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Summary

Two strategies are presented for obtaining the mam spatial resolution in
electrical resistivity tomography surveys using imited number of four-electrode
measurement configurations. Both methods use arlgexl estimate of the model
resolution matrix to assess the effects of inclgdingiven electrode configuration in the
measurement set. The algorithms are describedtail,dend their execution times are
analyzed in terms of the number of cells in theerse model. One strategy directly
compares the model resolution matrices to optirthieespatial resolution. The other uses
approximations based on the distribution and linedependence of the Jacobian matrix
elements. The first strategy produces resultsalamnearer to optimal, but the second is
several orders of magnitude faster. Significanthyaver, both offer better optimization
performance than a similar, previously publishedthrad. Realistic examples are used to
compare the results of each algorithm. Synthetia dae generated for each optimized
set of electrodes using simple forward models dnimg resistive and / or conductive
prisms. By inverting the data, it is demonstratbdt tthe linearized model resolution
matrix yields a good estimate of the actual resmhubbtained in the inverted image.
Furthermore, comparison of the inversion resultdioms that the spatial distribution of

the estimated model resolution is a reliable inmicaf tomographic image quality.
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1. Introduction

Over the past decade, geoelectrical surveying tguka have become a popular
choice for shallow subsurface investigations. Thesthwidely used of these methods is
electrical resistivity tomography (ERT). Recentlgveral computer controlled multi-
electrode ERT systems have become available, wieamit the collection of very large
data sets that provide coverage of large areagghtdata density. Despite the flexible
nature of these systems, resistivity data stilldtéa be collected using traditional
electrode arrangements, such as Wenner, Schluntberdgipole-Dipole arrays. These
arrays are often a good choice, as they are welénstood in terms of their depths-of-
investigation (Barker, 1989), lateral and vertiesdolutions (Barker, 1979) and signal-to-
noise ratios (Dahlin & Zhou, 2004). However, thegymmot be the most efficient option
if the time or number of measurements allowed lergurvey is limited, or if a target of
particular interest is spatially localized.

Therefore there is currently much interest in getieg sets of electrode
configurations that optimize the resolution of thenographic image for a given number
of measurements or in a specified region of the ehotihe first attempt to do so in
resistivity surveying was by Cherkaeva & Tripp (699who used weighted sums of
pole-pole configurations to produce multi-electradensmitter and receiver arrays that
focused the subsurface current distribution onufest at known locations and depths.

However, most ERT systems permit at most two ctuietgctrodes to be used for a given



measurement. Two optimization methods more suibedse with these systems have
recently been introduced (Furmanal., 2004; Hennig & Weller, 2005). Both rely on
assessing the sensitivity of given arrays to disclecalized changes in resistivity. The
sensitivity distributions are calculated from anialgl perturbations (Furmaet al., 2004)
or expressions for the Jacobian matrix elementstterforward problem (Hennig &
Weller, 2005). Optimization takes place by obtaginveighted sums of these
distributions that maximize the sensitivity eitterenly across the subsurface model or
within a localized region. Summing sensitivity distitions has an intuitive appeal, in
that regions of the model with high average sensjtitend to be well resolved.
However, it can only give a correct representatdrsubsurface resolution in certain
limited circumstances (for example, when the seuitsit distributions have minimal
spatial overlap with each other and the regulaomatonstraints are small). Stumrmetr
al. (2004) pioneered a more accurate approach thatthsesensitivity distributions to
calculate an estimate of the model resolution mafrhis provides a measure of how
well the observed apparent resistivity data resel@eh model cell. They showed that
their optimization algorithm produced sets of aledé configurations that out-performed
traditional arrays.

In this paper, we present two new ERT optimizastrategies, which are both
based on finding a limited number of electrode murhtions that enhance the model
resolution matrix. Of the two, the algorithm tharforms better in terms of optimizing

the resolution has much longer execution times. ©tleer uses approximations to



increase its speed, but manages to achieve simpéimization performance. We
compare our methods against that of Stumehet. (2004) in terms of both speed and
performance. We also analyze each algorithm’s effeimess at optimizing the model
resolution and validate these findings by invertgygthetic data generated using the
optimized arrays. In addition we assess the scaimoperties of all three algorithms,
guantify the effects of the size of the inverse elamh their execution times, and discuss

the resulting suitability of each method for diffat applications.

2. Method Overview

The optimization strategies presented in this patlerely on appraisals of the
model resolution matriR. This quantifies the degree to which each resigtoell in the
model can be resolved by the observed data. Efinet bym™ = Rm"™® (Menke, 1984),
wherem™ is the estimate of the model resistivities detaediby the inversion process,

and mtrue

comprises the true resistivities, which are unkmowW each model cell is
perfectly resolved theR =1, otherwise each row @R is the constrained least-squares
best fit to the corresponding row bfJackson, 1972). Strictlg can only be defined for
linear inverse problems (Friedel, 2003). Howevezspite the fact that the forward
problem is non-linear, ERT inversion is typicallmplemented via an iterative series of

linearized steps (Loke & Barker, 1995). This pesnatfirst-order estimate of the model

resolution matrix to be defined as

R=(G'G+C)'G'G, (1)



where the Jacobian matrix eleme@@; is the logarithmic sensitivity of theth
measurement to a small change in the resistivithefth model cell, an€C contains the
damping factors, constraints and spatial filteest tlegularize the inversion (Lolet al.,
2003). Our optimization procedures attempt to méaseanthe matrix elements on the
leading diagonal ofR. We denote these elemer®j) and call them the “model
resolution”, noting that they are also sometimdsrred to as the “model importance”.
SinceR is the least-squares fit tpthe model resolution lies in the rangg &(j) < 1. It
provides a simple measure of how well jtte resistivity model cell is resolved by the
data (0 being unresolved and 1 perfectly resolved).

For a system ofN electrodes, the comprehensive measurement setic®nt
N(N-1)(N-2)(N-3)/8 non-equivalent four-electrode configuratiombien reciprocity is
taken into account (Xu & Noel, 1991). It is likalyat this set will contain configurations
that reduce the stability of the inversion, suchhase of the Wennertype and others
with large geometrical factors. These can be dimthibefore the optimization process
begins, leaving a s& containingn. configurations. Suppose that one wishes to fird th

subset ofn, measurements froig: that, by some measure, provides the optimal model
. . nC! . . .
resolution. Since there arﬁbmsuch combinations, and since scales as QY

there is no practical possibility of testing theth @ne could try a global optimization

technique, such as simulated annealing or a gemédgarithm. However, the sheer



number of possible combinations and the lack ofbbwious algorithm for producing
beneficial test combinations would almost certalimyt its effectiveness.

A more practical approach is to use local optinizatThe most effective method
would be to select a small initial base set, thest tevery other configuration by
recalculatingr for the base sqilus that particular configuration. The best configioat
would then be added to the base set for the nesdtibn, and the process would be
repeated until the set contained the required nurobeonfigurations. But each step
would require O] calculations ofR, and each of these calculations would require a
matrix inversion, which is an @f] process wheren is the number of model cells. These
unfavourable scaling properties make this formaafal optimization far too inefficient
for practical use. However, several modificatioas e made so that it retains most of
its efficacy whilst drastically improving its effency. SinceR does not tend to change
rapidly after the first few steps, it is not ne@eygsto recalculate it for the add-on
configurations every time. In the intervening itevas, it is sufficient to check that the
sensitivity distribution of the configuration beitgsted has a degree of orthogonality to
those that have already been added (Stunetradr, 2004; Menke 1984). Since this check
is an Om] process, this modification leads to a considerabtrease in speed. Whén
does need to be recalculated, this can be dongtgting the model resolution of the
base set using a Rank-1 correction based on then&heVorrison formula (Press al.,
1992). This replaces the @] matrix inversion with an @f] process, giving a further

large performance benefit. The local optimizatioetimod, with these two modifications,



is the basis of our first strategy (“Comp#&®. It is still rather slow, taking several hours
on a 3GHz desktop PC for a realistic 2.5D ERT mrobl but it does give very good
results.

The above method was developed as a more effeatirigon of the strategy of
Stummeret al. (2004). In their paper, each configuration is ethiby a “Goodness
Function” that attempts to assess the effects ©faddition to the base set without
calculatingR explicitly. This replaces the ®f] matrix inversions with several ®]
calculations and is therefore much faster than‘@mmpareR’ approach, taking only a
few minutes to run for the same problem. But theethod, which we denote the
“Original GF” algorithm, is also significantly lessffective at optimizing the model
resolution. We have improved on their approachreate the “Modified GF” strategy,
which not only gives results that are closer testhobtained from “Compaie’, but is

faster still than “Original GF".

3. Configuration Assessment

Strategy 1 — Compare R

This is the most computationally intensive approatkthe three strategies. Each

m R()

possible configuration to be added to the basasseinked in terms O%ijlm’

where R; is the resolution of the base set plus the tesfigaration andR, is the

resolution of the base set. The finesse in the odetinvolves using the Sherman-
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Morrison Rank-1 update to calcula® from the knownR,, rather than explicitly from
Eq. 1. Briefly, ifg is them element vector containing the logarithmic sendigegi of the
test configuration an®, has already been calculated using Eq. 1, themtiteices are

updated as follows:
G'G - G'G+glg,

1_ZDZ

eTe+c)” - [T v -2, o

(2)

wherez= (G'G +C) g, u=g-z andalb denotes the matrix multiplication af and
b'. Each step in this process scales asfDpr better, and the final calculation Bf is
also Ofrf] if only the leading diagonal d&; is calculated.

Many configurations are added to the base setct geration. The first is the
highest ranked configuration, represented by tmsigeity vectorg;. The next highest
ranked,gy, is then added only if it is deemed to have aablet degree of orthogonality to
the first. This is assessed by calculatmg po| / (j01] |g2]) and checking that it is less than
a specified limit. This procedure is repeated unkie desired number of extra
configurations has been appended to the base isleteach configuration being checked

against those that were previously added on thiatibn only.

Strategy 2 — Original GF

Full details of the original goodness function gigen in Stummeet al. (2004).

In brief, theith add-on configuration is ranked by a goodnesstian defined by

-11 -



- -3 Gl (1_ qu)) -
j:lGjS“m R.())
where
sum_ 1 &
G;*™=—3 |G| @
c k=1

and R; is the model resolution of the comprehensive Ebe bracketed term in Eq. 3
selects configurations that improve regions ofrtieel that are poorly resolved by the
base set. (3" provides a normalization factor by summing theotlte sensitivities for
the jth model cell of all configurations in the comprebre set. This ensures that the
goodness function gives equal preference to impgpthe resolution in all regions of the
model, regardless of their relative sensitivity.

As with the “CompareR’ approach, multiple configurations are tested for
inclusion in the base set at each iteration. Is #dtrategy, the orthogonality check is
performed against the entire base set, not justahégurations that have been added on
this pass. This means that, if the add-on configumafails this test against some
configuration in the base set, then it will alsd &t every future iteration (since that
configuration will remain in the base set). Therefany failing add-on configurations are
discarded to save time in subsequent iterationsveer, if the orthogonality test is too
strict, it is possible to discard all the add-onfagurations, thereby causing the algorithm

to halt prematurely.
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Strategy 3 — Modified GF

The modified goodness function follows a similapagach to the original. Each

configuration is ranked by

1/2

L Rb(j)J
F = L1100 5
jzzll(ejsum)z[ Re()) ©
where
sum 1 4
G;™M=—=3 Gyl ©)
bk:l

The changes between the modified and original gesslrfunctions are pragmatic in
nature, having been found to be beneficial on tasisbof numerical tests involving
several different subsurface geometries. ThHE"Germ now only sums over the,
configurations in the base set. Its purpose has l@nged so that it gives high
weighting to add-on configurations that are orthwajdo the base set, and this effect is
increased by the squared terms in Eq. 5. Sincevilwes of G"™ tend to imply poor
resolution of thgth model cell, these modifications can over-empeathe importance
of configurations with sensitivity distribution thare strongly localized in poorly
resolved regions of the model. This can have thi#e-sffect that other useful
configurations, which provide more uniform improvams to the model resolution, are
often ignored. Therefore the bracketed term inFaqvhich has the purpose of improving
the same poorly resolved regions, has had its eqgoreduced to restore the balance.

The overall effect of the modifications is that amld configurations are chosen which

-13-



improve the resolution whilsimultaneously having a high degree of orthogonality to the
base set. This means that it is only necessargiionm the separate orthogonality test
against the configurations that have been addeidgdltiis iteration, rather than against
the whole base set. This substantially reducesitiaunt of time spent performing these

checks, and removes the possibility of runningafwtdd-on configurations.

4. Performance Tests

We have tested each of the strategies using a @ebimetry which matches that
used in Stummest al. (2004). This consists of 30 electrodes positioaed m spacings
and 16 exponentially increasing depth levels in tiedel, giving a total o= 464
resistivity model cells. All the Wenner-configurations and others with geometrical
factors larger than 5,500 m were discarded, leagirgpmprehensive s& containing
n. = 51,373 unique configurations. The initial basES was a sparse dipole-dipole array
comprisingn, = 147 configurations with ara‘spacing’ of 1 andr-levels’ of 1— 6. At
each iteration an extra 0f9configurations were added ®, andn, was updated to
1.09.

The Jacobian matri$s contains the logarithmic sensitivity of each cgofation
to changes in the model resistivities. It was daled using the adjoint field approach
(Park & Van, 1991), which is valid for arbitrarysistivity distributions. To ensure that
the generated sets of configurations would be ealplé to general resistivity surveys, we

assumed no prior knowledge of the resistivity dsiiion. Therefore we chose to use a
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homogeneous half-space, which increased the spa@dsienplicity of the sensitivity
calculations. As an aside, in this situation thpiad field method also has a particularly
simple physical interpretation (see Appendix A).

In addition to the unknown resistivity distributiothe final constraint matrix
cannot be determined before the inversion is pexéo This is due to the iterative nature
of the non-linear inverse resistivity problem; theersion algorithms tend to change the
constraints at every iteration to maintain stapilénd maximize image resolution.
Fortunately the optimization strategies all ran& #dditional configurations in terms of
one model resolution distribution divided or noripadl by another. Therefore they are
relatively insensitive to the detailed structurelw#se distributions, and hence also to the
constraint matrix, providing that the model reswons are physically reasonable
(Stummeret al., 2004). Consequently we used a simple dampingti@nsC = A1 with
4 = 2.5x10, which was chosen so that the model resolutiénof the comprehensive
measurement set was sma®. ¢ 0.05) at a depth of ~30 m. This depth is th@cgl
maximum median depth of investigation for four-&lede configurations on an array of
145 m length (Barker, 1989). The distributionRfis shown in Fig. 1 on a logarithmic
scale. Its spatial dependence appears realiste #irexhibits the typical, approximately
exponential, decrease of resolution with depth.

Each algorithm was run for 40 iterations, produanget of 4,368 configurations.
The upper limit on orthogonality was chosen sepfirab give the best possible results

for each algorithm. Therefore this limit is slighttlifferent for each, being 0.97 for
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“CompareR’, 0.98 for “Original GF”, and 0.95 for “Modified B'. The outputs of each
strategy are shown in Fig. 2 as plots of the spadlgtribution of therelative model
resolution,R.. This is defined as the model resolution of thenoiged set divided by that
of the comprehensive se® (= R, / R;). The colour scale ranges from whife € 0),
through the visible spectrum from blue to red, tack (R =1). The best possible
relative model resolution distribution would be yided by the comprehensive set, and
would therefore equal 1 (black) throughout the nhegace. Note that this means that the
model resolution would be as shown in Fig. 1, #glaot imply that the model resolution
would be uniformly good everywhere. The plots ig.F2 showR; at six different stages
of the optimization process (iteration numbers ,11@ 24, 32 and 40). Qualitatively it
can be seen that the model resolution improves wdteasing iteration number for each
of the optimization strategies. It should also l@arcfrom Fig. 2 that, by iteration 40, the
“Compare R” strategy has produced the best digtobwf R, whereas the performance
of “Original GF” is noticeably worse. However, thesults of the “Modified GF”
algorithm appear to be nearly as good as thos€oifripareR’. The execution times for
the algorithms were 6.0 hours for “Comp&’® 6.3 minutes for “Original GF”, and 3.9
minutes for “Modified GF”.

A more quantitative measure of the performanceachamethod is presented in

Fig. 3. The graphs show the average value of thative model resolution

S=% rjnler(j), plotted against the iteration number for “Compargblue line),
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“Modified GF” (red line) and “Original GF” (greennle). From these graphs, it can be
clearly seen that the “Compaf strategy is the most effective, producing a final
average resolution &= 0.94, closely followed by “Modified GF"S= 0.92), with the
least effective being “Original GF”, which produc&d 0.84. It should be emphasized
that these optimized sets contain only 4,368 condiions, or 8.5% of the total number
available. Despite this, they achieve average moekallutions comparable with that of
the comprehensive s& € 1.00).

As with Stummeret al. (2004), we find that the largest improvementRirare
due to the inclusion of asymmetric dipole-dipolenfogurations. Our implementation of
their “Original GF” algorithm exhibits very simildrehaviour to that which they reported.
The algorithm initially selects only dipole-dipdigpe configurations, in our case for the
first 25 iterations. After this point, nested cauifiations (i.e. the C1-P1-P2-C2 type) are
chosen more and more frequently, with the numbiEb®th types projected to be roughly
equal (about 3,000 of each) at thé%4geration. The “Compar®’ method produces
somewhat different behaviour, with dipole-dipolelarested configurations being added
in approximately the same ratio (~ 4:1) at eactaiten. The “Modified GF” approach is
similar, but the proportion does change slighttgnf ~ 11:1 initially to ~ 9:1 at the 40
iteration. Compared to “Original GF”, both of ouewm approaches tend to utilize more of
the asymmetric dipole-dipole configurations ancesethem earlier in the optimization

process.
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5. Inversion Results

Having obtained distributions d® from the three optimization strategies, it is
desirable to invert data obtained from the respectets of configurations to test how
well each set performs against known targets. Ei® give confidence that assessing
the distribution ofR; is a good way to predict the inversion performantea given
configuration set. To this end we have tested satlagainst three synthetic models, one
with four resistive prisms gf = 100Qm buried at different depths in a background with
p =10Qm (Fig. 4a), another with only the deepest of ther forisms (Fig. 4e), and a
third with both conductive and resistive structu(egy. 5a). The data were calculated
using the Res2DMod software with a finite-differenforwvard modelling algorithm.
They were inverted using the companion Res2DIngnamm using the same model cell
discretization and an-horm (robust) model constraint (Lolee al., 2003). The finite-
element method was used within Res2DInv to avomngathe same combination of
discretization and modelling algorithm in the fordi@and inversion processes.

The inverted images for the four-prism model arewsh in Figs 4b-d for the
“CompareR’, “Original GF” and “Modified GF” strategies resptevely. We assess the
resolution quality by the degree to which a loadizesistivity structure in the inverted
image is contained within the boundary of the cspaading prism in the forward model.
We also take into account the degree to which ésistivity contrast in the forward

model is reflected in the inversion. In these datlie terms, it can easily be seen that the
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prisms are best resolved by the “Compteonfigurations, then by “Modified GF”, and
least well by “Original GF”. This agrees with whaould be expected from the degree of
optimization of the respecti@ distributions.

These assessments can be quantified by calculdtengverage resistivity value
within the outlines of the prisms. The closer eadsm is to being perfectly resolved,
then the nearer the average value would be taXi0The average resistivity values are
shown adjacent to each prism in Figs 4b-d. By theasure, the best resolution for all
four prisms is obtained with the “CompaRe¢ algorithm. With the exception of the
deepest prism, the next best results are obtaised) iModified GF”, whilst “Original
GF” gives the poorest resolution. Although the d=stpprism has a slightly higher
average resistivity using the “Original GF” strateas opposed to the “Modified GF”, its
structure is not actually resolved at all in eitheage. We have examined both of these
images using much higher resolution contouring tisown in Fig. 4. This has
confirmed that, in contrast to the “ComparRé image, neither contains an isolated
resistivity maximum in the vicinity of this prisnThe associated average values merely
reflect the spatial trends of the resistivity ogenuch larger area.

Although “CompareéR” managed to resolve a weak localized resistivigkimum
in the vicinity of the deepest prism, it is clelat the resolution in this region is poor
using any of the three strategies. Therefore, s@ssstheir resolving capabilities more
accurately at these depths, we have repeated tBeisx using a forward model

containing only the deepest prism (Fig. 4e). Theeited images for this single-prism
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model are shown in Figs 4f-h using a compressealicalcale. With the same assessment
criteria as before, the “CompaRe scheme performs the best, showing some localized
structure and the greatest resistivity contrastragjghe background. The capabilities of
the “Original GF” and “Modified GF” schemes are gan but the “Modified GF” is the
better of the two, resolving a faint localized stiue where the “Original GF” produces
none, and also producing a slightly higher reststicontrast. These observations are
corroborated by the average resistivity value, Whic highest for “Compar®’, and
marginally higher for the “Modified GF” than the fi@inal GF".

It is also possible to compare the spatial resmiutheasured directly from the
inverted images with an estimate of the radiusesblution obtained frorR. Using the
results for “Compar®’ as an example, we defined the edge of the pmsthe inverted
image to be at 118m, which is the centre contour between the maximamd
background resistivities. We measured the spat&dlution as the distance between this
contour and the edges of the prism in the forwaodeh obtaining a value of ~ 9.2 m. At
the midpoint of the prism, the estimated model ltggmn is R~ 0.035. The radius of

resolution, defined by Friedel (2003), is given by
r=.—, @)

where A = 12.5 fhis the area of the model cell at the prism midpditnis gives an
estimated radius of resolution of~10.7 m. The good agreement between these two

estimates of spatial resolution further validates eise of the simple damping constraint
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in Eg. 1, and gives added confidence in the usaaifel resolution estimates to predict
inversion performance.

Whilst the forward and inverse models involvingisage prisms illustrate the
close correspondence betwdgm@nd the spatial resolution, it is also helpfuket@mine
the performance of the same optimized arrays againsre general model. To this end,
we consider the model used by Stumraeal. (2004), which consists of a conductive
overburden, a resistive prism and an inhomogeneonductive prism (Fig. 5a). For ease
of comparison we have adopted their colour scatetdock display for Fig. 5. It should
be noted that, when comparing the results of the papers, we have used ambrm
model constraint, which has the effect of improving recovered blocky geometry of the
model, but also reduces the peak resistivity odoetivity contrasts that are obtained. By
inspecting Figs. 5b-d, it is clear that each of tiwee algorithms has resolved the two
prisms and the overburden. Marginally better resigt contrasts are obtained with
“CompareR’” (Fig. 5b) for the conductive prism, and with “Méidd GF” (Fig. 5d) for
the resistive prism. However, there is little quiative difference, as evidenced by the
similar average resistivity values obtained witlghrealgorithm. More importantly, each
of the new strategies significantly improves on tbsistivity contrasts achieved with the

“Original GF” method (Fig. 5¢).
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6. Conclusions

We have proposed two new local optimization stiatethat, for a given limited
number of four-electrode configurations, provideameptimal subsurface resolution for
ERT surveys. Both algorithms use a linearized -firster estimate of the model
resolution to assess the suitability of the eledraconfigurations. One approach,
“CompareR’, calculates the effects of adding new configunasi directly by updating
the model resolution matrix. The other method, “Mied GF”, uses a goodness function
to estimate which new configurations would be berafto include.

We compared these schemes with the “Original GFjyreviously published
algorithm that uses a similar approach. Our textgate that “ComparB’ produces the
closest to optimal subsurface distribution of ma@sblution. However, this algorithm is
slow and scales unfavourably with the number ofstegy cells in the model. The
“Original GF” method is at least an order of magdé faster but its results exhibit
notably poorer resolution. However, our “Modified=Gruns faster still and produces
model resolutions that are much closer to thosaindd by the “Compar@” method.

The estimate of model resolution was calculatedhenbasis of a homogeneous
half-space so that the results would not be smettifany particular subsurface resistivity
distribution. This had the additional benefit ofrie@asing the speed and simplicity of the
Jacobian matrix calculations. Despite these assangttests involving the inversion of

synthetic data derived from forward models withistgty contrasts of 10:1 demostrated
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that the distribution of the estimated model regsofuwas a reliable indicator of the
quality of the final inverted image. Both qualitegiand quantitative assessments of the
inverted images showed that the best results wbtained with the “Compar®’
strategy closely followed by our “Modified GF”, witeas the poorest resolution was
produced by the “Original GF”. These findings weupported by further tests on a more
general model involving both conductive and regsstiprisms and a conductive
overburden.

By applying a spatial weighting function to the mbdesolution distribution, it
would not be difficult to adapt these procedurestamget a specified region of the
subsurface (Hennig & Weller, 2005; Furmaral., 2004). Our scaling analysis suggests
that, due to its long execution times, “Comp#&teis likely to be used only in the
preparation stages for a field survey, and woudddfore require prior knowledge of the
target areas and geometries. However, the “Modifsdd’ method is probably fast
enough that it could be used for real-time arraynaigation. It could therefore form the
basis of an adaptive time-lapse electrical imagysfem. This would use feedback from
the resistivity image to determine time-dependemigiting functions for the next
inversion, automatically optimizing the spatial akesgion for time-lapse tomographic

imaging of dynamic subsurface processes.
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Figure Captions

Figure 1. Logarithm of the model resolutioR. for the comprehensive set of

configurations.

Figure 2. Relative model resolutionR; at six different stages of the optimization
process for each strategy. Each column shows thdtseof a different optimization
strategy, with the iteration number and number affigurations in the optimized sets

increasing down the page.

Figure3. Average relative model resolution as a functiontefation number for

each of the three optimization strategies.

Figure4. Forward models a) & e) showing the locations armkssiof resistive
prisms p =100Qm, light red) embedded in an otherwise uniform Igacknd
(p = 100m, light blue). Also shown are inverted images ot&d from forward modelled
synthetic data using optimized sets of configurstigenerated with b) & f) “Compare
R’, ¢) & g) “Original GF”, and d) & h) “Modified GF’ The displayed average resistivity

values relate to the regions of the inverted imdogesided by the prisms.

Figureb. a) Forward model used in Stummetral. (2004), showing the locations of
conductive and resistive prisms and a conductiverbawden in an otherwise uniform

half-space A= 1000Qm, yellow). Also shown are inverted images obtairfeain
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forward modelled synthetic data using optimized sétconfigurations generated with b)
“CompareR’, c) “Original GF”, and d) “Modified GF”. The didayed average resistivity

values relate to the regions of the inverted imdogesided by the prisms.

FigureAl. A background medium of uniform conductivity incorporates a small
volumer with conductivitye+do. In the electric field of a current source C tbasises a

dipolar perturbation current density&f at an angl® and distance’ to the field point P.
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Appendix A — Physical Interpretation of Sensitivity
Calculations

The derivation of the adjoint method used to cailthe Jacobian matrix
elements is mathematically dense (Park & Van, 18@t) does not readily give insight
into the physical origins of the form of the sendy function. But when the subsurface
resistivity distribution is homogeneous, the sevityt does have a simple physical
interpretation; the change in potential due to alktocalized resistivity perturbation is
due to the change in dipolar current density flayimthe perturbed region.

To demonstrate this, we consider a homogeneousspatfe of conductivityr
containing a small volume in which the conductivity issc +dc (Fig. Al). If the
perturbation is weak, then the electric fi€ldn r can be assumed to be unchanged (this is
equivalent to the Born Approximation in scatteritigeory). The fieldE, due to the
current electrode C, produces a dipolar current tlarough the volume. The change in
the dipolar current density caused by the condiigtperturbation is5J = Ede. In turn,

this extra current density changes the potentiBl lay

SV = éSZJ‘34‘3526’c;|?’r (A1)
- 2rotr’

(Lorrain et al., 1988), wheneis a position vector withim, andr’ and@é are the distance
and angle fromr to P respectively. The magnitude of the elecietdfof a notional unit

current pole located at P would &= 27;7,2 . Therefore

-35-



8V = [ES0E'cosdd’r
T

5 (A2)
= [-30EEd

where the minus sign arises sirfi€as anti-parallel ta’. Rearranging Eq. A2 slightly in

terms of resistivity gives

8V = 8—’2’ [E'Ed®r, (A3)
P

which is the result found in Park & Van (1991).
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