other. Such a state of 

knowledge of physics of the wave breaking losses does not help modelling the wave 

dissipation which has been drifting in its own way (see section 4.2 below). 

The review of studies of the dissipation term, however, would be incomplete without 

mentioning an alternative approach to the description of evolution of wave spectrum which 



does not require detailed knowledge and, in fact, existence of the spectral dissipation 

(Zakharov, 1966; Zakharov and Filonenko, 1967; Zakharov, 1968; Zakharov and Smilga, 

1981; Zakharov and Zaslavskii, 1982ab; Zakharov and Zaslavskii, 1983ab; Kitaigorodskii, 

1983; Zakharov, 2002; Zakharov, 2004). In their theory of weak turbulence, Vladimir 

Zakharov and his colleagues obtain a Kolmogorov spectrum of  as an exact 

solution of the kinetic equation for gravity waves in the equilibrium interval. This spectrum 

agrees with many experimental observations (Toba 1972, Kahma 1981, Leykin and 

Rozenberg 1984, Donelan et al. 1985, Hwang et al 2000, among others). In addition, 

Zakharov (2002) was able to reproduce known growth curves of wave integral properties as 

analytical solutions on the basis of the theory of weak turbulence. This theory relies on the 

assumption that the whitecap dissipation can be neglected in the frequency range of the 

spectral peak and the universal region at wavenumbers above the peak. This theoretical 

assumption, however, is not obvious again, as the dominant waves are known to break, 

sometimes quite frequently (Babanin et al., 2001; Young and Babanin, 2006) and there are 

experimental evidences regarding the significant effect that dominant breaking has on wave 

spectral peak dissipation (Donelan, 2001; Young and Babanin, 2006; Babanin and Young, 

2005). 
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Wave-turbulence interactions 

It was recognised very early that viscosity had a negligible effect on waves of periods of 

about 10s and longer (Lamb, 1932), so that, once generated, swells were supposed to dissipate 

slowly due to the action of the wind, as represented by Jeffrey’s (1925) sheltering theory 

(Sverdrup and Munk, 1947). These ideas have been gradually abandoned and traded for eddy 

viscosity analogies (Bowden, 1950; Groen and Dorrestein, 1950) that are used today in some 

operational wave forecasting models (e.g. Tolman and Chalikov, 1996). Yet there is no 

evidence that wave-induced velocity profiles are unstable and may become turbulent, except 



for the surface viscous layer (a few millimeters thick) and the wave bottom boundary layer. 

Therefore, except in these boundary layers, the local turbulent motions are possibly not 

related to the wave velocity field and no theory can justify the use of eddy viscosities.  

Instead, the stretching of turbulent eddies by the wave motion may lead to a different effect, 

and we should consider also the possible scattering of waves by turbulence. In order to 

represent the stretching, rapid-distortion theory was applied on the water-side of the surface 

by Teixeira and Belcher (2002). The theory assumes that the eddy turn-over time is less than 

the wave period, or, said differently, that the strain rate of the turbulence by the wave motion 

is more than that of the turbulence by itself, and that the turbulent velocity is much less than 

the wave-induced velocity. For the wave components that satisfy these conditions, the theory 

yields the following rate of production of turbulent kinetic energy 
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where the Cartesian components of the fluctuating turbulent velocity are uα' (α=1,2)  and w' 

in the water, and the (horizontal) components of the Stokes drift are Usα. This expression may 

be considered obvious when compared to the usual production of TKE due to the mean 

current shear, but it must be kept in mind that the Stokes drift is not a mean current, and has 

rather funny properties. Among these the Stokes drift is rotational although it is the residual of 

an exactly irrotational motions. 

 
Eq. (1.2.6) gives an energy rate of change of the form  
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 are the air and water densities, respectively, uwhere ρ  and ρa w * is the friction velocity of the 

air flow, H is the water depth, and θ
~

 is the direction of the waves relative to the wind stress 

direction. Equation (4.8) takes the following limit for deep water,  
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where C is the phase speed of the wave component of wavenumber k. 

Ardhuin and Jenkins (2006), arrived at the same expression by using Lagrangian-mean 

(Andrew and McIntyre 1978) of the shear production term in the turbulent kinetic equation 

and assuming that the turbulent flux u’w’ is uniform, and in particular not correlated with the 

wave phase, or, at most, weakly modulated. Considering that a large part of the momentum 

flux may be carried by long-lived and stable Langmuir rolls, the weak modulation of the 

turbulent flux by the waves is a likely hypothesis. However, turbulence is also to be likely 

strongest at the peak of wave groups where the Stokes drift is largest. Thus the wave 

dissipation can easily be larger than that given by (4.9). Employing the latest results on wave 

breaking relations with wave groups could lead to a better estimate of this effect. It should 

also be noted that this process is capable of producing turbulence at larger depth compared to 

that produced by whitecaps. This may resolve some problems faced by models of the ocean 

mixed layer that fail to predict mixed layer depth deep enough in cases of positive or zero 

buoyant fluxes, such as in the Southern Ocean summer.  

Wave-wave modulations 

Phillips (1963) noted that short wave breaking in the presence of long wave modulation was 

taking some energy from the long waves through the modulation.  These ideas were revisited 

by Longuet-Higgins (1969b) who proposed a “maser mechanism” with the short wave 

breaking modulation feeding the growth of the long waves. However, Hasselmann (1971) 

showed how the maser mechanism is largely cancelled by the variation of the short wave 

potential energy, and found that only the much weaker dissipation remained as proposed by 



Phillips (1963). When evaluated with reasonable modulation transfer functions, that 

dissipation is typically slightly larger than the viscous dissipation (Ardhuin and Jenkins 

2005). Yet, Hasselmann (1971) neglected the modulations of the wind stress that can be 

significant (Garrett and Smith 1976). One may thus follow Hasselmann’s (1971) and Garrett 

and Smith’s (1976) derivations and realize that this wind stress modulation, working against 

the wave orbital velocity, should be added to the long wave energy rate of change,  

αα uTS a
inm

~=
                                                                              (4.10) 

This effect dissipates the long waves that propagate against the wind, but may amplify the 

long waves that propagate with the wind. In all cases, the exchange of energy and momentum 

takes place between the wind and the long waves through the short waves, and not between 

the waves and the ocean circulation and the turbulence as in the previous cases. The wind 

stress modulation was estimated by Kudryavtsev and Makin (2004) and Ardhuin and Jenkins 

(2006) by means of using the rapid distortion theory in the air. This suggests that the swell 

dissipation is mostly due to this effect and that dissipation occurs for all directions of waves 

relative to the wind, with stronger dissipation for opposing winds. A re-estimation of the 

mixing length parameterization related to the “inner layer depth” (see Janssen 2004), changes 

slightly the magnitude of the results. However, Kudryavtsev and Makin (2004) neglected the 

modulation of the surface roughness which, as envisaged by Garrett and Smith (1976), may 

contribute to the growth of the waves in the wind direction. A qualitative estimation of that 

effect by Ardhuin and Jenkins (2006), based on the modulation transfer functions of Hara et 

al. (2003) suggests that the roughness modulation should have a weaker effect than the stress 

modulation. Direct measurements of wind stress modulations is probably a serious challenge, 

but it should be considered. A better knowledge of the modulation of short wave amplitudes is 

also needed to improve parameterisations of these effects.  

 
4.2.  Modelling the spectral dissipation function 



 
Understanding the physics of wave dissipation from a spectral perspective has been so 

incomplete that the spectral dissipation rate, unlike the wind input and nonlinear transfer, has 

been inferred indirectly by modelling the evolution of the wave spectrum rather than by 

parameterizing known physical features of the dissipation directly. Sometimes, such attempts 

have been based on trying to fit the dissipation term to an existing analytical model (Komen et 

al., 1984; Polnikov, 1993), but mostly such terms are tuning knobs that may or may not 

involve reference to the physics. 

As an illustration, it is generally recognised that a major part of the wave dissipation is 

produced by the wave breaking. Nevertheless many recent experimentally-discovered features 

of the breaking-induced dissipation have not yet been incorporated in wave models (see sub-

section 4.1 above). Particular physical mechanisms that have been identified by modellers for 

inclusion are breaking threshold behaviour based on local spectral saturation (e.g., Alves and 

Banner, 2003) rather than integral wave steepness (Komen et al., 1984), and additional short 

wave extinction through cumulative nonlinear interaction with longer waves (e.g., Donelan, 

presentation at WISE-12, Miami, USA, 2005), amongst several others.  

On another part, there is a growing discussion on what physical features have to be excluded 

from being damped in the spectral models as a result of artificially tuned dissipations. For 

example, Lavrenov (2004) showed that, if the dissipation function is not forced to suppress 

the low-frequency spectral energy, this may result in return energy fluxes from the waves into 

the atmospheric boundary layer, up to a quarter of the total wind-to-wave flux in magnitude. 

This considerable additional source of energy for the atmosphere may prove a significant 

factor in weather and climate forecasts. Another example: at WISE-12 mentioned above, 

Donelan and Meza in two separate papers presented dissipation functions responsible for the 

spectral peak downshift. Such a feature does not appear in dissipation functions presently in 

use, but is consistent with laboratory experiments of Tulin and Waseda (1999).  



However, the relative importance of such mechanisms, identified above in sub-section 4.1 for 

real waves, and therefore their relevance for spectral models, is often not clear. Thus, models 

should not have to shoulder the immediate blame for not conforming to observational physics 

as soon as the latter is revealed. In any event, progress in modelling the spectral dissipation 

rests heavily on validation methods that differ intrinsically from those which highlight 

progress in studies of the physics of the dissipation. 

Therefore, in this section we will not concentrate on a detailed analysis of dissipation terms 

included in wave research and operational models. Given the recent experimental advances, 

proposed forms for the dissipation rate term are rapidly evolving and are likely to evolve 

further in coming years. Instead, we shall analyse the progress of methodology for modelling 

and verification of the dissipation functions and indicate possible future ways for this to 

progress. In brief, the major historical stages of the methodology of tuning the dissipation 

term can be summarised as follows: 1) considering the balance of source terms in order to 

obtain the known integral evolution curves (e.g., Komen et al., 1984); 2) validating the 

spectral balance evolution to ensure the known spectrum development behaviour is satisfied 

(e.g., Banner and Young, 1994); 3) uncoupling the dissipation term from the source term 

balance in an attempt to tune it directly against known wave breaking characteristics (e.g. 

Banner, Kriezi and Morison, presentation at WISE-11, Reading, England, 2004); 4) further 

tuning the stand-alone dissipation function against other dissipation-related properties and 

constraints (next step); 5) employing exact physics, both experimental and theoretical 

(future). 

 
1) Up to now, progress on dissipation modelling is seen through the growing ability of the 

employed dissipation terms  to reproduce refined features of spectral wave evolution. As 

mentioned above, the groundwork was set by Komen et al. (1984) who first demonstrated the 

possibility of obtaining and tuning a form of the spectral dissipation function by considering 

dsS



the balance of all source terms in the radiative transfer equation. They based their choice of 

the function form on a rather free interpretation of the Hasselmann’s (1974) analytical model 

for whitecap dissipation as random pressure pulses, and introduced a set of wave evolution 

tests to verify the dissipation function. Once the proposed dissipation function was 

implemented in the evolution runs, the model had to reproduce the experimentally well-

known evolution of wave integral properties - variance and peak frequency. A list of more 

recent dissipation functions falling into this category includes, but is not limited to, Tolman 

and Chalikov (1994), Schneggenburger et al. (2000), Makin et al. (2003). Unfortunately, all 

the tests by Komen et al. (1984) were performed for wind sea growth in the absence of swell, 

which was later found to have a very large spurious effect on the parameterizations (Tolman 

and Chalikov, 1996; Booij and Holthuijsen, 2002). This problem is inherent to the definition 

of a mean steepness from the entire spectrum, and leads to overestimations of wind sea 

growth in the presence of swell by as much as a factor of 2 (Ardhuin et al., 2006), even with 

the latest modifications to Komen et al.’s formulation by Bidlot et al.(2005). 

 
2) The next significant step in fine-tuning the dissipation term was achieved by Young and 

Banner (1992) and Banner and Young (1994) who introduced a requirement for the modelled 

evolution, based on the use of a chosen dissipation function, to reproduce an experimentally 

known form of the wavenumber spectrum tail. Obviously, the spectral models need to be able 

to simulate development of the directional spectrum as well as its integral properties. This 

additional requirement put the Komen et al. (1984) dissipation term to a serious test and it 

was concluded that this term can hardly satisfy all the evolution dependences at the same 

time. Particular difficulties were encountered while attempting to tune this term to reproduce 

experimentally known directional properties of the wave spectra. Recent dissipation models in 

this category include Meza et al. (2002), Alves and Banner (2003), Lavrenov (2004), Bidlot et 

al. (2005), Donelan (2005) (the latter two were presentation at WISE-12, Miami, USA). 



Among other important conclusions of Banner and Young (1994) was a demonstration of 

sensitivity of the evolution results to variations of other than the dissipation source terms. 

Fixing the high-frequency spectrum tail to an dependence, as in Komen et al. (1984), 

brought about essential changes to the non-linear term which then had to be compensated by 

additional alterations of . This revealed an ambiguity in verification of the dissipation term 

on the basis of evolution runs that rely on simultaneous balance of all the sources/sinks.  

5−f
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3) This ambiguity is being overcome by employing a new series of direct tests in recent 

attempts to model the dissipation function (Banner, Kriezi and Morison, presentation at 

WISE-11, Reading, England, 2004). This dissipation function is based on a local spectral 

saturation breaking threshold, refining the approach of Alves and Banner (2003). Banner and 

his group proposed that, since the major contributor into the spectral dissipation is the wave 

breaking, the dissipation function should be verified against its ability to reproduce observed 

spectral distributions of wave breaking, as well as against the evolution dependences for 

spectral and integral properties. The observed spectral distribution of the length of breaking 

wave fronts, Λ(c), obtained by Melville and Matusov (2002), and more recent results from 

Gemmrich (2005) have been used for the verification purposes. This work is still in progress. 

 
4) - 5) In the meantime, it is obvious that even though a major part of the wave dissipation is 

due to the breaking, there are other mechanisms that contribute to the dissipation (see 

subsection 4.1 above) and a general set of spectral and integral constraints for the stand-alone 

dissipation function has to include the impact of those mechanisms. For example, in a recent 

experimental study, Babanin and Young (2005) showed that spectral dissipation rate 

estimates, when compared to the dissipation rate inferred by Melville and Matusov (2002), 

indicate that the turbulent viscosity becomes significant at small wave scales, where the 

cumulative term of the function (4.5) dominates. Therefore, tuning the dissipation function 

against distributions of Λ(c) would require corrections at those short wave scales, as the 



additional dissipation due to turbulent viscosity does not manifest itself by means of 

whitecapping. As complex as it might appear in deep water, the physics of wave dissipation in 

shallow water appears to be dominated by yet more new physical features (e.g. Song and 

Banner 2004). Implementation of these and other constraints, proper mathematical 

employment of experimentally-observed features of dissipation behaviour, as well as exact 

physics, still belong to the future of spectral dissipation modelling. 

 
5. Nonlinear Interactions in Shallow Water Waves 

 
by  
Miguel Onoratoh, Thomas H.C. Herbersq, Jacco Groenewegr, Alexandru Sheremets, Jane 
McKee Smitht, and Tim Janssenu

 
In this section we discuss the role of the nonlinear interactions in  shallow water. The section 

contains the description of the two approaches available for describing waves as they 

propagate towards  the shore. The first approach consists in describing the waves by 

deterministic equations (simplified models such as for example the Boussinesq equations or 

even the fully nonlinear equations). The second one deals with stochastic models, i.e., models 

that are derived from the deterministic ones under a closure hypothesis (usually the random 

phase approximation is adopted). Limitations of both approaches are elucidated. Some 

comments on wave  breaking and dissipation in shallow water are also included. 

 
 5.1.  Nonlinearity in shallow water 

As waves propagate from deep water into shallow coastal areas, frequency dispersion 

diminishes and quadratic near-resonances (Bryant, 1973) transform near-symmetrical waves 

to skewed, pitched-forward shapes as observed on beaches at the onset of wave breaking (see 

e.g. Elgar and Guza, 1985), and induce radiation of long waves at the ‘beat’ frequencies of the 

incident wave field, generally referred to as ‘surfbeat’ (e.g., Munk, 1949). 

Historically, shallow-water wave models are based on the classical uniform-depth theories of 

Boussinesq (1871) and Korteweg and de Vries (1895), extended to variable depth by 



Peregrine (1967); these theories assume the Stokes (or Ursell) number O(1) from the outset, 

i.e.: nonlinearity, a/h, and dispersion, (kh)2, are assumed to be of the same order. Although the 

original Boussinesq approximation  accounted only for weak dispersion and nonlinearity, 

limiting its validity to (very) shallow water, recent advances include full nonlinearity (Wei et 

al. 1995) and high-order dispersion effects (e.g., Madsen et al., 2003), supporting modelling 

of waves in deep-intermediate water and to very high-nonlinearity (see, e.g., Fuhrman et al., 

2004a).  Reviews of developments in Boussinesq theory are found in e.g. Kirby (1997) and 

Madsen and Schäffer (1999); more recent advances include Chen et al. (2000);  Chen et al. 

(2003); Watts et al. (2005); Shi and Kirby (2005), and many others.  

Hasselmann’s theory for resonant quartet interactions, which forms the basis for most deep 

water wave prediction models, is restricted to deep and intermediate water depths where the 

Stokes number << 1 (see Zakharov, 1999). It is well known that the lower order triad-

interactions are non-resonant in deep-intermediate depth water, forcing second-order bound 

components that can be important locally but do not contribute to the wave evolution over 

large distances. However, as ocean surface waves propagate from deep to shallow water, triad 

interactions approach resonance and assume a dominant role in the dynamics. This transition 

from quartet to triad interactions is the result of the change in the dispersion relation from a 

dispersive deep water regime that does not support resonant triad interactions (Phillips, 1960) 

to a non-dispersive shallow-water regime where all wave components travel with the same 

speed.  Although triad interactions are exactly resonant only for uni-directional waves in the 

non-dispersive shallow water limit, near-resonant triad interactions can play a dominant role 

in the evolution of waves in shallow coastal areas.  For example, a periodic wave train with 

frequency � and wave number k is accompanied by harmonic components (2��k), (3� �k) 

etc. that are bound in deep- intermediate water depths where they do not obey the gravity 

wave dispersion relation, but grow rapidly in shallow water where the mismatch from 

resonance is weak. 



In general triad interactions transfer energy from the incident wave components to higher- 

(e.g., harmonic) and lower- (e.g., infra-gravity) frequency components (see, e.g., Freilich and 

Guza, 1984; Elgar and Guza, 1985; Agnon et al., 1993; Herbers, et al. 1994; Kaihatu and 

Kirby, 1995; Agnon and Sheremet, 1997; Herbers and Burton, 1997; Ruessink, 1998; 

Kaihatu, 2001; Sheremet et al., 2003; Janssen et al., 2003, and many others).  These 

interactions not only broaden the frequency spectrum in shallow water, but also phase-couple 

the spectral components, causing the characteristic steepening and pitching forward of near-

breaking wave crests.  

Shallow water wave propagation models can generally be divided in two major categories 

(see also Agnon and Sheremet, 2000): 

i) Deterministic (phase resolving) models are usually derived from the Euler equation for 

potential flows (Laplace equation + boundary conditions) under the hypothesis of weak 

nonlinearity and in the limit of shallow water, i.e. kh�0. These models, including both the 

physical domain Boussinesq models and the complex amplitude evolution models (spectral 

models),  resolve the phases of the individual waves. 

ii) Stochastic (phase-averaged) models are derived from deterministic equations by 

applying a turbulence-like closure hypothesis to the infinite set of coupled equations 

governing the evolution of the spectral moments. For any given deterministic wave equation, 

with a suitable closure hypothesis, a stochastic model can be developed.  Since the closure 

approximation invariably introduces errors, the underlying deterministic model is in principle 

more accurate than its stochastic counterpart.  

 
As waves approach the shore, additional effects such as bottom friction and depth-induced 

wave breaking must be considered.  

 
5.2.  Deterministic models: time-domain and spectral-domain 



Time-domain Boussinesq models are typically applied to domains with spatial scales of the 

order of 10 wavelengths. Computational demands become prohibitive for larger scale 

applications (see, e.g., Fuhrman et al., 2005). Moreover, in practice, the required phase-

resolving boundary conditions are often not available and the need for wave field statistics 

(instead of details of a single realization) requires the computation of a multitude of 

realizations. Given the considerable computational requirements for even a single realization, 

clearly such repeated simulations are extremely time consuming for two-dimensional 

applications on domains of appreciable extent. Despite the recent advances in Boussinesq 

modelling, including the modelling of highly nonlinear waves (Wei et al., 1995) in fairly deep 

water (Madsen et al., 2003; Fuhrman et al., 2005) and wide ranging capabilities to model 

refraction, reflections and  wave-induced currents,  the computational demands for computing 

wave field statistics for random, directionally spread waves seriously limits the use of such 

models for operational nearshore wave prediction.  

An efficient alternative to time domain models are so-called (complex) amplitude evolution or 

spectral models. This class of models essentially expresses the wave field as a superposition 

of plane waves (Fourier modes), and consists of a set of coupled evolution equations for the 

Fourier amplitudes. The application of the Fourier transform results in a dimensional 

reduction of the governing equations at the expense of convolution-type forcing terms to 

account for nonlinear interactions. Fourier models are  attractive because they provide a 

natural continuation of the deep-water approach, and  are well suited to handling processes of 

an intrinsic statistical nature such as dissipation and wind input.   

While in deep water the temporal evolution of different wave numbers is usually considered 

(the Fourier Transform from spatial coordinates (x,y) to wave numbers (kx ,ky) is taken), a 

careful treatment is required for the richer family of finite-depth wave-fields (including 

evanescent, trapped or singular modes, Whitham, 1979), which are also intrinsically 

inhomogeneous. For variable depth problems, due to the fact that in linear theory the waves 



preserve their frequency as they shoal, it is more convenient to work in frequency Fourier 

domain (rather than the wave number domain) and solve for the amplitude evolution in space 

of waves with different frequencies. Freilich and Guza (1984) developed a frequency domain 

wave shoaling model based on Peregrine’s (1967) extension of Boussinesq’s theory to 

varying depth. Many such models have been reported in the literature, either based on 

Boussinesq theory  (Freilich and Guza, 1984; Madsen and Sorensen, 1993; Herbers and 

Burton, 1997) or fully dispersive theory (e.g. Agnon et al., 1993; Kaihatu and Kirby, 1995; 

Eldeberky and Madsen, 1999); the latter class of models includes full linear dispersion and 

has no inherent depth restriction in the linear terms, but is derived assuming quadratic 

resonances from the outset. The restriction to quadratic near-resonances is removed by 

Bredmose et al. (2002) for unidirectional wave propagation; for directional wave propagation 

over topography a generalized formulation (including off-resonant quadratic components) is 

derived in Bredmose et al. (2005) and Janssen at al. (2005); the latter model includes also 

cubic near-resonances, extending the model validity to intermediate water depths.  

Similar to the time-domain models, these models are deterministic and in order to obtain 

wave field statistics, Monte Carlo simulations are required. Since in general, amplitude 

evolution models are numerically efficient when compared to time-domain models, such 

simulations (although time consuming) are feasible (see also Freilich & Guza, 1984). Monte 

Carlo simulations are typically performed by assuming the wave field Gaussian at the 

seaward boundary. Modal amplitudes are drawn from a Rayleigh distribution with variance 

derived from the observed (or theoretical) density spectrum, and random phases are added 

(see Tucker et al., 1984). 

Deterministic spectral models are particularly well-suited to derive efficient, stochastic 

evolution models (see, e.g., Agnon and Sheremet, 1997; Herbers and Burton, 1997). 

 
5.3.  Stochastic models 



The shoaling evolution of random waves on a beach can also be predicted with stochastic 

models that solve evolution equations for statistically averaged spectral wave properties.  

Such equations can be derived by manipulating the deterministic equations and ensemble-

averaging (e.g., Benney and Saffmann, 1966; Newell and Aucoin, 1971). At the lowest order, 

the procedure yields an evolution equation for the power spectrum which includes terms 

involving the third-order cumulant, the bi-spectrum. An evolution equation for the bi-

spectrum can be derived at the next order, but this equation depends on the tri-spectrum 

(fourth-order cumulant), and so on. Thus the system never closes, leading to an infinite set of 

equations for the spectral moments. Even though it is well known that the probability density 

function of surface gravity waves can be far from Gaussian in shallow water (especially for 

large Stokes numbers), a quasi-Gaussian (or quasi-normal) closure is usually introduced.  

Most of the stochastic shallow water models consist of two, coupled evolution equations, one 

for the wave spectrum and the other for the bi-spectrum. Such equations were introduced by 

Saffman in 1967, starting from the Korteweg de Vries equation. The same methodology has 

been used later for deriving stochastic models from different deterministic equations (e.g., 

Agnon and Sheremet, 1997; Herbers and Burton, 1997; Kofoed-Hansen and Rasmussen, 

1998; Eldeberky and Madsen, 1999).  

Although even the earlier stochastic models (e.g., Agnon and Sheremet, 1997; Herbers and 

Burton, 1997) were derived for directional wave fields, apart from the simulations by Becq et 

al. (1999a) and recent advances by Herbers et al. (2003), most verification has been done for 

uni-directional waves. Comparisons of model predictions of wave spectra evolution to 

observations generally show good agreement at locations well outside the surf zone and for 

Stokes numbers less than 1.5. Higher-order statistics such as wave skewness and asymmetry 

are less well predicted, in particular in the surf zone. It is found that these parameters are 

sensitive to the type of spectral weighting function used in the dissipation source term that 

accounts for depth-induced wave breaking (Chen at al., 1997).   



Stochastic models are efficient in the sense that they compute statistical quantities directly, 

without the need of repeated simulation; moreover, they can be initialized at the offshore 

boundary with wave spectra obtained from routine directional wave measurements or regional 

wave model predictions; the bi-spectrum can usually be initialized with standard second-order 

theory for uniform depth (Herbers and Burton, 1997). However, inherent to the derivation of 

such stochastic models is the requirement of some sort of statistical closure. The commonly 

used quasi-Gaussian closure is not suitable for modelling wave evolution over long distances 

through regions of strong nonlinearity and dissipation, where it produces an unrealistic 

divergence from Gaussian statistics, leading to overly strong nonlinear couplings and 

potentially even negative energies (see Orszag, 1970), which is clearly unrealistic. For larger 

Stokes numbers and thus at locations close to the surf zone, the fundamental nature of the 

closure approximation negatively affects the model performance, even to the extent that 

predictions are physically unrealistic. To alleviate this problem and extend the modelling 

capability of these stochastic models into the surf zone, Herbers et al. (2003) proposed a 

heuristic, dissipation-controlled closure approximation, with a relaxation to Gaussian statistics 

on the scale of the surf zone width.  This approach is similar to the relaxation of the quasi-

Gaussian closure used in turbulence models (e.g., Salmon, 1998). Generally good agreement 

between observations and model simulations is found, even at locations well within the surf 

zone. 

Starting from a general three-wave interaction equation for water waves, Zaslavskii and 

Polnikov (1998) have derived an evolution equation for the wave action spectrum. The 

approach is basically the same as used in the derivation of the standard kinetic equation in 

deep water (including the quasi-Gaussian approximation). However, since there are no exact 

triad resonances, a spread delta function, characterized by a spreading parameter, is retained 

in place of the usual delta function in frequency. The final set of equations is referred to as a 

“quasi-kinetic equation”. In the case of one-dimensional propagation, numerical results have 



been compared with experimental data with some success (see Polnikov, 2000 and Piscopia et 

al., 2003 ). Some issues concerning the conservation of energy for the quasi-kinetic equation 

remain to be resolved (see Becq et al., 1999a). In the same context, Onorato et al. (2004) have 

derived a single evolution equation for the evolution of the wave action spectrum including 

quasi-resonant interactions (a spread delta function of the form of sin(��t)/(��  was derived 

after analytical integration of the equation for the bi-spectrum), but no comparison with 

experimental data has been reported. 

Earlier models, derived with the purpose of application in operational wave forecasting 

models (e.g. SWAN), include only self-self interactions (e.g., Eldeberky and Battjes, 1995; 

Becq-Girard et al., 1999b). These approximations are numerically efficient but rather crude 

representations of the nonlinear physics. Experiments involving unidirectional wave 

propagation indicate that, although these models can reproduce the generation of higher 

harmonics, they do not reproduce the release of such harmonics for increasing water depth; 

consequently, they usually result in an overestimation of the energy content at harmonic 

frequency ranges.  Difference interactions, forcing low-frequency wave motions, are not 

accounted for in these simplified models, which further hamper their successful application in 

a realistic setting.  

It is a misconception that stochastic models as described here can be applied to numerical 

domains with much coarser grids than deterministic models. In order to model quadratic 

interactions, the resonance mismatch needs to be resolved (e.g., Kofoed-Hansen and 

Rasmussen, 1998). This implies that grid resolution requirements for these stochastic models 

are generally similar to that of deterministic (spectral) models, and thus more stringent than 

those of conventional phase-averaged energy transport equations in deep water. 

 
5.4.  Dissipation and wave breaking in shallow water 



Although nonlinear energy transfers can be predicted with rigorous theories, wave dissipation 

in the surf zone is not well understood and is modelled heuristically.  Schäffer et al. (1993) 

include a turbulent surface roller in a time-domain Boussinesq model that yields a realistic 

description of the evolution of wave profiles in the surf zone.  Most models for the breaking 

of random waves are based on the analogy of individual wave crests with turbulent bores 

(Battjes and Janssen, 1978; Thornton and Guza, 1983). Although these bore models yield 

robust estimates of bulk dissipation rates in the surf zone, the spectral characteristics of the 

energy losses are not specified, and somewhat arbitrary quasi-linear spectral forms of the 

dissipation function are used in Boussinesq models (Mase and Kirby, 1992; Eldeberky and 

Battjes, 1996).  Boussinesq model predictions of wave frequency spectra in the surf zone 

appear to be insensitive to the precise frequency dependence of the dissipation function, but 

predictions of wave skewness and asymmetry are considerably more accurate if dissipation is 

weighted toward high-frequency components of the spectrum (Chen et al., 1997).  Estimates 

of nonlinear energy transfers in the surf zone based on bispectral analysis of near-bottom 

pressure fluctuations confirm the dominant role of triad interactions in the spectral energy 

balance, transferring energy from the dominant incident wave frequencies to the dissipative 

high-frequency tail of the spectrum (Herbers et al., 2000).   

The fate of difference three-wave interactions (which are responsible for the generation of low 

frequency infragravity waves – frequencies of 0.002 – 0.02 Hz) as the sea-swell propagates 

through the surf zone has been studied recently using field data (see, for example, Sheremet et 

al., 2003 and references therein). Observations show that the nonlinear coupling associated 

with this type of interaction strengthens continuously in the shoaling zone, where three-wave 

interactions are increasingly active and most of the shape transformation of the waves occurs. 

In the vicinity of the breaking point, however, the coupling is effectively destroyed, and 

infragravity waves are released. This process seems to justify the use of “unidirectional” 



hyperbolic spectral models limited to shoreward propagation, as opposed to more complex 

elliptic “bi-directional” models (e.g., Mild Slope Equation).  

 
5.5.  Open problems 

Although great advances have been made in modelling wave propagation in finite-depth, the 

topic is far from being exhausted. For instance, there is a wide variety of wave-bottom 

interaction processes that are difficult to fit into a single, complete and effective model. Some 

aspects, such as bottom friction processes, are discussed elsewhere (reference  bottom friction 

white paper). 

Open problems related to nonlinear wave evolution in variable depth (in effect wave-wave-

bottom interactions) are abundant. The following short discussion is confined to a few 

outstanding issues. 

Applications of deterministic (phase-resolving) models to random waves are based on a 

principle similar to Monte-Carlo simulations. Waves enter the domain at a deep-end, where 

the wave field can be assumed to be Gaussian. An estimate of the deep water energy spectrum 

is used to generate random modal amplitudes and phases (see sub-section 5-2) at the domain 

boundary for each realization. It is unknown how many realizations are needed to obtain 

statistically reliable predictions of shallow water wave properties. In practice, a balance needs 

to be struck between a desirable large number (around 50 realizations typically reported) and 

the required computer time. 

Alternatively, stochastic simulations are in principle more efficient since these models 

compute ensemble-averaged quantities directly, without the need for repeated simulations. 

However, the quasi-Gaussian statistical closure hypothesis commonly used in these models, 

can introduce large errors in applications over long distances or through regions of strong 

nonlinearity and dissipation. If the scope of these models is to be extended so that they can be 



applied over considerable distances in shallow water and through the surf zone, improvements 

in the statistical closure are needed (see e.g., Herbers et al., 2003).  

It is important to recognize that, successful as the models discussed here have been at 

reproducing observed beach shoaling conditions, they are far from providing a robust general 

tool for wave forecasting in water of finite depth. In fact, most models were developed really 

as nonlinear shoaling models, with the implied domain of application a typical sandy beach. 

Most of the model validation has been conducted on moderate slope beaches (1-5 %) with 

shoaling ranges of the order of 10 characteristic wavelengths and nearly straight and parallel 

isobaths. Many natural coastlines have complex two-dimensional features such as shoals, 

banks and reefs where the combined effects of the topography and strong nonlinear 

interactions transform the wave field. The accuracy of existing models in these environments 

is not well understood.  Additionally, many coastal regions contain wide shallow flats where 

nonlinear interactions evolve the wave field over hundreds of wavelengths. These large 

domains obviously strain the numerical resources needed for deterministic model simulations 

while likely invalidating the closure hypotheses used in stochastic models. Another limitation 

of most existing deterministic and stochastic evolution-type models is that they assume 

progressive waves, accounting for the evolution of incident propagating modes, but omitting 

locally excited evanescent modes and reflections. Consequently, in their present form, they do 

not predict the reflection of waves from steep shores and the nonlinear dynamics of the 

associated standing waves, and the excitation of refractively trapped low-frequency modes 

(e.g., edge waves).  

To date, there is no comprehensive model formulation for fully directional wave-wave 

interactions over two-dimensional bathymetry, applicable to arbitrary scales of propagation 

and suitable for operational wave forecasting problems.  

 
6. Bottom Dissipation 



by  

Jaak Monbaliuv, Fabrice Ardhuinl and Judith Wolfw 

The dissipation terms in the wave energy equation are the least well-known. The wave energy 

balance equation explicitly contains a term for white-capping dissipation in deep water. As 

waves approach shallower water (depth <λ/2, kh<3) they start to ‘feel the bottom’ i.e. there is 

a non-negligible wave-induced oscillatory current at the sea-bed and the spectrum adopts a 

new self-similar shape in which enhanced dissipation is evident, e.g. TMA spectrum (Bouws 

et al., 1985).  The wind input, nonlinear transfer and white-capping terms take different forms 

in depth-limited conditions and there is evidence for interaction of waves with the bottom.  

Several bottom-related dissipative processes are known: percolation into a porous bottom, 

motion of a mobile bed or dissipation through turbulent bed shear stress with an associated 

bottom boundary layer (Weber, p. 156, in Komen et al., 1994)).  Earlier work suggested that 

the self-similar adjustment of the spectrum might be all that was required to account for, with 

no need for bottom friction (Resio, 1987), but Weber (1988)) showed clearly that this is not 

the case and dissipation through bottom friction was required to complete the energy balance 

in shallow water.  Most spectral wave models that take into account bottom dissipation as a 

source term, only model dissipation by bottom friction. Below a short overview is given with 

reference to the most common literature.  

A process that is also worth mentioning is Bragg scattering from bottom irregularities, e.g. 

sand waves.  However, this is not really a dissipative process but a process that in fact 

redistributes energy. 

6.1.Wave energy dissipation due to bottom friction 

Bottom friction is responsible for energy dissipation, which may reach a few Watts per square 

meter, which is comparable to the energy input by the wind for moderate winds. Following 

Mirfenderesk and Young (2003), we can write Sbf(k), the time rate of energy density loss at 

wave number k, as:  



bkbf ukS 0)( τ−=  

where 0τ  is the bottom shear stress and  is the orbital velocity of the wave component with 

wave number k.  Much work has been devoted to the detailed study of the bottom boundary 

layer structure, in order to obtain 

bku

0τ ,  and other quantities as a function of the wave and 

current velocities away from the boundary, e.g. Grant and Madsen (1979), Christoffersen and 

Jonsson (1985), Wiberg (1995), Davies and Villaret (1999), Marin (2004)). These models 

perform well against laboratory measurements, e.g. Jensen et al. (1989), for well-defined 

conditions (smooth and rippled beds with carefully controlled geometries).  

bku

Common formulations for spectral wave models: waves only 

Luo and Monbaliu (1994) summarised the work done on the bottom friction term used in 

spectral wave models (here written in (σ,θ) space, h is the water depth): 
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)2sinh(
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The coefficient Cf depends on the closure model used to solve the momentum equations of the 

bed boundary layer.  Of course, flow conditions and bottom roughness (friction factor fw or 

equivalent roughness K ) are important parameters.   N

The following symbols in Table 6.1 are used: friction coefficients c; drag coefficient Cf ; 

friction factor f ; bottom roughness height K ; kronecker delta δw N ij; ensemble average 〈 〉; 

bottom velocity components U  and Ui j; U is the magnitude of the bottom velocity vector; 

wave boundary layer friction velocity u*; dimensionless function  and its complex 

conjugate , both dependant on the dimensionless argument 

kTr

*
kTr

0ς  expressing the ratio between 

the roughness length and the wave boundary layer thickness. 

In the field however a degree of complexity is introduced by the randomness of the wave 

field, e.g. Zou (2004), but more importantly the bottom is anything but uniform. As a result, a 

large part of empiricism must be introduced.  



So far also only indirect validations have been performed, based on the recordings of wave 

attenuation between several wave gauges, rather than direct measurements in the wave bottom 

boundary layer. The validation of the coefficients given above is often discouraging. 

Hasselmann et al. (1973) found that CJ inferred from the JONSWAP dataset of swell 

attenuations varied over two orders of magnitude, and (Young and Gorman, 1995) did not 

find a clear “winner” in their test of several parameterizations for the bottom friction source 

term. For the analysis of data from a field experiment of wave decay across the Great 

Australian Bight in order to determine the spectral decay which can be attributed to bottom 

friction, Young and Gorman (1995) used the spectral wave model WAM as an analysis tool.  

It is indeed necessary to take other processes such as atmospheric input, nonlinear 

interactions, whitecap dissipation, refraction, and shoaling into account since all these source 

terms are also active.  

Common formulations for spectral wave models: waves and currents 

The effect of the interaction between waves and currents on the bottom stress is not 

completely solved.  There is still some debate about whether the interaction is weak or strong 

(Kagan et al., 2005).  In the concept of strong interaction both the wave and current bottom 

stress are enhanced due to nonlinear interactions.  The bottom stress under combined waves 

and currents is larger than the sum of wave and current only.  This approach was followed in 

the formulations of Grant and Madsen (1979) and Christoffersen and Jonsson (1985).   

In spite of the importance of these effects on tidal current modelling, there seems to be little 

field validation of the wave-current theories.  There is evidence that waves affect the bottom 

friction experienced by the mean flow, e.g., Wolf and Prandle (1999), Keen and Glenn 

(2002), Kagan et al. (2005), but there seems little or no observational nor theoretical evidence 

that the presence of currents affects wave friction in a substantial way, see e.g. Kagan et al. 



(2005), Weber (1991), Tolman (1992a).  As pointed out by Kagan et al. (2005), it is possible 

that some effects cancel out. 

Bottom roughness models for movable beds 

Irrespective of the formulation used, some characterisation of the bottom roughness is needed.  

This is directly evident in the models that require the friction factor fw or equivalent roughness 

KN as an input (see Table 6.1).  In the case of sandy bottoms, bed forms may exist.  These bed 

forms (ripples) are dependent on sand grain size, and on the existing, and the history of, 

previous hydrodynamic conditions, visible in wave and current ripples and/or relict ripples.  

There are strong evidences for an important role played by the wave-generated bedforms, so 

that the bottom roughness, at least over sand, appears more important than the details of the 

bottom boundary layer (Ardhuin et al., 2003). In other words an adequate parameterization of 

the changing bottom roughness is probably more important than a choice between say (see 

Madsen et al, 1988, and Weber, 1991).    

There is a considerable amount of literature on friction factors for movable beds.  They all 

relate hydraulic roughness to a combination of skin friction on individual grains and form 

drag due to bed forms.  Bed forms here include ripples formed under oscillatory flow 

conditions including sheet flow conditions.  In principle, once sand grain size is known and 

the hydrodynamic conditions are known, it is then possible to estimate hydraulic roughness of 

the bed and consequently also the energy dissipation in the wave field.   

Tolman (1994) was probably the first one to investigate the effect of bed forms on bottom 

friction dissipation in a spectral wave model.  He used a roughness predictor based on the 

sediment grain size and on a characteristic orbital velocity and characteristic orbital amplitude 

obtained as an integrated parameter from the wave spectrum.  Tolman (1995b) even 

accounted for subgrid variability in sediment parameters in large-scale wind wave models.   



In practice however roughness values or energy dissipation factors obtained from different 

experiments differ often by an order of magnitude or even more, see, e.g., Nielsen (1992).  

There is the combined effect of waves and current on bed mobility, bed forms and suspended 

sediment concentration (Glenn and Grant, 1987).  Also the dissipation process might differ 

depending on the bedforms involved.  For example, in the case of large roughness elements or 

steep ripples in oscillating flow, the momentum transfer in the near-bed layer is dominated by 

the vortex-shedding process rather than by random turbulence, as pointed out by Nielsen 

(1992) and Sleath (1991).  Detailed process models of the wave boundary layer over ripples 

that address the vortex shedding that is observed have been developed, e.g. by Malarkey and 

Davies (2004) and by Davies and Thorne (2005).  Possibly these process models may yield 

new parameterizations for spectral models. 

6.2. Energy dissipation due to wave-bottom interaction 

Bottom friction is not the only process of importance for the dissipation of wave energy at the 

water-bottom interface. Shemdin et al. (1978) gave an overview of the different bottom 

interaction effects and next to friction dissipation discussed above, two other mechanism were 

discussed: 

• damping due to percolation in a permeable bed layer 

• absorption of energy in a bottom layer of soft mud 

Both mechanisms have been worked out theoretically for more or less idealized cases.   

In the case of percolation, the dissipation of wave energy is due to the wave induced pressure 

field at the bottom which in turns induces a flow in the permeable (sand) layer.  The 

theoretical considerations can be found in Dean and Dalrymple (1984); Shemdin et al. (1978) 

and literature therein referred to.  The wave energy damping rate is proportional to the 

permeability of the sediment layer and only significant for coarser sediments (grain size > 0.5 

mm).  For practical applications not only grain size, but also the thickness of the permeable 



layer needs to be known (thickness larger than 0.3 times the wave length can be considered as 

infinite according to (Shemdin et al., 1978). 

In the case of a soft muddy bottom, the energy dissipation is theoretically worked out using a 

two-layer model.  The top layer is the water column and is treated as an inviscid fluid.  The 

free surface wave will induce a wave at the mud-water interface which in turn will induce 

flow in the mud (lower) layer.  The flow in the mud layer is damped rapidly by the high 

viscosity in the mud layer.  The dissipation rate of waves propagating over mud bottoms is 

considerably higher than over sandy bottoms.  For a more detailed description see, e.g., Dean 

and Dalrymple (1984), Gade (1958), Hsiao and Shemdin (1980), and Cavaleri p.169 in 

(Komen et al., 1994).  Winterwerp et al. (2005) give a formulation for the energy dissipation 

source term which they used in the SWAN model. 

6.3.Wave scattering and reflection  

Besides dissipation, the bottom topography may also modify the propagation of waves by 

partial reflection. Over complex topographies this partial reflection is known as scattering. 

Reflection generally conserves the wave energy, but not the momentum since there is a mean 

work done by the bottom on the waves in the form of a correlation of bottom pressure and 

bottom slope. It can be shown that for small bottom amplitudes and in the presence of 

currents the reflection also conserves the wave action (Magne and Ardhuin, 2005). This is 

also a consequence of the existence of a Hamiltonian for waves over variable topography, see, 

e.g., Henyey et al. (1988), Athanassoulis and Belibassakis (1999). The reflection of linear 

waves is well known for simple bottom profiles (such as a step, a rectangular canyon or a 

ramp).  

A bottom scattering source term can be derived for random topographies of small amplitudes 

(Ardhuin and Herbers, 2002),  
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Using results by Mei and Hancock (2003), this scattering term was shown to be applicable to 

deterministic bottom topographies such as an isolated step or a ramp (Magne et al., 2005a), 

provided that the topography amplitude is small compared to the mean water depth. This 

result establishes that in this case the Bragg scattering mechanism fully explains the 

reflection: waves reflection only depends on the variance in the bottom elevation at the Bragg 

scale. For natural shelf topographies like the North Carolina Shelf or the southern North Sea, 

the scattering yields an increase of the directional spread for narrow wave spectra (Ardhuin et 

al., 2003). Bragg resonance was also observed for waves propagating over nearshore bars 

(Elgar et al., 2003). The relevant bottom scales range between one half and four times the 

surface wave wavelength.  

For larger bottom amplitudes higher order scattering can be found (Rey et al., 1996). For 

general topographies of finite amplitudes, several extensions of the mild slope equation have 

been presented, e.g. by Athanassoulis and Belibassakis (1999). 

The scattering of nonlinear waves has been investigated by several authors, e.g. Kirby (1986) 

and Mei and Hancock (2003).  

6.4. Discussion and outstanding problems 

Qualitatively, the process of energy dissipation due to interaction with the bottom seems 

relatively well understood.  Theories exist for energy dissipation due to friction, percolation 

and water-mud interaction.  Quantitatively however, our understanding is at least incomplete.   

First of all, the location of the sea-bottom is in many cases not fixed in time.  Fortunately, 

wave energy dissipation due to bottom friction is not a strong local process.  The horizontal 

movement of a sand bank or shoal over a few hundred meter, will not drastically affect the 

wave energy propagating over a shelf or coastal area. 

Secondly, our knowledge of the friction or damping characteristics of the sea bottom is 

limited.  For example not the whole shelf sea has a sandy bottom.  Quite often there are areas 



with sand, areas with rock and areas with mud.  Bed forms are changing due to changing 

hydrodynamic conditions.  Changes at subgrid scale are likely both in terms of sediment 

composition (grain size, percentage sand, ..) as in terms of bedforms (Tolman, 1995b).  

Bedforms in mixed mud-sand sediments seem to be inhibited, but this is a poorly known 

topic.  In that respect it is also interesting to quote from p.296-297 of Nielsen (1992): “Thus, 

energy dissipation measurements under waves indicate much greater hydraulic roughness for 

flat, movable beds than other types of experiments.  …..  Is it possible, that the larger 

roughness indicated by the energy dissipation experiments can be explained in terms of the 

energy dissipation due to percolation under waves, which is not directly related to the 

effective bed shear stress. …”.  Also,  in order to determine the spectral decay which can be 

attributed to bottom friction, Young and Gorman (1995) analysed the data obtained from a 

field experiment in which seven wave measurement instruments were placed in a linear 

transect across the Great Australian Bight. The data available did not allow the relative 

contributions of bottom friction and percolation to be determined.  Or in other words, in some 

cases we are not even sure which dissipation process(es) we need to take into consideration.   

Similarly, Wolf (1999) points out that it is difficult to make measurements of turbulent shear 

stresses in combined wave and currents, especially in the field.  Laboratory data may not 

cover the whole range of phenomena, especially so when sediments are involved. 

The energy absorption of soft muddy bottoms is not so well known.  A standard source term 

for spectral models is not available.  Undoubtedly, there is an effect of enhanced damping by 

cohesive sediment and vegetation over salt marshes, as has been demonstrated by e.g. Möller 

and Spencer (2002).  However, Sheremet and Stone (2003) state that “Contrary to the widely 

accepted hypothesis that mud-induced wave dissipation is important only for long waves, 

observations show significant damping of high-frequency, short waves, which interact weakly 

with the bottom.”  The two layer concept with an inviscid fluid at the top and a viscous flow 



layer underneath is probably too simplistic to characterise a more gradual transition in fluid 

properties over the water column.   

Probably the only way to make further progress in our understanding of wave dissipation due 

to interaction with a movable or soft bottom, will be through the combined study of the wave 

field and its effect on sediment motion.  These are closely linked.  But flow properties and 

sediment concentration close to the bottom, and in case of mud also visco-elastic properties of 

the bottom are difficult to measure. This is so in lab experiments, but even more so in field 

conditions.  

 
7. Wave Propagation 
 
by 
Fabrice Ardhuinl, Hendrik L. Tolmand, Kostas Belibassakisx, Igor V. Lavrenovg

 
Wave propagation is usually represented as the left-hand side term of  the action balance 

equation with many well known effects of refraction, shoaling, diffraction and reflection. 

These effects typically dominate  the variation of the wave field over narrow continental 

shelves, or the evolution of swells over very long distances in deep water. Large spatial scale 

variations in the depth and current may cause any of these effects, and the time evolution of 

the depth and current also lead to modifications in the wave field that may be less familiar to 

the reader but are generally included in spectral wave models. Although such effects are very 

well verified by observations for varying depths, there is still little validation of wave 

propagation over varying currents, and the associated steepening and dissipation of the waves 

is still poorly understood. Evolution of depth and currents over scales comparable to the 

wavelength may lead to a very strong partial reflection at any oblique angle that may 

considerably broaden the directional wave spectrum. This effect is supported by observations 

for depth variations, and theories for scattering over currents suggest that it is a very 

important process for the directional spectrum of short waves. A verification has yet to be 

performed. Such scattering may also involve a feedback of the waves on the current, as in the 



case of internal waves. These latter effects are typically not accounted for in wave models and 

may explain some of the large biases found in model results in coastal areas. 

In this section we make an overview of the problem, first considering it from a general point 

of view. Then we analyse in sequence the limitations of geometrical optics and the effects of 

varying current, both in space and time, with a final look at waves in the real ocean. 

 
7.1.   Dispersion, geometrical optics and the wave action equation 

Wave propagation at sea has been a subject of scientific interest for centuries. A 

comprehensive theory for monochromatic linear and nonlinear wave propagation was 

presented Airy (1845) and Stokes (1847), with non-linear effects specific to shallow water 

studied by Boussinesq (1871) and reviewed in section 5. A spectral description of wind waves 

was introduced by Pierson et al. (1955) in order to account for the irregularity of waves at sea. 

In this description, the random wave field is broken into a spectrum of many regular wave 

components which are distinguished by wavenumber vector k of magnitude k, and relative 

radian frequency σ. Most wave forecasting models in use today consider that the wave 

components are inherently linear so that the wave properties are attributed to either a 

component k=(kx,ky) or the pair (σ,θ) with θ the direction normal to the wave crests, that is the 

direction of the vector k. k and σ are related by the dispersion relation for linear waves. 

Typically, the relative phases of wave components are taken to be random and uniformly 

distributed so that only the amplitude information of the spectra is retained (dropping phase 

information). These amplitudes are then translated to a quadratic wave quantity that may be 

either the spectral density of energy ρw gE(k), momentum Mw(k)= ρw g kE(k)/σ  or action  

A(k)=gE(k)/σ  (see e.g. Andrews and McIntyre 1978), where ρw is the water density, g is the 

apparent acceleration of gravity and E(k) is the surface elevation variance spectrum. That 

latter quantity may be obtained by a Fourier transform of the surface elevation field. These 

spectral densities generally vary in space and time so that the Fourier transform is generally 



implicitly replaced by a Fourier transform of the surface elevation autocorrelation function, or 

a Wigner distribution (Wigner, 1932). It should be noted that the local directional spectrum 

may have no physical meaning for wave amplitudes that vary slowly in time but rapidly in 

space.  

Wave forecasting thus reduces to a quantitative determination of the evolution in space and 

time of the action spectrum taken as A(k)/g since ρw and g are generally regarded as constants. 

The evolution equation for A is intrinsically simpler than those for E or Mw because the total 

action conservation is related to the invariance of the physical problem when the wave phases 

are changed, which is generally the case in intermediate and deep water. This relation is 

known as Noether’s theorem. In the same way, the conservation of total energy or wave 

momentum is related to invariances by translations of the medium in time or space, 

respectively, which is generally not the case (e.g., Andrews and McIntyre, 1978). A general 

equation for the total action can be derived for any wave field in terms of the wave-induced 

pressure, velocity and displacement fields (Andrews and McIntyre 1978). This includes in 

particular the Earth rotation or current shears that make the wave motion weakly rotational as 

Laplace’s equation does not hold exactly. An explicit approximation may be given for slowly 

modulated small amplitude waves (Bretherton and Garrett, 1968) with a corresponding 

equation for the spectral action density (Hayes, 1970; Komen et al., 1994),  

 

dA(k)/dt = ∂A(k)/∂t + ∇⋅[(Cg+UA(k))A(k)] + ∇k⋅[Ck A(k)] = Stot  (7.1) 

 
where Cg= k (∂σ/∂k)/k is the intrinsic group velocity, and UA(k) is an advection velocity that 

depends on the mean current, and also on the amplitudes of all wave components. The 

divergence operator ∇⋅( ) is the classical divergence restricted to the horizontal directions 

only, and ∇k⋅( ) is a similar divergence operator in spectral space. The spectral advection 

velocity Ck represents the turning of the wave crests (refraction) and change in wave length 



(shoaling). Explicit expressions for Ck, or their equivalent for the pair (Ck, Cθ), can be 

obtained in terms of the gradients of the water depth and UA(k), using the hypothesis of slow 

modulation (e.g., Keller, 1958, Mei, 1989). This approximation is also called WKB or 

‘geometrical optics’ (GO) approximation, due to its use in the theory of light refraction. Such 

expressions for (Ck, Cθ) are usually called ‘ray equations’, and form the basis of the advection 

part in phase-averaged wave models. Finally, the action of each component is allowed to 

evolve as it propagates, with a rate of change given by the total source term Stot.  

In the deep ocean, spectral components are indeed shown to propagate according to (7.1). The 

rotation of the Earth has a negligible influence on wave propagation (Backus, 1962), and 

individual wave components of the spectrum travel along great circles until they reach 

shallow water, strong currents, or coast lines. This was powerfully demonstrated by 

Snodgrass et al. (1966), who followed wave propagation a third of the way around the globe. 

In shallow water, and in the absence of significant currents, the validity of (7.1) was also 

demonstrated by Munk and Traylor (1947), and many following studies. As a matter of fact, 

the propagation of long period swells over a relatively narrow continental shelf with no 

significant current is generally well described by (7.1), with the right hand side set to zero 

outside of the surf zone (e.g., O’Reilly and Guza, 1993; Peak, 2004).  

The two forms of the left hand side of (7.1), the Lagrangian derivative following a wave 

packet, or the Eulerian derivative plus divergence of action fluxes, are rigorously equivalent. 

The first form was originally proved for steady conditions without current (Longuet-Higgins, 

1957) and is easily used in backward or forward ray-tracing methods of solution. The second 

is most easily translated into methods with discretized physical and spectral spaces, and where 

action transports based on characteristic velocities are considered in each space. Such an 

equation takes the form of a spectral action balance equation rather than a conservation 

equation. It can be constructed for arbitrary descriptions of spectral space, as long as the 

Jacobean transformation from N(k) to the alternative description of spectral space is well 



behaved (Tolman and Booij, 1998, Appendix A). It should be noted that this is generally not 

the case for spectra described in terms of the absolute frequency and direction, because the 

corresponding Jacobean has a singularity at the blocking point. Numerical issues that arise in 

the solution of (7.1) are discussed in section 8.  

Unfortunately, GO may be inadequate for some situations. Further, currents effects 

represented in (7.1) are still poorly validated quantitatively, even by laboratory experiments, 

and some observed effects of currents are not understood.  

 
7.2.  Limitations of geometrical optics: diffraction, reflection and random scattering 

Whenever the water depth D or the current changes on the scale of the wavelength, deviations 

from geometrical optics are expected. A classical example is the propagation of waves past a 

semi-infinite and absorbing breakwater with the wave field diffracted behind the breakwater. 

A general representation of the variation in the wave field at the scale of the wavelength 

requires a phase resolving model that accounts for the interference patterns, particularly in 

areas of crossing wave rays (e.g., Berkhof, 1972; Dalrymple and Kirby, 1988; Athanassoulis 

and Belibassakis, 1999). However, the representation of the effect of diffraction on scales 

larger than the wavelength can be included in (7.1) by a proper modification of Cθ (e.g. 

Holthuijsen et al., 2003). For natural topographies, the geometrical optics approximation is 

generally quite robust. This fact was confirmed by the 2003 Near Canyon Experiment, off La 

Jolla, California, where the bottom slopes reach 3/1 on the walls of Scripps canyon (Peak, 

2004). Over such a topography, deviations from geometrical optics are significant only in a 

small area around the head of Scripps canyon, where the wave height has been found to vary 

by a factor up to 5 over about half a wavelength (Magne et al., 2005a). 

Another much discussed limitation of GO is the appearance of the infamous caustics. Caustics 

are the crossing points of initially parallel wave rays, and would lead to infinite wave heights 

at these points, according to GO, in the case of monochromatic waves. These caustics do not 



lead to any problem when spectral waves are considered, and this is why backward ray-

tracing may be preferred to forward ray-tracing (e.g., O’Reilly and Guza, 1993).  

Where the water depth goes to zero, on the shoreline, waves are partially reflected. This is 

generally represented by empirical reflection coefficients in phase-resolving models for wave 

propagation around artificial coastlines, but it may also be important on natural shorelines, 

including beaches (Elgar et al., 1994) and cliffs (O’Reilly et al., 1999). Such a reflection may 

be introduced in phase-averaged models as a proper boundary condition for (7.1). Partial 

wave reflection also occurs over any bottom topography. This is generally negligible, but 

significant reflection occurs when the depth changes on the scale of the wavelength 

(Heathershaw, 1982; Elgar et al., 2003). This phenomenon is formally similar to the scattering 

of long electromagnetic waves over the ocean surface, a phenomenon used for mapping sea 

surface currents with High-Frequency radars. For linear waves, it can be represented by a 

Bragg-like bottom scattering source term Sbscat in the right-hand side of (7.1) (Ardhuin and 

Herbers, 2002; Magne and Ardhuin, 2006). This source term accounts for the interaction of 

triads involving two wave trains and one bottom Fourier component. In the form given by 

Magne and Ardhuin (2006), it also includes interactions between two waves and one Fourier 

component of the current or surface elevation that arises from the adjustment of a mean 

current to the topography. This scattering theory over the current fluctuations should be 

consistent with the theory of Bal and Chou (2002) for the scattering of gravity-capillary 

waves over depth-uniform and irrotational current fluctuations.  

The relative accuracy of reflections coefficient given by Sbscat was found to be proportional to 

the ratio of the bottom amplitude and water depth, regardless of bottom slope. Reflection 

coefficients may thus be obtained from any bottom topography of small amplitude, including 

steps or ramps, as can be seen by the correspondence between the Green function method and 

Fourier transforms (Elter and Molyneux, 1972; Mei and Hancock, 2003; Magne et al., 2005b). 

The source term does not give accurate results, however, when particular phase relationships 



exist between interacting waves and bottom undulations, e.g. in cases with waves propagating 

over nearshore sand bars and reflecting over the beach (Yu and Mei, 2000). Except for such 

conditions, the evolution of wave action over scales larger than the bottom autocorrelation 

length, is very well predicted by Sbscat, in agreement with phase-resolving models for wave 

propagation in one dimension (Mei, 1985; Kirby, 1988). On natural continental shelves with 

bottom elevation variances of the order of 1 m2 for scales in the range of 0.5 to 5 times the 

wavelength, this scattering term yields a strong broadening of the directional spectrum over a 

few kilometers for kD≈1. This predicted broadening was confirmed by observations of the 

evolution of narrow offshore directional wave spectra across the North Carolina shelf 

(Ardhuin et al., 2003), although it accounted for only half of the broadening of relatively 

broad offshore spectra. For organized bottom topographies such as the sandwave fields found 

in the southern North Sea, a strong broadening is expected for narrow swell spectra, with an 

additional weak reflection, depending on the swell direction relative to the current and the 

sandwave crests (Magne and Ardhuin, 2006).  

This type of scattering by random media perturbations is quite general (e.g., Ryzhik et al., 

1996) and can be extended to other current perturbations that may be rotational and unrelated 

to the topography. Such a calculation is yet to be made. Although Laplace’s equation does not 

hold in that case, one may use an equation for the pressure (e.g., Kirby and Lee, 1993) or a 

forced Laplace equation (e.g., McWilliams et al., 2004), or work from the Hamiltonian 

(Rayevskiy 1983). With that approach a scattering source term was derived by Rayevskiy 

(1983) for waves over random current and a corresponding diffusion approximation was 

derived. This effect is found to be potentially important and was further studied by Fabrikant 

and Raevsky (1994). For example, these authors found that unidirectional waves of 40 m 

wavelength in a drift flow of a few centimetres per second evolve into directional waves with 

a spread of 6o in a few kilometres of propagation. 



 For large bottom amplitudes or steeper waves, higher order interactions are expected to be 

relevant (Liu and Yue, 1998). Such interactions have been observed for periodic and one-

dimensional bottom topographies (Rey et al., 1996). The bottom topography may act as a 

catalyst, making near-resonant triad wave interactions (see section 5) exactly resonant. Again, 

the proper form of the higher order scattering term is yet to be derived for random waves.  

 
7.3.  Waves over varying currents, non-linear wave effects and the advection velocity 

A proper description of wave propagation over currents is not only necessary for the 

forecasting of waves over large-scale currents such as the Gulf Stream or the Agulhas current, 

or tidal currents on continental shelves. It is also a key element for the interpretation of 

remote-sensing observations. This applies to microwave radar or radiometers from satellites, 

used for measuring anything from sea surface height, current and wave heights, to sea surface 

salinity and winds. In that case the instrument is sensitive to short (few centimeters) waves 

that are modulated by the orbital velocities of the longer waves, with additional effects of 

surface slopes and accelerations (see, e.g., Henyey et al., 1988, and Elfouhaily et al., 2001). 

This also applies to High-Frequency radars, a now popular instrument for mapping coastal 

‘currents’, or more specifically the phase velocity of a waves of a given wavenumber k. That 

velocity is the intrinsic phase speed kσ/k2 plus the advection velocity UA(k). A proper 

approximation for UA(k) is the depth-integrated mean drift velocity UL, in which the depth-

integration is weighted by the profile of the Stokes drift of the wave component (k), that is, to 

the lowest order of approximation (Andrews and McIntyre, 1978),  

 
UA(k) = ∫ UL(z) kcosh[2k(z+H)]/sinh(2kD)dz      (7.2) 
 
where -H is the mean elevation of the bottom and D is the mean water depth, which is H plus 

the mean surface elevation. Such an expression is consistent with the approximate solutions of 

Kirby and Chen (1989) and McWilliams et al. (2004) for weak vertical shears and small 

amplitude waves. In that case the drift current UL is approximately the mean current velocity 



û. However, a more general approximation for not-so-small waves is, UL= û+Us where Us is 

the Stokes drift due to the entire wave field. In the case of short wave advection by long 

waves, with a clear scale separation, Broche et al. (1983) showed that (7.2) is consistent with 

the theory of Weber and Barrick (1977). In remains to be proved that (7.2), or a more accurate 

version of it, is also consistent with the known amplitude dispersion of Stokes waves, or other 

theories for the dispersion of waves in a random wave field (Hayes, 1973; Willebrand, 1975; 

Huang and Tung, 1976; Masuda et al., 1979), short wave modulation by long waves (Phillips 

1981), and finite amplitude waves over shear currents (e.g., Dalrymple, 1974; Peregrine, 

1976). 

In practice wave models and most users of HF-radars assume that UL is uniform over the 

depth. This is probably a good approximation for swells propagating over large-scale 

geostrophic, tidal or wind-driven currents, as the current velocity û is generally uniform close 

the surface due to the strong mixing induced by wave breaking (Santala and Terray, 1992; 

Terray et al., 2000). However, a differential advection of shorter waves by the sheared Stokes 

drift is to be expected. Fore reference, Us at the surface it is typically 1 to 1.5% of the local 10 

m wind speed for fully-developed waves. Further, the advection velocities of short and long 

waves propagating in stratified estuaries are also expected to be markedly different due to 

vertical shears of û. To our knowledge nobody has yet tried to verify that latter effect. The 

common practice of using the surface velocity is expected to be generally valid. 

The near-surface drift velocity UA is known to modify the wave heights by a combination of 

three effects. We consider monochromatic waves for the sake of simplicity. First of all, the 

conservation of the wave action flux means that in cases of along-crest uniform conditions, a 

gradient of UA in the direction of propagation should result in a change of the local action 

density in order to keep (Cg+UA)A constant. Specifically, for waves against an increasingly 

strong current, Cg is reduced as the wavelength gets shorter and Cg+UA is made even smaller 

by the change of UA. Second, the change in surface elevation variance E=A/σ is amplified 



compared to A due to the change in the intrinsic frequency σ. Third and last, UA generally 

varies along the wave crests so that current-induced refraction leads to further local increases 

of wave heights for waves propagating against a current jet. For weak current shears the 

current-induced refraction gives a ray curvature radius equal to the ratio of the wave group 

speed and the current vertical vorticity (Landau and Lifshitz 1960). This combination of 

effects for the wave height and the associated change in wavelength makes current fronts a 

preferential site of wave breaking. Current jets, from large scales to river mouths are one of 

the most hazardous areas for navigation (e.g., Gutshabash and Lavrenov, 1986; Masson, 

1996).  

Practical wave forecasting in which currents are taken into account are, to this day, limited to 

tidal currents (e.g. at the UK Met Office). Quasi-geostrophic currents are probably not 

observed or predicted well enough in order to perform these calculations. This may change 

with the advent of absolute measurements of the ocean dynamic height, using the latest high-

resolution measurements of the geoid. Large benefits are expected for the forecasting of 

extreme waves.  

On smaller scales, when current variations are significant over one wavelength, partial wave 

reflection occurs. The two cases of current discontinuity (Evans, 1975) and slowly varying 

current (McKee, 1974) have been well investigated. A Mild Shear Equation analogous to the 

Mild Slope Equation, was derived and extended by McKee (1996). Effects of evanescent 

modes have also been considered by Belibassakis and Athanassoulis (2004). Partial wave 

reflection may be relevant for the wave-current interactions that occur in Langmuir 

circulations (Smith, 1980; Verron and Melville, 2001), the essential mixing engine in the 

ocean mixed layer. Indeed, the vortex force that drives Langmuir circulations only exists as a 

compensation of the divergence of the wave momentum flux that occurs when waves refract 

over the current pattern (Garrett, 1976). Analytical solutions suggest that such reflections are 

generally weak for typical dominant wind waves with periods of a few seconds, except for 



grazing incidence angles. However in that case the effect is minimal since the reflected and 

incident wave directions are almost identical.  

 
7.4.  Waves blocking 

Wave blocking occurs where opposing currents are sufficiently strong to stop wave 

propagation in physical space, i.e. where Cg+UA(k)=0. In a traditional monochromatic 

geometric optics approach, a singularity occurs in the wave energy equation at the blocking 

point, where the wave action and energy fluxes converge. However, Shyu and Phillips (1990) 

have shown that a continuous solution exists on both sides of the blocking point. Furthermore, 

a spectral approach leads to continuous non-crossing characteristics in (x-k) space, indicating 

that no singularity exists in a spectral description of wave propagation. Laboratory 

observations of wave blocking (Lai et al, 1989; Chawla and Kirby, 2002; Suastika and 

Battjes, 2005) clearly validate the concept of a blocking point. However, the mechanism by 

which the wave energy is `removed’ at the blocking point does not seem to be understood yet. 

 
7.5.  Unsteady water depths and currents 

Traditionally, waves propagating over stationary currents have been considered. This 

approach is valid for conditions where the currents are (quasi-) stationary on time scales 

comparable with the propagation time of waves through the area. This is generally the case 

for persistent deep-ocean currents like the Gulf Stream, or for current patterns related to 

bathymetric features such as shoals, headlands and inlets. However, many of the current fields 

in shelf seas are related to tides. A free travelling tidal wave travels much faster than a wind 

wave and therefore results in a quasi-homogeneous rather than quasi-stationary current field. 

Such temporal variations of currents result in Doppler shifts only (Tolman, 1990). In many 

practical applications, interactions occur due to both spatial and temporal variations of the 

current field (Barber, 1949; Tolman, 1991).  

 



7.6.  Waves in the real ocean 

The occurrence of other types of motions (e.g. internal waves) or special boundary conditions 

(sea ice, surface films) have significant effects over the wave motion. Although such 

situations are frequent, they are generally neglected except for the effect of sea ice. Ice is as a 

powerful attenuator of waves propagating from the open ocean (Wadhams, 1978) and 

generally prevents any wind-wave generation of significance to the ice-free ocean (Croker 

and Wadhams, 1983). Still, 1 m high swells have been observed to break up the ice as far as 

500 km from the ice edge, making navigation difficult (Liu and Mollo-Christensen, 1988). As 

for the other conditions, there is clear evidence of attenuation of waves by oil poured on the 

sea surface, an ancient technique for ship rescue operations. Theory on surface waves –

internal wave interactions lead to possible large changes in the surface wave energy 

(Kudryavtsev, 1994) with observed significant wave generation by large amplitude internal 

waves (Osborne and Burch, 1980). Further research on these processes is clearly needed, with 

an evaluation of their impact in numerical wave models.  

 
8. Numerics and Resolution in Large-scale Wave Modelling 
 
by  
W. Erick Rogersy, Hendrik L. Tolmand, Fabrice Ardhuinl, and Igor V. Lavrenovg 

 

Although most efforts have been devoted to the understanding of the physical processes 

responsible for the evolution of the wave action spectrum, mathematically represented by eq. 

(8.1), it must be recognized that the choice of a numerical method for arriving at the solution 

may be the source of large errors in the results (Tolman, 1992). In this section we provide a 

description of the basic problem, related both the finite description of the physical world and 

to the time step integration. We analyze the related existing solutions. Then we discuss the 

relative importance of the various sources of error, with a look at the future. 

 
8.1.  A description of the problem 



 
Two fundamentally different approaches have been used for solving (8.1). The ray method, 

using backward ray-tracing to avoid caustics, is convenient and very efficient for steady 

media, where the rays need to be computed only once (e.g., Cavaleri and Malanotte-Rizzoli, 

1981).  

The advantages of the grid method are that conservation of action can be enforced rigorously, 

and that the inclusion of nonlinear source terms is straightforward with a splitting of the 

integration time step in advection and source term integration. Problems with grid methods 

are that high spatial resolution is required for an accurate description of bathymetric and 

topographic effects, and high spectral resolution is required for accurate swell propagation 

over large distances. It should be noted that where the same governing equation is solved, the 

different numerical methods should ideally produce the same result, as demonstrated in 

Holthuijsen and Tolman (1991), for example.  

 

Error due to the numerical scheme for geographic propagation on a grid 

For the purpose of discussion, we pose the wave model governing equation in one-

dimensional form, with uniform group velocity, no source terms, and only one spectral 

component (frequency/directional bin) considered: 
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When this continuous equation is discretized using finite differencing, numerical error occurs. 

To give an example, if one uses the explicit, first-order upwind scheme of the WAM model, 

the numerical error (or truncation error) is the right-hand side of the following equation (from 

Petit 2001): 
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xtCgx ΔΔ= /μwhereμ  is the Courant-Friedrichs-Lewy (CFL) number, . Thus, we can see 

that numerical geographic propagation error is dependent on several dimensional quantities: 

1. geographic resolution, 

2. the time step, 

3. the speed of propagation, and 

4. the curvature of the field of spectral density, and/or various other spatial derivatives of 

this field. 

This may also be posed as a dependence on two dimensionless quantities: 

1. the CFL number, which quantifies the number of grid spaces traversed by a packet of 

energy in one time step, and 

2. the geographic resolution relative to the scale of the feature in the wave field which is 

being propagated. (In (8.1), “scale” would be in the x-space.) All else being equal, a 

larger-scale feature will have smaller gradients; if these gradients are small, the 

numerical error will tend to be small. 

Diffusion 

The term “numerical diffusion” is used in this paper to describe the unintended spreading or 

smearing of wave energy during propagation due to discretization of a continuous problem. 

More specifically, it is due to even-ordered truncation error terms in the governing equation 

finite differencing associated with propagation, e.g. (8.2). The behaviors of individual 

schemes are rather unique. With any proper numerical scheme, diffusion becomes small at 

very high resolutions, but does not necessarily do so in a monotonic fashion. Dependence on 

CFL is even more varied. For example with increasing CFL, diffusion of the implicit first 

order upwind scheme (for most resolutions) will increase, while diffusion of the explicit first 

order upwind scheme will decrease until it becomes zero at 0.1=μ . In the two-dimensional 



case, some schemes are more sensitive to propagation direction than others; the first order 

scheme of WAM is especially notorious for this (see Fig. 1 of WAMDIG, 1988). 

In some computation fluid dynamics literature, this diffusion is referred to as “dissipation”. 

We do not use the term “dissipation”, since that would improperly imply to most wave 

modelers a loss of energy. Diffusion does not directly cause a loss of energy: the numerical 

schemes of widely-used 3G wave models (WAM, WW3, SWAN) are energy-conserving. 

Numerical dispersion 

Numerical dispersion is the practical effect of the odd-ordered truncation error terms in the 

governing equation finite differencing associated with propagation, e.g. (8.2) (In the context 

of a wave model, one should specify that this is numerical dispersion, to avoid confusion with 

physical dispersion. Like diffusion, numerical dispersion is dependent on CFL number and 

relative resolution. Consider a geographic feature in the wave spectral density field as a 

“signal” being propagated. Due to the discrete representation of a finite difference model, the 

celerity of different Fourier components of this signal deviate from the proper celerity of the 

signal (which is the group velocity calculated by the wave model); thus the Fourier 

components “disperse” as this feature is propagated in the model.  

Combined effect of diffusion and dispersion 

The error in celerity tends to be greater for the shorter Fourier components. As numerical 

dispersion occurs, two things can happen to the shorter components: they can either be 

smoothed by numerical diffusion (merging with the longer components), or become visible in 

the solution. In the latter case, the components are referred to as numerical oscillations or 

“wiggles”. The wiggles do not indicate model instability, but they do have an entirely 

unnatural appearance, and should therefore be prevented. The most straightforward way to do 

this is to employ a numerical scheme which tends to produce dispersion and diffusion in 

roughly equal portions; another method is to intentionally add diffusion as a separate term in 



the governing equation (denoted below “controlled diffusion” to distinguish it from 

“numerical diffusion”, which is a type of error). 

Error due to the numerical scheme for spectral propagation 

Like propagation in geographic space, propagation in spectral space is treated with finite 

differencing methods in all widely-used 3G wave models. As such, it is subject to the same 

types of numerical error (diffusion and dispersion).  

Error due to coarse geographic resolution 

We have already mentioned that geographic resolution has a strong influence on numerical 

error (diffusion and dispersion). It can also affect model accuracy in a manner not directly 

related to numerics. This tends to be most noticeable in shelf-scale and nearshore 

applications, but can also be apparent in large-scale models. In the latter case, if an island or 

peninsula is not well represented by the computational grid, then the blocking and scattering 

of wave energy by this land mass will not be well represented. Present-day global wave 

models are computed at 0.5-1.5° resolution; at these resolutions, some island groups will not 

be represented at all in the computational grid, which will lead to a persistent underprediction 

of the blocking/scattering of energy. 

In cases where high resolution (finer than 1°) ocean-scale wind forcing is available, there may 

be some benefit to running the wave model at comparable resolution. This, of course, depends 

on the scale of meteorological features and the wave model’s sensitivity to these features.   

Error due to coarse spectral resolution 

When spectral (frequency/directional) discretization is too coarse for the scale of propagation, 

aphysical discontinuities manifest in the wave field as natural dispersion occurs. In the 

extreme case, as a propagating swell field propagates, it disintegrates into discrete geographic 

features, with each feature corresponding to a frequency/directional bin in the model’s 



computational grid. This is known as the “garden sprinkler effect” (GSE) (e.g., SWAMP 

Group, 1985). 

With higher order propagation schemes, the GSE is unfortunately more apparent. Numerical 

diffusion, though it is an error, has the positive quality of tending to counteract the garden 

sprinkler effect, smoothing these discrete features together. Note, however, that numerical 

diffusion in existing models is unrelated to physical dispersion and is not controlled, so it 

does not properly mimic the natural dispersion of continuous spectra. In fact, the GSE can be 

clearly observed in WAM predictions of very old swell fields, despite the diffusive first-order 

scheme of WAM. 

The GSE is not limited to propagation of swells across great distances: the directional GSE 

(i.e. the part of GSE related to directional discretization of the wave spectrum) is sometimes 

seen in the lee of islands: in these cases, the gradation between “illuminated” and “shadowed” 

areas is stepwise, rather than smooth. 

Tolman (1995) demonstrates that the conventionally used frequency resolution may be 

inadequate insofar as the spectral peak is not well represented during the growth stage, 

leading to incorrect dispersion of resulting swell (this is not the GSE, so it is not addressed by 

GSE-correcting methods described in sub-section 8.2. 

Errors in source term integration 

The integration in time of the source terms is usually performed in a separate ‘fractional step’ 

of a wave model. In this step, the following equation is solved 
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The simplest way to solve this equation is a simple first order Euler approach 
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where n is the discrete time counter and Δt is the discrete time step. The main difficulty with 

integrating the source terms in time is the inherently small time scales involved with this 



process, particularly at higher frequencies. When the simple Euler approach is used, the 

attainable time step is at the best of the order of minutes. For early third generation wave 

models, this was unacceptable, and methods were developed to be able to integrate the source 

terms with time steps of about 20 minutes. The WAM group (WAMDIG, 1988) solved this 

problem in two ways. First, the Euler approach of (8.4) was replaced by a semi-implicit 

method 
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where D represents the diagonal contributions of the partial derivative of  S with respect to F. 

The parameter α represents the centricity of the scheme. Originally, it was set to α = 0.5, 

making this scheme central in time. More recently α = 1 is favored. This makes the scheme 

lower in order, but increases the stability of the integration. Particularly, oscillations are 

avoided at higher frequencies, as the scheme more properly represents a root finder for the 

quasi-steady solution that dominates the source term integration in the equilibrium range of 

the spectrum (e.g., Hargreaves and Annan, 2001). Introducing the semi-implicit scheme is not 

sufficient to allow for time steps of the order of 20 minutes. The WAM model therefore used 

a so-called limiter, which sets a maximum allowable (absolute) change ΔF per time step Δt. 

The combination of the semi-implicit scheme and the limiter resulted in stable model 

integration with large time steps. The limiter of WAM Cycles 1-3 had the favorable 

characteristic of not affecting the solution for small time steps (in other words, as the time 

step size approaches zero, the solution will “converge” to the solution of the model without a 

limiter). However, since the limiter was not prescribed as a function of time step size, the 

effect of the limiter was shown to be rather sensitive to the time step size, particularly for 

initial wave growth (Tolman 1992).  



8.2.  Existing solutions 

Improved numerical schemes for propagation on a grid 

Both WAM and WW3 have higher order schemes which can be employed instead of the 

explicit, first order upwind scheme. The higher order scheme of WAM is the second order 

leapfrog scheme (which has zero numerical diffusion). The higher order scheme of WW3 is 

the “ULTIMATE QUICKEST” scheme and limiter (see Tolman, 1995; Leonard, 1979; Davis 

and Moore, 1982, and Leonard, 1991). The QUICKEST scheme is third order when solved in 

one dimension. In the case of WAM, the higher order scheme is, to our knowledge, rarely 

used. In the case of WW3, it is the suggested numerical scheme (used for both geographic and 

spectral propagation). So-called “total variance diminishing” limiters can be used to control 

wiggles (the reader is referred to Leonard (1991) for a description of the scheme used in 

WW3 and Fletcher (1988) for a general overview). 

Numerical schemes are sometimes presented in the literature in one-dimensional form. For 

application in a wave model, they must obviously be extended to two geographic dimensions. 

There exist more than one method for doing this, and the efficacy of the extension method will 

depend on the scheme being extended. One method is to solve for propagation in both 

dimensions simultaneously, with each finite difference term being equivalent to the one-

dimensional form. A second method—the fractional step method—is to propagate each 

dimension in sequence, with each operation being identical to the one-dimensional operation 

(see e.g. Yanenko 1971). In either of these methods, the order of accuracy of the scheme 

should be expected to decrease compared to the one-dimensional equivalent. A third method 

is the “Product Generalization” method of Petit (2001) which preserves the order of accuracy 

of the one-dimensional scheme; this extension method may be prohibitively expensive in 

many cases. 

The SWAN model uses an implicit propagation scheme which is second order when solved in 

two dimensions; this model is less efficient than WAM or WW3 applied at oceanic scales. 



Other schemes have been proposed, such as semi-Lagrangian schemes (e.g., Lavrenov and 

Onvlee, 1995), using analytical ray-tracing solutions to search the grid for the position of 

wave packets at the previous time-step.  

Alternatives to the finite difference schemes on a grid. 

The oldest wave forecasting models have been based on the propagation of energy or action 

along wave rays, which are geodesic lines in deep water. The ray method is ideally suited for 

addressing long-distance swell propagation, for which the source terms on the right hand side 

of (8.1) may be neglected, with minimal numerical accuracy issues. Among such models, The 

Navy Swell Model (Hsu et al., 2004) is a ray-tracing model; propagation within this model 

contains virtually no error associated with numerics and resolution. This model contains no 

source/sink terms (e.g. swell attenuation is not represented). This model is initialized using 

spectral density fields from of WAM simulations. The initialization fields thus are affected by 

numerical error of the input model. Nevertheless, it is useful for creating long-range swell 

forecasts and as a research tool. 

Ray-based advection also disconnects the advection along rays, which are different for each 

component, from the grid where the wave spectra are put together. This allows an easy use of 

unstructured grids (e.g., Benoit et al., 1996), or no grid at all; some models are used for 

forecasts at a single point (e.g., the Navy Swell Model, Hsu et al., 2004). The main advantage 

of ray-based advection is that it does the spectral and spatial advection in a single step, with 

virtually no numerical diffusion. Some numerical diffusion is still introduced if the same rays 

are not followed all the way to the model boundaries (Ardhuin and Herbers, 2005).  

A potential drawback of ray-based advection is the greater difficulty of ensuring a 

conservation of the total wave action over a given area, although there is no evidence of a 

lesser accuracy on modelled wave parameter. However, the largest challenge is the integration 

of source terms if the rays are followed over more than one time step in order to benefit from 



the low diffusion. Several levels of complexity have been tested. Cavaleri and Malanotte-

Rizzoli (1981) have thus restrained their representation of source terms to parameterization 

that are local in the spectrum, i.e. S(k) is a function of A(k) and external parameters only (see 

also Lavrenov, 2003). In order to be able to use generic parameterization, the rays must be 

linked to the grids where the spectra are assembled. This was done by Ardhuin et al. (2001) 

for application to bottom friction and that approach has been used to hindcast fetch-limited 

growth with both the DIA parameterization and the Webb-Resio-Tracy method for estimating 

nonlinear interactions, with very good agreement with finite-difference models (Ardhuin et 

al., 2006). 

Since high-spectral resolution is mostly needed for swells, and swell attenuation may be 

described as a fully linear process (e.g., Kudryavtsev and Makin, 2004), there should be some 

benefit in computing swell and wind sea evolutions with different methods, even on a global 

scale. Such benefits for swell hindcasting in the coastal ocean were demonstrated by Ardhuin 

et al. (2003) and Ardhuin and Herbers (2005). A careful comparison of ray-based advection 

with finite difference schemes would probably provide useful guidance. Further, alternative 

methods using unstructured grids are also possible. These are not necessarily less diffusive 

but provide an efficient use of a variable grid resolution when details are needed close to the 

coast. Hsu et al. (2005) proposed a Taylor-Galerkin FEM method to solve the spatial 

advection discretized to second order.  

Addressing error due to coarse geographic resolution 

The approach of Fleet Numerical Meteorology and Oceanography Center has been to simply 

increase resolution (the global WW3 implementation, from 1° to 1/2° resolution). In this case, 

the computation time of the propagation routines of the model is increased by a factor of eight 

(23, for two geographic dimensions and for the increased temporal resolution, to satisfy the 

stability criterion). 



The approach of Hardy et al. (2000) is to represent the blocking/scattering of wave energy by 

topography using sub-grid approximations. With this method, a transparency matrix that is 

dependent on wave direction and geographic location is specified within the model. Similar 

methods have been adopted with the WAVEWATCH-III model (Tolman, 2003) and with the 

WAM model at ECMWF (Bidlot et al., 2005; Janssen et al., 2005). 

Geographic resolution is of obvious importance to shelf-scale and nearshore applications. In 

that case, nesting methods are available in all 3G models. For example, Lahoz and Albiach 

(1997) (also Albiach et al., 2000) use two-way nesting with the WAM model, with step-wise 

increases in resolution. 

Garden Sprinkler Effect correction methods 

For oceanic-scale models, no operational center has yet taken the approach of simply 

increasing spectral (frequency/directional) resolution, due to the computational cost. WAM, 

WW3, and SWAN all have the option of adding controllable diffusion to deal with the Garden 

Sprinkler Effect. In the case of WAM, the controllable diffusion, like the leapfrog scheme, it 

is rarely used. In the case of WW3 and SWAN, the controllable diffusion is specified in the 

manner of Booij and Holthuijsen (1987). WW3 also includes the option of simple grid point 

averaging, in lieu of the Booij and Holthuijsen method (Tolman, 2002a). In either case, the 

scheme requires a tuning parameter to control the degree of smoothing. Another type of 

procedure is used by Lavrenov and Onvlee (1995), in which an angular diffusive operator is 

included with the advection scheme numerical realization, spreading energy in directional 

space. 

Errors in source term integration 

Three solutions have been applied in operational models to remove the sensitivity of the 

results to the time step size described in the previous sub-section. 



Tolman (1992, 2002b) dynamically adjusts the time step, using the limiter to compute the 

maximum allowed time step. This results in a numerically accurate solution of (8.3). For 

large-scale model applications, this method was found to be very economical; average global 

model time steps of up to 40 minutes could be attained. For small scale applications, where 

rapid wind and wave changes occur over the entire domain at once, this approach can still 

become fairly expensive, because of the small time steps involved. 

In WAM Cycle 4, the limiter was made proportional to the time step size (see Hersbach and 

Janssen, 1999). This modification greatly reduces the dependence on the time step size, but 

also prevents convergence of the solution: for very small time steps, the model does not 

converge to the solution of the model with no limiter (Hersbach and Janssen, 1999, Fig. 4). 

The disadvantage with non-convergent limiters is that the limiter becomes part of the solution, 

and appears to result in significant impacts on the spectral shape, even if wave heights are 

well represented (see Tolman, 2002b). This is especially noticeable in cases of fast wave 

growth (short-fetch applications).  

Hersbach and Janssen (1999) reformulated the limiter of WAM4 to remove the time step 

dependence from the solutions. This scheme is still non-convergent, but does appear to be 

much closer to convergence than the earlier WAM4 limiter (Hersbach and Janssen, 1999, 

compare their Figures 4 and 5).  The primary advantage of this method is that cheap and 

robust model results are obtained, without notable time step dependencies. 

An alternative for the time source term integration can be based on a spreading numerical 

method (Lavrenov and Kozhevnikov, 2003; Lavrenov, 2003). It uses the semi-analytical 

solution for integration source term which includes the wind wave input, dissipation term, and 

exact non-linear energy transfer function. The authors present an idealized test case in which 

reliable and stable results are achieved for time steps as large as three hours without limiters. 



8.3.  Relative importance of problem 
In this section, we discuss the relative importance of errors of numerics and resolution. This 

discussion is deliberately separated from the previous descriptions, since it contains some 

subjective statements (or, at least, statements that are not possible to prove here). Further 

warning to the reader: be wary of generalizations on the subject of error in wave modeling; 

they are rarely, if ever, universal. 

Error due to the numerical scheme for geographic propagation 

Is it worthwhile to use higher order propagation schemes, or is a first order scheme sufficient? 

There is some controversy to this, so we present two points of view here (both are essentially 

correct). Note that there are implications for future directions: if the accuracy of a model with 

a first order propagation scheme is similar to that of a model with a third order scheme, this 

further implies that the benefit of upgrade (e.g. from third order to fifth order) will be trivial.  

Argument 

In a majority of papers that treat the subject of numerical error, there is at least one 

presentation of a spike of wave energy, which is supposed to represent a swell field, 

propagated with a first order scheme. The signal is, of course, greatly diffused. This naturally 

leads readers to believe that swell predictions with a first order scheme will not bear even the 

faintest resemblance to nature. This conclusion is incorrect for two reasons. First, the 

curvature of the wave field—and higher order derivatives—are very rarely this extreme in 

nature, so the demonstrated level of diffusion is extreme. Secondly, only one spectral 

component is represented in this simple case. In an actual model, at any given location, 

numerical error of all spectral components will rarely be of the same sign; the effect of 

numerical geographic propagation error on wave height (i.e. the integrated wave spectrum) 

will tend to be relatively smaller than its effect on individual spectral components. It was 

shown by Rogers (2002) that the difference in error statistics (root-mean-square error and 



bias) between two models (one with a first order scheme, the other with more accurate 

propagation) can be trivial, even if only very old swells are considered. 

Counter-argument 

If methods are available to compute propagation more accurately without a large increase in 

computation time, then these methods should be used. Wave modelers should not be satisfied 

with continued reliance on cancellation of errors via spectral integration, since this hinders 

further model development and leaves significant errors in the spectral distribution of energy. 

Further, even if error statistics are not particularly sensitive to the accuracy of propagation, a 

model with more accurate propagation will produce images of geographic distributions of 

swell fields that are much more realistic in appearance than would be produced with first-

order numerics. The difference, though aesthetic, is important to operational forecasters. 

Further, a diffusive propagation scheme makes it much more difficult to identify individual 

swell fields in a time series (Wingeart et al., 2001). Also, error in spectral distribution due to 

diffusion and dispersion make it more difficult to calculate the origins of swell energy. Lastly, 

even if model wave height bias is not sensitive to numerical accuracy in the open ocean, it has 

been demonstrated that it can be very sensitive in cases where strong gradients exist (e.g., in 

the lee of islands in shelf-scale applications, Rogers et al., 2002).  

Error due to the numerical scheme for spectral propagation 

This subject has received attention in the literature only in limited cases, e.g. Tolman (1991), 

pg. 791, where it is shown that in cases of significant propagation (i.e. refraction by 

bathymetry and currents), a first order scheme for propagation in directional space leads to 

broader directional distributions. Thus far, there has been little to suggest that it should be a 

concern. Implementation of surface current input for wave models (such as the Gulf Stream) 

will make this numerical error more important. 



Geographic resolution 

On the subject of blocking and scattering by unresolved topography, the practical effect 

follows common sense: there is a significant positive bias near island groups, which tends to 

vanish in the far-field. The method of Tolman (2003) is an effective way to address the 

problem. 

On the subject of resolving O(1°) variations in surface wind forcing: all else being equal, we 

expect that more variable wind fields will produce greater wave energy, analogous to the 

treatment of gustiness, see section 2. Once the level of variability within the integration time 

step is known, this can be taken into account using the procedure presently in use at ECMWF 

(Janssen, 2004). The time variability at the single points also implicitly represents the spatial 

variability. Longer period variability, i.e. of the order of a few time or grid steps or more, is in 

principle automatically taken into account. However, as discussed in section 2, while one 

hand the meteorological models tend to underestimate the wind variability, the ECMWF 

procedure only considers its average effect. Therefore the apparently random oscillations we 

see in the recorded Hs time series around an otherwise smooth, e.g., growth curve are not 

represented or strongly smoothed in the model results. 

Spectral resolution 

The practical effect of the Garden Sprinkler Effect (GSE) is expected to be similar to that of 

the propagation scheme (small impact on error metrics, significant impact on aesthetics). In 

time series of swell fields, the garden sprinkler effect associated with directional resolution 

(15° in most operational models) is almost always more apparent than that associated with 

frequency resolution (logarithmic spacing factor of 1.1 in most models).  The problem with 

representation of the spectral peak demonstrated by Tolman (1995) does, however, suggest 

that the factor 1.1 in frequency resolution is insufficient for accurate dispersion in global-scale 

applications. Yet, sensitivity of source/sink terms must also be considered; choosing a too fine 



spectral resolution may cause unphysical behavior of spectral evolution (Van Vledder et al., 

2000). 

Source term integration 

With the three mainstream 3G wave models (SWAN, WAM4, WW3) each using very 

different solution methods, the relative importance of this numerical error is also different. As 

mentioned above, in the context of WW3, the primary impact of the limiter is on computation 

time, rather than on error. SWAN uses the WAM Cycles 1-3 limiter, so growth rates are very 

sensitive to the time step size: for example, even with a time step size of five minutes, the 

growth rate of that model is considerably slower than that with a five second time step.  

The WAM4 limiter with improvements by Hersbach and Janssen (1999) appears to be much 

more accurate than the previous WAM limiters, though still lagging behind the “no limiter” 

growth rate at early stages of growth; this occurs even for very small time step sizes, so it is 

clearly symptomatic of non-convergence. From practical experience it appears that the limiter 

of Hersbach and Janssen (1999) is a good solution for engineering problems, where the goal is 

to estimate wave conditions accurately and economically. However, it can be argued that this 

non-convergent limiter is less suitable for scientific research of source term parameterizations, 

because the effects of the limiter on the final solution are difficult to assess, short of disabling 

the limiter. 

8.4. Future solutions 

The numerical scheme for geographic propagation 

The objective of future development should be toward greater computational efficiency while 

maintaining or improving the accuracy of existing numerical schemes. In this regard, semi-

Lagrangian schemes (Lavrenov and Onvlee, 1995; Ardhuin et al., 2001; Petit, 2001; Rogers 

and O’Reilly, 2002) are an attractive alternative to traditional Eulerian schemes. These can be 



simultaneously accurate, efficient, and unconditionally stable. There are two difficulties, 

however: 

1. For the general case where propagation speed is not uniform, ray-tracing must be 

performed for the Lagrangian stage of the schemes, which requires some extra work. 

Assuring mass-conservation is generally less straightforward than with an Eulerian 

scheme. 

2. The primary benefit of these schemes it that a parcel of energy can be propagated a 

long distance in a single time step, as opposed too many small steps. Thus, less error 

accumulates, and the higher the CFL number, the more accurate the propagation. 

Unfortunately, source/sink terms must be applied along the ray at the Lagrangian stage 

(otherwise, a parcel of wave energy might skip past a storm without receiving energy 

from it). Doing this in a computationally efficient manner is a challenge. 

Geographic resolution 

For shelf-scale applications, unstructured grid methods are expected to become more 

prevalent, since scales of variation tend to be small nearer to the shoreline, while at the same 

time the offshore wave field only varies on the scale larger than that of the wind field. Thus 

high-resolution away from the coast is generally useless, and even in hurricane conditions a 

resolution of a few kilometers is probably adequate. Unstructured grids are already used now 

in TOMAWAC (Benoit et al., 1996), MIKE21, and have been implemented as a non-standard 

version of the SWAN model (Hsu et al., 2005). The present version of SWAN is also able to 

apply curvilinear grids allowing for finer resolution near the coast. However, the variation of 

the aspect ratio of the grid cells may not vary too much.  

Spectral resolution 

The existing operational methods for dealing with the Garden Sprinkler Effect require a 

tuning parameter ostensibly related to wave age, but applied as a constant since the actual age 



of wave energy is not known to the model. Thus, there is apparent room for improvement. 

Tolman (2002a) proposes a new, more correct, technique using “divergent advection” but that 

method is still too expensive to apply. With more efficient propagation methods and/or more 

powerful computers, it will be feasible to increase spectral resolution (the most direct method 

of addressing GSE). Increasing frequency resolution may be troublesome, since the nonlinear 

interaction computations are sensitive to this. Thus, a reasonable approach would be to let the 

source/sink terms dictate frequency resolution, and gradually increase directional resolution 

as computational resources allow. At the same time there is little study on the improvements 

provided by higher directional resolution, although it is expected that better than 15 degrees is 

probably necessary in coastal areas with headlands and islands in order to properly define the 

shadow areas. At present a frequency resolution of 10% is recommended. This choice seems 

to be related to the shape parameter of λ=0.25 of the DIA, but the motivation for this choice is 

not clear. Applying other parameterizations of the non-linear four-wave interactions will 

possibly lead to other optimal frequency resolutions. This implies that numerics and physics 

are coupled through some parameterizations of physical processes.  

Errors in source term integration 

Alternative non-convergent limiters have been proposed by Luo and Sclavo (1997), 

Hargreaves and Annan (1998), and Monbaliu et al. (2000). A prototype for a convergent 

limiter with reduced time step dependencies is proposed by Tolman (2002Lb. 

8.5. Numerics and resolution: Problems particular to finite depth and high resolution 

applications2

In shallow water the higher resolution and stronger refraction require smaller time steps when 

conditionally stable Eulerian advection schemes (based on finite differences) are used (as with 

WAM and WW3). Even with unconditionally stable advection schemes, such as that used by 

                                                 
2 This section may be separate from the rest of the numerics/resolution text. 



SWAN for geographic propagation, accuracy decreases with larger Courant numbers. The 

traditional solution is to avoid the problem by switching to a stationary mode of computation 

at these smaller scales. This mode of computation inherently assumes that wave energy 

propagates across the domain instantaneously, and—in the case of models that include wave 

growth—that the wave field responds instantaneously to changes in the local wind field; both 

assumptions are reasonable at smaller scales. SWAN allows this infinite-duration mode of 

computation, and many nearshore models use it exclusively. At this scale, stationary models 

often have significant numerical challenges (e.g., Zijlema and Van der Westhuysen, 2005), 

but since these problems, limitations, and solution methods are often unique to each model, 

we cannot discuss them in detail here. 

Despite the solution of using stationary computations, there is recently some impetus to push 

exclusively nonstationary models such as WAM and WW3 closer to shore, since this avoids 

learning, maintaining, and running multiple wave models at a given operational center. Ray-

tracing can be very efficient to avoid the cost of very small time steps, and in coastal areas 

source terms may often be completely neglected (e.g., O’Reilly and Guza, 1993; Peak, 2004). 

In general source terms may be important and the general problem is more the relationship 

between the advection and source term integration time step. Indeed, a few minutes or less is 

often needed for high resolution applications, but the source terms do not evolve on this scale 

and remain virtually unchanged over tens of minutes. The separation of these time steps 

allows great gains in CPU time in WAVEWATCH-III for example. Yet, even in the case 

when source terms are strong, the separation of advection and source term integration requires 

an update of the spectrum after the advection step, which is usually performed by 

recomputing the source terms. Efficient solutions may be obtained by applying the diagonal 

part of the previously computed source term to the new but almost identical spectrum, or 

considering the evolution of the wave field as a series of steady state conditions, as discussed 

above. 



 
9. Where We Are 
 
In the previous sections we have described the present situation in the various branches that, 

all together, compose the art of spectral wave modelling. We can look at this overview with 

two different approaches. On one hand we can be pleased with what has been achieved. After 

all, the bias and scatter index of an operational global wave model, e.g. at the European 

Centre for Medium-Range Weather Forecasts (Reading, U.K.), are an impressive 4% and 0.11 

(statistics of the first four months of 2006), and even better results are occasionally achieved 

by local scale modelling. Indeed, on the background of these results stand the substantial 

improvements in the definition of the surface wind fields. Nevertheless, if for a moment we 

detach ourselves from our daily habit, it is a sort of a marvel that we can anticipate the wave 

conditions in any part of the globe a few days in advance. However, as scientists we like and 

must also be critical with our results and look always forward  to the next steps ahead. If we 

do so, we realise that there is still plenty to do. Although we are able to evaluate with good 

accuracy the integral properties of the sea (significant wave height, period and direction), our 

results are definitely less impressive once we look at the shape of the one- and, more so, two-

dimensional spectra. Peaks and extreme conditions are frequently not well reproduced, and 

not only because in these cases the meteorological input is not good enough. The point is that 

in such conditions the validity of the physical assumptions we have more or less consciously 

absorbed in our theories are often stretched to their limits. Imbedded in our models there is 

still a substantial degree of empiricism, that unavoidably is due to fail at a more or less large 

degree once we act out of the usual range of conditions. Clearly a critical review is required, 

and this is what we have tried to achieve with this paper. It is worthwhile to summarise where 

we stand in the single subjects we have described. 

The generation by wind is an extremely complex process. We deal with the highly nonlinear 

interaction of two fluids whose densities differ by three orders of magnitude. This implies a 



multi-phenomenological behaviour at the interface, more or less complex as the difference of 

speeds in the two layers increases. Also, direct visual observation is of little help, providing 

evidence of the integral results rather than of the mechanism by which energy is transferred 

from one fluid to the other one. Nevertheless, using some simplifying assumptions,  quite a bit 

of physical intuition and devoted measurements we have been able to formulate some basic 

theory that indeed, once applied to the models, provides rather good results. 

On the other hand the very fact that two of the most popular models, WAM and 

WAVEWATCH, operational at two of the most prominent meteorological centres, use 

different approaches to the problem is in itself an indication that a single “best” solution has 

not yet been accepted. 

In the present theories the very hypothesis of linearity, i.e. to consider the sea as a 

superposition  of sinusoidal components, should at least be open to doubts. An immediate 

example is the skewness of a stormy surface, by definition not considered in the standard 

spectral wave models. This is likely to have an effect on generation, whose process, like 

white-capping, is not so smooth in space and time as the theories imply. Whoever has been at 

sea in the middle of a storm is led to question the hypothesis of linearity. Of course this can be 

said for all the processes where the hypothesis has been used, but generation by wind is the 

only one where at present the modelled energy input at certain frequency and direction does 

not depend on the contemporary situation at the other components. 

Of course this makes even more noticeable the results achieved till now, and it is a good proof 

of the ingenuity and brilliant hypotheses that stand at the base of the present theories. Indeed 

the very fact that with a theory based on the linear hypothesis we manage to achieve good 

results should in itself be a valuable piece of information. 

For nonlinear interactions in deep water the basic problem seems to be the practical 

implementation of an already well established theory. The struggle between the sheer volume 

of calculations implied by the theory and the practical possibilities of the present computers 



has been dominating the stage for a long while. The capability of routinely carrying out full 

exact computations is still far away. The present efforts aim at developing new methods 

(MDIA, neural, diffusion), while exploiting the ever increasing computer power, reducing the 

necessary time within manageable limits. These calculations are always compromises, and 

usually this appears as undesirable characteristics of the final results. Each one of the newly 

proposed methods has its own limitations, often still to be explored. 

Notwithstanding its sound theoretical definition more than forty years ago, the subject is still 

characterised by an active development. The full properties of the kinetic equation are still to 

be explored. One first brilliant example of recent developments is the evaluation of the 

probability of freak waves starting from the modelled spectra, in so doing correcting as a 

following step the limitations on the skewness of the sea surface we pointed out above. 

Another similarly valuable example has been to show that the nonlinear interactions lead to a 

bimodal spectrum also in anisotropic conditions. In particular the considerations of the quasi-

resonant interactions seems to be a promising field of research. 

The number of different approaches and proposed new solutions to the calculation of 

nonlinear interactions suggests that an intercomparison exercise, both in idealised and 

practical conditions, is required. This will help to define in a comparative way the 

characteristics and the capabilities of the single approaches. 

The dissipation of wind waves in deep water is by definition the source term we know less. 

There is hardly any agreement neither on the basic physics of the process nor on the best way, 

although empirical, to model it. We find worthwhile to repeat here two paragraphs of section 

4 related to the physical knowledge of the process: 

 
“To summarize this brief overview of existing theories of spectral dissipation, 

we find several studies which offer four different analytical models. None of the 

models deals with the dynamics of wave breaking, which is responsible for 



dissipation. Rather, they suggest hypotheses to interpret either pre-breaking or 

post-breaking wave field properties. All of the hypotheses lack experimental 

support or validation. Results vary from the dissipation being a linear function of 

the wave spectrum to the dissipation being quadratic, cubic or even a function of 

the spectrum to the fifth power. “ 

 
“To conclude the review, we have to summarize that 1) there is no consensus 

among analytical theories of the spectral dissipation of wave energy due to wave 

breaking, even with respect to the basic characteristics of the dissipation 

function, 2) the theoretical dissipation functions strongly disagree with the 

experiment, and 3) experimental results, even though exhibit some common 

features, are often in serious disagreement with each other. Such a state of 

knowledge of physics of the wave breaking losses does not help modelling the 

wave dissipation which has been drifting in its own way.” 

 
This could be a rather discouraging situation and shows how much there is still to be done in 

this subject. On the other hand this has stimulated quite a bit of basic research in the recent 

years. However, the results of this research have still to find their way into the operational 

models that, as just quoted, given the theoretical situation have been mostly drifting in their 

own way. Indeed, given the relative level of knowledge, spectral dissipation has been for a 

long while, and still is, the tuning knob of the numerical wave models to make them fit at 

least the wave integral properties (significant wave height, period, direction). 

Attempts to reproduce more integral properties of the wave field, e.g. the characteristics of the 

spectra, have recently led to various lines of research. In particular it has been made clear that 

any pre-assumption of the spectral shape, like the power law of the high frequency tail, is 

bound to make sooner or later the solution diverge from the truth. This has led to more 

fundamental approaches that have yet to find their way into operational models. 



Nonlinear interactions in shallow water are characterised by the relevance of the third-order 

ones. Dealing with interactions, not only in resonant, but also in near-resonant conditions, is 

today an active field of research, and the associated wave modelling activity has different 

lines of attack in this respect.  

While the spectral approach is the undebated approach in the open oceans, close to shore, 

where changes can take place at a high rate and the degree of nonlinearity may jump at high 

levels, the deterministic approach would appear as the natural solution. For the time being the 

obvious limit of the required computer power makes this approach suitable for short distances 

(a limited number of wavelengths). However, a practical problem is also the connection with 

the offshore, spectrally modelled, wave conditions, from which different realisations of the 

boundary conditions can be similarly considered and need to be modelled if a suitable 

statistics is to be derived. This is presently off-limits, even at the level of devoted 

experiments. However, an efficient alternative is given by the (complex) amplitude evolution 

or spectral models, usually run in frequency space. 

A third alternative is offered by the stochastic approach, derived from deterministic equations 

and ensemble averaging. Most models limit the derived hierarchy of equations to two coupled 

equations for spectrum and bi-spectrum. This solution is attractive, because it allows the 

direct computation of statistical quantities without the need for Montecarlo simulations. The 

model can be initialised with standard spectra (buoys or offshore spectral models), while the 

bi-spectrum is derived from second order theory. 

While there is a tendency to push the operational large scale spectral models towards the 

shore, it is necessary to point out that some of the solutions present in these models are still 

rather crude, especially when compared to the phase resolving and complex amplitude 

models. A strong obstacle is given by the lack of sound physical approaches on how to handle 

dissipation, particularly the depth induced one, so relevant in shallow water. We still do not 

know how to distribute the energy loss throughout the spectrum. Also, we should not forget 



that most of the calculations with the nonlinear models mentioned above have been carried 

out on very simplified, regular bathymetries. Any operational application in real conditions is 

much more problematic. 

Dissipation associated to the interaction of waves with the bottom is another subject where we 

still have a lot to learn. The problem is associated with two basic characteristics of what is 

going on: the number of contemporary and alternative bottom mechanisms that can be active 

to dissipate the wave energy, and the difficulty of analysing and measuring a process while it 

is active. As a matter of fact practically all the data we have concern the measurements  of 

wave characteristics at different progressive locations, in so doing providing information only 

on the integrated effect of the process, rather than on the physics and its details. Somehow we 

can also think to be more sensitive in our observations, hence more speculative, to surface 

breaking, simply because of its visibility, while of bottom dissipation we have only a 

perception of its consequences. In general we can say we have a fair idea of the physics 

involved, but we lack a solid quantification of the energy lost in the process. Related model 

data, estimated to be off by an order of magnitude, are not unknown. 

There are practical difficulties. On one hand also the integrated characteristics of the surface 

are not always purely indicative of the bottom dissipation processes, simply because there are 

often other, not necessarily bottom, processes at work, e.g. generation by wind and white-

capping. On the other hand the true characteristics of the bottom are mostly unknown 

(dimensions of the ripples, sheet flow, etc.) or, at best, modelled only with large 

approximations, and they can easily change the estimate of the derived energy loss of an order 

of magnitude. 

Also the physics of the influence of a current on bottom dissipation is not fully understood. 

The intuition suggests that, when contemporarily present, both losses, those due to waves and 

to current, should be enhanced. However, the evidence is not clear, notwithstanding the 



relevance of the subject for storm surge modelling and the evaluation of wave and current 

conditions in tidal inlets. 

For practical and operational applications a serious problem is given by the sub-grid 

variability. Particularly close to shore this can be quite high, and average conditions over one 

grid step are not granted to provide the correct integral over its extent. 

Notwithstanding this rather pessimistic panorama, bottom dissipation, mostly represented by 

the bottom friction process, is regularly considered in shallow water modelling. The point is 

that, with the exception of particular conditions as the Southern North Sea or a long swell on 

oceanic coastlines with an extended continental shelf, bottom friction is rarely the dominant 

process for the proper evaluation of the wave conditions at a given location. Of course this 

does not cancel the need for a deepening of the subject. 

Although non-dissipative, bottom scattering, discussed also in section 7, has a more positive 

situation, at least from the theoretical point of view. The interaction of the surface spectrum 

with the geometrical characteristics of the bottom is relatively well understood. In recent 

times also the effects of single perturbations of the bottom, like a single step, have been dealt 

with mathematically. While the laboratory results support these approaches, confirmation 

from the field seems more difficult to obtain. 

Wave propagation addresses the problem of waves propagating on an uneven bottom or 

across a non-uniform and time varying current. Most of the present models rely on the 

validity of the linear theory, using the classical linear dispersion relationship to relate 

frequency and wavenumber. Also the Earth rotation has a limited influence, and waves 

propagate with very good approximation along great circles that, on limited distances, 

coincide at all the effects with straight lines. 

If depth and current change over distances much larger than the considered wavelength, the 

usual geometrical optical approximation is quite robust. Expectably complications arise when 

the changes take place over distances comparable with the wavelength. In phase-averaged 



models these discontinuities are usually treated introducing frequency dependent reflection 

coefficients at the proper locations and directions, providing quite reasonable results. More in 

general the interaction of the surface waves and the bottom elevation spectra implies a 

conservative scattering of the surface waves. This process is still not yet included in most 

wave models because a proper theory has only been given recently, and practical methods for 

its calculation are still to be defined when only little information is available on the bottom 

spectra. 

The same approach used for wave-bottom conservative interactions is usable also for currents. 

Here too the level of interaction depends on the amplitude and the spatial scale of the current 

variations. The modifications of waves when interacting with current are not interesting only 

on themselves, but also for remote sensing, both from space and from coastal water. A strong 

limitations to the operational implementation of the extensive theory available is the lack of 

sufficiently accurate description of the current field in the open sea. While improvements are 

expected in the near future, in practice for the time being the only interactions with currents  

that receive sufficient attention in operational models are the ones with tidal currents. 

In any case all these approaches are generally applied with the current assumed to be uniform 

on the vertical. This is not always the case, but the implications are not considered in standard 

wave modelling. While the problem is probably limited for large scale currents, the Stokes 

drift is expected to have a non-negligible impact on shorter waves.  

With respects to the other subjects, numerics has the big advantage of being perfectly defined, 

and suitable for an analysis of the practical results with respect to the ones expected from 

theory. This does not make the problem simpler, but at least we can have a clear idea of where 

we are. Of course the problem is associated to the discretisation with which we describe an 

otherwise continuous nature. This implies some approximations, as for instance in the 

description of the peak of the spectrum (frequency resolution) or in the characterisation of the 

bottom profile (spatial resolution). More seriously, it implies a modification of the signal 



while it propagates, theoretically undisturbed, across the grid. The approaches to this problem 

are different, depending if we deal with advection, both in lat-lon and in spectral space, or 

with the description of the spectra and the geography of the area. 

In the case of advection, the problem is well understood and a whole hierarchy of approaches 

has been proposed. Indeed it is remarkable that a “best solution” is not universally adopted. 

Clearly this points to the fact that in a certain environment any practical solution, besides 

being linked to historical reasons, is always a compromise between several requirements. One 

peculiar fact of these compromises is the apparent compensation introduced by the signal 

diffusion for the patchy distribution due to the Garden Sprinkler effect. Although criticised, 

the solution has certainly served its purpose. Higher order advection schemes, paralleled by a 

controlled diffusion algorithm, are presently available, although the opinions on which one is 

preferable are certainly not uniform. 

A correct geography is just a matter of resolution, and implicitly of computer power, because 

the system of differential equations must be solved at each grid point at each time step. The 

combination of these two needs makes the overall computer power to grow as 1/Δ3, where Δ 

is the geographical resolution. A substantial problem are the sub-grid characteristics of the 

area of interest, typically small islands not represented in the computational grid. In this case 

the solution is a transparency coefficient, calculated from a much higher resolution bottom 

topography, for each point of the grid and for each component of the spectrum. 

The natural solution to the general problem is to use a variable grid resolution, typically more 

coarse in the large ocean spaces, and highly defined close to the coasts. This can be achieved 

either with nested modelling or with unstructured grids. This latter solution has never been 

very popular in wave modelling, but it is rapidly gaining ground, particularly for dealing with 

an optimised resolution with coastal and inner areas with a complicated bathymetry. 

The discretisation in space is reflected also in time, and the step integration of the set of 

equations at the base of a model has its implications. With the traditional Eulerian approach 



the time step is upper limited by the grid step size due to either stability or accuracy. In some 

models the introduction of a semi-Lagrangian advection has somehow relaxed this conditions, 

but attention must be given to the physics of the processes. In particular the use of the same Δt 

for all the frequencies can be questionable, leading to the use of a suitable, but artificial, limits 

to the changes during each integration step. Notable progresses have been made in this respect 

in recent times. 

This compact summary, and more in general the material presented in the previous sections, 

points to the extensive effort that is still going on in wave modelling. This is due to two 

characteristics not easily found in other subjects. On one hand we deal with a very complex 

physical process where physics, from fundamental principles till very practical problems, 

plays a dominant role. On the other hand the subject is highly in demand for its very wide 

applications, with a continuous push by the market forces to improve the quality of the 

results. 

Since the first order approximation of the historical SMB method (Sverdrup and Munk, 

1946), we have well achieved the next step, with much reduced bias and r.m.s. errors of the 

integral parameters, particularly off the coasts. What is next? We expect to decrease further 

the above errors. This can be achieved refining the formulation of the single processes 

following the various approaches described in the various sections, improving the numerics, 

and, still critical, although not so much as in the past, improving the input wind fields. 

However, the real task is to ameliorate the quality of the spectra. Although not yet strongly 

required by the market, their use in practical applications is growing and the present 

limitations of spectral wave modelling in this respect are beginning to be felt. It is not only a 

matter of users. To improve the quality of the spectra will allow a better description of some 

physical processes that depend so much on their details. 



A substantial question concerns the high frequency tail of the spectrum, presently 

parameterised in a not yet agreed way, notwithstanding its relevance in the overall physics 

and for practical applications, e.g. remote sensing and coupling with meteorological models. 

Notwithstanding the good average results of a wave model, at least as integral parameters, a 

still missing points is the physics, hence modelling, of extreme conditions. We still are not 

sure of the processes that are taking place and of the resolution required for their 

representation. The difficulties cannot be underestimated, also because the corresponding 

laboratory results provide only limited replies. However, the recent events and our growing 

interaction with the sea are clearly pushing towards a better understanding of what is going on 

in these conditions. 

Clearly an area where action is required is the interaction between waves and currents. At the 

simplest level of a vertically uniform current field, improvements are expected in a relatively 

short while from global circulation models. However, this will concern the general features of 

a field. Somehow this is similar to the argument on the tail of a wave spectrum mentioned 

above. Both because of a lack of information  and of the present limits of the circulation 

models, the representation of the details of the fields is rather approximate. However, this is 

still a scale capable to affect the wave fields at an appreciable level. 

The difficulty of the problem steps up once we consider the currents as three-dimensional. 

Particularly, but not only, in coastal areas this can indeed be the case. Even assuming we 

know the details of the current field, the know-how of how to deal with this problem is not yet 

a granted background of the wave modelling community. 

So our feeling is a mixture of satisfaction for the results achieved so far and of realisation of 

our present limitations and the need to go further. Some of the areas where to act are quite 

clear, other ones are more foggy. The next and final section will deal, although also in a 

speculative way, with this last point. 

 



10. Where to Go 
 
Having stated where we are and the obvious problems to face in the immediate future, we 

need to think in longer terms and argue about the strategy for the future. A forecast in a still 

partly unknown territory is always a hard bet, but it is worthwhile to try, at least to quantify 

the problem. Cavaleri (2006) argues about the far future of wave modelling. Here we concern 

ourselves with more immediate developments. 

In the introduction we had mentioned that, just because we are acting at the far front of 

research, our opinions are often not uniform. We had also pointed out that this a is a necessary 

and favourable condition to go further, simply because we do not know in advance which will 

be the winning strategy. Expectably, the spectrum of opinions widens in a nonlinear way the 

further we speculate on the future. Therefore this section represents in some cases some 

obvious requirements and expectations, in other cases ideas floating around with a different 

level of agreement. Perhaps this is the most exciting part of our work. 

Clearly our field is highly variegated. We have different branches where we act with different 

levels of confidence, and where the physics and the possible paths for the future are known 

with a similarly variable degree of uncertainty. Some of the problems are technical, other ones 

are physical, so it is not possible to give a single general statement. Rather, we can touch 

several points in sequence. 

We begin with the generation by wind. All the present approaches stand on the spectral 

hypothesis, i.e. the sea is conceived as a superposition of sinusoids, and we estimate the input 

to each component on the base of the, although modified, Miles’s theory. This approach has 

been very successful, but the view of a stormy sea hardly suggests this idea. Already thirty 

years ago Banner and Melville (1976) have shown that the input by wind to waves  is not the 

smooth continuous process implies by the Miles’s approach. Rather, it is highly 

discontinuous, with strong bursts of momentum and energy transfer. The point is that we do 

not know how to deal with such a process. However, this should not make us hide the fact that 



our present approach, albeit successful, is not a faithful representation of what is going on the 

sea. How to deviate from our present path is an open question, but sooner or later something 

will have to be done. 

The work by Banner and Melville (1976)  has shown the clear link in an active young sea 

between generation and white-capping dissipation. While for the time being they are 

independently evaluated, it is a real possibility that at some stage they will have to be 

considered as a single process. However, this is not for the near future. For the time being a 

more physical description of white-capping is highly in demand. There are indications that the 

careful analysis of the available experimental data is opening doors in this direction. In any 

case the move must clearly be from empirism towards the physics. 

Remaining in the physical realm, the bottom dissipation processes are a real challenge, 

perhaps not so much for their physics that, at least in the first approximation, is relatively 

understood. The problem is the availability of the information  (the characteristics of the 

bottom) required for their correct evaluation. Within the relevance of the process for the 

evaluation of the wave conditions at a certain location, a detailed knowledge of the bottom 

characteristics of the area is a mandatory condition. This will also help to decide which 

processes can be locally relevant and it is therefore worthwhile, if not all of them, to consider. 

However, granted this information, the correct quantification of the energy involved in the 

processes is still a problem, as their physics itself implies that small changes of the wave 

conditions can lead to an order of magnitude difference of the involved energy budget. How 

to deal with this problem is still an open question. 

Also, quite a bit of physics is still to be clarified. Although limited to some special areas, the 

anelastic motion of a viscous muddy bottom is not properly understood, especially in 

connection with the dissipation of also relatively high frequencies. The relevance for 

hurricane affected areas as the Gulf of Mexico or the Bay of Bengal is evident. This requires 

some devoted measurements and physical intuition. 



It can be surprising, but, at a second thought, instructive, that nonlinear interactions, the most 

purely physical process we deal with, is theoretically the best known. The sheer complexity 

has its revenge in the present practical impossibility  of routinely evaluating the exact result. 

Of course in the long term we can expect the computer power  to keep growing, although 

perhaps not so rapidly as during the last thirty years. However, this will not be enough, and, 

as already discussed, compromise solutions need to and will be found. The question is how 

accurate we need to be to guide the evolution of the spectrum towards the correct results. 

Somehow this needs to be quantified through the already proposed intercomparison exercise. 

In shallow water there seems to be more ground for not-only-numerical developments. 

Somehow the exploration of this area of research has begun in more recent times, and further 

developments are needed and expected. The substantial gap of computer power required by 

phase resolving and phase averaging models leaves ample ground for intermediate solutions. 

Considering spectra and bispectra is just an example in this direction, but quite a bit of 

activity is expected for the future along this or similar lines of activity. Whichever the 

solution adopted, it is clear that a higher resolution is required close to the coasts. The 

tendency for having a single model for the whole area of interest stresses the need for variable 

resolutions, with an expected increased use of unstructured grids. 

A stronger interaction between the wave and the circulation modelling community is a must 

and an expected development. It is not only a problem of operational applications, but also of 

physics of both the models. For applications, we have the mentioned need of a better 

description of the current fields to properly evaluate their effect on the wave  field. 

Conversely, there is also the effect of waves on the current. Similarly for what done for the 

coupling with the atmosphere, we need a two-way coupling between wave and circulation 

models. There are various aspects open to findings. Perhaps the most macroscopic one is the 

driving of circulation by wind. While this is presently done using the wind stresses, the flow 



of energy and momentum wind → waves → breaking → circulation needs to be considered as 

the real driving mechanism. 

The increased coastal resolution mentioned above needs to be considered also as regards the 

propagation on an uneven bottom. Apart from the technical aspects with which the 

irregularities of the bottom profile can be dealt with, clearly these features need to be 

resolved. While intuitively we associate an increasing resolution to the approach to the 

coastline, we can certainly think of using it also on required isolated spots. 

Finally, concerning numerics, improvements are expected in two directions. On one hand we 

need more efficient and accurate algorithms, both for advection and for time integration. 

Some improvements are expected, although apparently the clear definition and limits of the 

problem leaves a limited ground for manoeuvre. Possibly a stronger improvement will come 

from the combined use of Eulerian and Lagrangean advection techniques, both in open and 

coastal waters. 

Having discussed how to improve the modelling of the single processes and what we expect 

for the near future, we need to ask ourselves a basic question. Even assuming that all the 

representations of the single processes are improved with respect to their present state of the 

art, can we assume that this will produce better overall results with respect to the present 

performances? The point we should not hide is that in the present models , although they are 

declared as purely physical, there is quite a bit of tuning and artifices to make them fit the 

measured data. This happens at different parts of the models and with different strategies, but 

it is there. We have mentioned that white-capping, just because it is the least known process, 

is often used as a tuning knob to best-fit the results and measurements. Given this situation, 

what can we expect once each process is independently described at its best, even improved, 

level of knowledge? Most likely, if not certainly, the results will be worse than the present 

ones, at least at the beginning. With progressive improvements we will move ahead of the 

present performance. However, most likely also in the longer term new “optimised” models 



will continuously branch out of the main line of development, improving for the time being 

the overall performance. 

Should we refrain from acting in this direction? Certainly not, because we must keep in mind 

the duty of practical applications. While we develop our models towards the best and most 

physical solution, we have also to provide continuously the best possible results to the users. 

So somehow we have to live with this dichotomy that we recognise also in the present large 

scale operational models, where we find different level of pragmatism depending on where 

one institution puts the focus for its results. 

How to conclude? Many doors are open, and work will be done in many directions. Some are 

known or expected, in other cases we look for new ones. However, one general idea is clear. 

Whatever we do, we have to move towards a more fundamental coupling between the sea and 

the atmosphere. The meteorological models must interact continuously with the ocean 

circulation models, not through empirical formulations, but through the physically sound 

interface  of a wave model, acting as the element that determines how the exchanges take 

place and their extent. This is how nature works, and this is how we have to represent it if we 

aim at a better understanding and modelling of the thin layer of fluid that surrounds our 

beautiful planet. 
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Figure Captions 
 
 
Figure 2.1. Real and Imaginary part of horizontal and vertical component of the wave-induced 

velocity as function of phase speed. Full lines: solution of Rayleigh equation; open 
squares: observations from Hristov et al (2003). 

 
Figure 2.2. Miles parameter β versus dimensionless phase speed. Note that the resulting 

damping rate is very small for waves propagating faster than the wind. For 
c/u*=50, u*=.2 spatial damping scale is already 2500  km. 

 
Figure 2.3. Comparison of simulated and parameterized relation of drag coefficient CD(λ/2) 

versus wave age cp/u*. Black line: simulation,  open circle Eq. (2.3), and dashed 
line the case of constant Charnock parameter (α=0.01). 

 
 
Figure 3.1. The interaction diagram in the wave number plane showing interacting wave 

number vectors satisfying the resonance conditions (3.1) and (3.2) for the deep-
water case. This figure is often referred to as the “Figure of Eight” diagram, after 
Phillips (1960). 

Figure 3.2. Test wave spectrum corresponding to case 3 of Hasselmann and Hasselmann 
(1981). Left panel: directional variance spectrum F(f,�) (due to symmetry, only 
one quarter of the frequency-direction plane is considered). Right panel: 
frequency spectrum E(f) obtained by integration of F(f,�) over wave directions. 

Figure 3.3. Nonlinear transfer term Qnl4(f,�) computed for the test wave spectrum of Figure 
3.2 in deep water (due to symmetry, only one quarter of the frequency-direction 
plane is considered). Upper panel: WRT exact method. Lower panel: DIA. 

Figure 3.4. Nonlinear transfer term Qnl4(f) computed for the test wave spectrum of Figure 3.2 
in deep water. These curves are obtained by integration of the terms Qnl4 (f,�) of 
Figure 3.3 over wave directions. 

 



Table and caption 
 
 
Formulation cited coefficient value reference 
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Table 6.1.  Coefficients C  for bottom friction dissipation (Luo and Monbaliu, 1994) f
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Figure 3.4. Nonlinear transfer term Qnl4(f) computed for the test wave spectrum of Figure 3.2 

in deep water. These curves are obtained by integration of the terms Qnl4 (f,�) of 
Figure 3.3 over wave directions. 
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