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Abstract. Carbon budgets of the mesopelagic zone are poorly constrained, 

highlighting our lack of understanding of the biota that inhabit this environment and their 

role in the cycling and sequestering of carbon in the deep ocean. A simple food web 

model of the mesopelagic zone is presented which traces the turnover of particulate 

organic carbon (POC), supplied as sinking detritus, through to its respiration by the biota 

via three pathways: colonization and solubilization of detritus by attached bacteria, 

production of free-living bacteria following losses of solubilization products during 

particle degradation, and consumption by detritivorous zooplankton. The relative 

consumption of detritus by attached bacteria was initially specified as 76%, with the 

remaining 24% by detritivores.  Highlighting an asymmetry between consumption and 

respiration, the resulting predicted share of total respiration due to bacteria was 84.7%, 

with detritivores accounting for just 6.6% (with 6.5% and 2.2% by bacterivores and 

higher zooplankton respectively). Bacteria thus dominated respiration and thereby acted 

as the principal sink for POC supplied to the mesopelagic zone, whereas zooplankton 

mainly recycled carbon back to the base of the food web as detritus or dissolved organic 

carbon rather than respiring it to CO2. Estimates of respiration are therefore not 

necessarily a reliable indicator of the relative roles of bacteria and zooplankton in 

consuming and processing POC in the mesopelagic zone of the ocean. The work 

highlighted a number of major unknowns, including how little we know in general about 

the dynamics and metabolic budgets of bacteria and zooplankton that inhabit the 

mesopelagic zone and, specifically, the degree to which the solubilized products of 

enzymatic hydrolysis of POC by attached bacteria are lost to the surrounding water, the 
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magnitude and factors responsible for bacterial growth efficiency, the role of microbes in 

the nutrition of detritivores, and the recycling processes by which zooplankton return 

what they consume to the food web as detritus and dissolved organic matter. 

 

1. Introduction 

Carbon produced by photosynthesis in the euphotic zone of the ocean is exported to 

deep waters via sinking particles, dissolved organic matter and migrating zooplankton, 

the so-called “biological pump” (Volk and Hoffert, 1985). This flux of organic carbon is 

then attenuated with depth, with the majority of consumption occurring within the so-

called mesopelagic (or “twilight”) zone, nominally assigned a depth range 100-1000 m. 

Our knowledge of processes occurring in this zone, and in particular the dynamics of the 

mesopelagic food web, is however restricted given the inherent difficulties of undertaking 

observational and experimental work in deep water. Modelers have therefore resorted to 

empiricism when describing the sinking of particles through the water column in ocean 

general circulation models, typically relying on simple curve fits of particulate organic 

carbon (POC) versus depth (e.g., Betzer et al., 1984; Martin et al., 1987; Pace et al., 

1987). Without a mechanistic basis, however, this approach has its limitations, especially 

when it comes to predicting the response of, for example, the biological carbon pump to 

altered climate forcing. 

The extent of our ignorance regarding processes in the mesopelagic zone is 

highlighted by carbon budgets that fail to reconcile the attenuation of POC with 

respiration by the food web (Burd et al., this issue). Boyd et al. (1999), for example, 

estimated that bacterial respiration was up to tenfold greater than POC supply in the 

mesopelagic zone of the subarctic Pacific. Similarly, Steinberg et al. (2008) calculated 

that the sum of respiration by bacteria and zooplankton between 150 and 1000 m at 

stations ALOHA (subtropical Pacific) and K2 (off Japan) exceeded the removal of 

sinking particles (estimated from POC as measured by neutrally buoyant sediment traps) 

by as much as an order of magnitude. Making progress to resolve these differences is far 

from straightforward given both the complex mixture of amorphous aggregates and fecal 

material that constitute POC (Fowler and Knauer, 1986) and the multitude of organisms 

in the mesopelagic food web that is driven by this supply of organic matter. Particles host 
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communities of microbes characterized by complex interactions among organisms that 

depend on rates of attachment, detachment, growth, mortality and intra- and interspecific 

competition for resources (Kiørboe et al., 2003). In turn, bacterial numbers are kept in 

check as flagellates rapidly colonize sinking aggregates (Caron, 1987; Artolozaga et al, 

2002; Kiørboe et al., 2004). Utilization of POC by particle-attached bacteria requires the 

action of hydrolytic enzymes (Smith, et al. 1992), and it is commonly observed that 

attached bacteria have elevated enzymatic activities relative to their free-living 

counterparts (Grossart et al., 2003a; 2007). The recovery of the resulting dissolved 

organic substrates is however generally believed to be inefficient, with a significant 

proportion leaking to the surrounding water and supporting the production of free-living 

bacteria (Kiørboe and Jackson, 2001). Some zooplankton species can also directly feed 

on aggregates which are often broken up in the process (Lampitt et al., 1993; Dilling et 

al., 1998; Koski et al. 2005). 

At the most basic level, there is little consensus even on the relative roles of bacteria 

and zooplankton as agents of turnover of POC in the mesopelagic zone of the ocean. The 

role of microbes was emphasized by Cho and Azam (1988) who postulated rapid 

solubilization of sinking organic particles by attached bacteria. Models have often 

followed suit. Boyd and Stevens (2002), for example, included an exponentially declining 

rate of microbial solubilization of particles with depth in their model of vertical flux of 

POC in the northeast Atlantic Ocean, but excluded zooplankton consumption of detritus. 

Their results indicated that downward transport is governed primarily by particle 

geometry, aggregation and microbial solubilization rates. On the other hand, Banse 

(1990) suggested that zooplankton may be primarily responsible for reducing particle 

flux with depth below the euphotic zone, estimating that grazers could account for 50 to 

100% of the observed decline at two Pacific deep water stations. Other studies have 

similarly indicated the potential significance of zooplankton in the decomposition of 

snow particles (Green and Dagg, 1997; Steinberg et al., 1994). In total contrast to the 

model of Boyd and Stevens (2002) described above, Boehm and Grant (2001) used a 

model that included zooplankton grazing, sedimentation, coagulation and fragmentation, 

but which excluded microbial remineralization, and concluded that, at least in some 

instances, grazers may account for the diminution of biogenic carbon flux with depth. In 
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reality, both bacteria and zooplankton are likely important in POC turnover. In a 

modelling study of the northwest Mediterranean Sea, for example, Stemmann et al. 

(2004b) indicated that zooplankton are responsible for decreasing the flux of large 

particles in the upper mesopelagic zone, whereas microbial process become more 

important deeper in the water column as zooplankton become scarce in number. 

The disparity in the various views among the scientific community regarding the 

relative roles of bacteria and zooplankton in POC turnover in the mesopelagic zone is 

worrisome, a state of affairs exacerbated by the contrasting assumptions used in 

apparently successful models. A central role of models is, after all, in providing explicit 

quantitative descriptions of what we do and do not understand (Gasol et al., 2008). With 

this in mind, we present here a simple food web model of the processes contributing to 

the attenuation of POC flux in the mesopelagic zone of the ocean. The model is a flow 

analysis, following turnover of organic carbon via attached microbial communities, 

bacteria free-living in the water column, detritivorous zooplankton and higher 

zooplankton. Our aim is not to make precise predictions of these various pathways 

constrained by data, but rather to explore the current state-of-the-art of our knowledge of 

the mesopelagic realm, highlighting key processes and areas of uncertainty that merit 

future research. 

 

2. Model description 

 

2.1. Structure and equations 

 

The model presented here is a flow analysis that examines the role of bacteria and 

zooplankton in the consumption and remineralization of POC in the mesopelagic zone of 

the ocean. It has as its basis the model of Anderson and Ryabchenko (in press), in which 

detritus consumption in the mesopelagic zone of the Arabian Sea was partitioned between 

bacteria and zooplankton, with recycling of carbon via dissolved organic carbon (DOC) 

and higher predators. The representation of the mesopelagic food web in their model was 

however simplistic in that no distinction was made in terms of different groups of 

bacteria (e.g., attached, free-living) or zooplankton (e.g., bacterivores, detritivores and 
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higher zooplankton). The model of Anderson and Ryabchenko (in press) is elaborated 

here to provide a more detailed representation of carbon pathways within the mesopelagic 

food web by incorporating different groups of bacteria and zooplankton.  

The starting point of the model is the net input of detritus into the mesopelagic zone 

via export from sinking particles, DEX, representing the difference between detritus 

entering from above and that leaving at its base. The rate of diminution of POC with 

depth is not afforded an explicit treatment, rather the model operates on the basis that 

quantity DEX of carbon is turned over within the mesopelagic layer, and traces the 

relevant pathways through bacteria and zooplankton leading to its ultimate respiration by 

the food web. Three food web pathways are considered (Figure 1): (1) detritus is 

colonized by attached bacteria and an associated bacterivore community; (2) detritivores 

consume detritus along with the associated microbial communities inhabiting it; (3) 

enzymatic hydrolysis by attached bacteria, as well as losses from zooplankton, releases 

DOC into the water column which fuels free-living bacteria and an associated microbial 

food chain. Free-living bacterivores and detritivores are consumed by higher 

zooplankton, which are ordered into an infinite chain. A list of model parameters is 

provided in Table 1. 

Consumption of detritus is partitioned between attached bacteria (fraction ) and 

detritivores (1-). Material acted on by attached bacteria is solubilized by hydrolytic 

enzymes (Smith et al., 1992) and the resulting release of organic carbon provides 

substrates not only for themselves, but also for free-living bacteria via loss of DOC to the 

surrounding medium (Cho and Azam, 1988; Karl et al., 1988). In the model, this loss of 

DOC is represented as fraction  of the POC acted upon by attached bacteria. The 

remainder is used for growth with efficiency A (with 1-A respired to CO2), such that 

growth and respiration of attached bacteria, FBA and RBA respectively, are: 

 

FBA = (1-)ADT        (1) 

 

RBA = (1-)(1-A)DT       (2) 
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where DT is total detritus within the system, including both net input from the euphotic 

zone (DEX) and carbon produced as fecal pellets by the food web. Grazing is assumed to 

be the sole loss term for attached bacteria, either by detritivores consuming aggregates 

and associated microbes (fraction ) or by bacterivores in the particle-attached 

community (1-). A fraction, V, of food material is released by bacterivores as DOC 

(incorporating losses such as sloppy feeding and excretion), and the remainder 

assimilated with efficiency V (with fraction 1-V lost as fecal material). Growth and 

respiration of attached bacterivores, FVA and RVA, are then calculated assuming a fixed 

net growth efficiency, kV: 

 

FVA = (1-)FBA(1-V)VkV       (3) 

 

 RVA = (1-)FBA(1-V)V(1-kV) + (1-)FVA     (4) 

 

As for attached bacteria, fraction  of bacterivores is assumed to be lost to consumption 

by detritivores, with the remainder assumed to contribute to respiration (model closure: 

the second term in Eq. 4).  

Detritivorous zooplankton consume fraction 1- of detritus in the model (food web 

pathway 2), along with fraction  of the community of attached bacteria and bacterivores 

inhabiting detrital particles. Fraction H is released as DOC during grazing, with the 

remainder assimilated with efficiency H and used for growth with net growth efficiency 

kH. Production and respiration of detritivores, FH and RH, are then: 

 

 FH = (1-H)HkH((1-)DT + (FBA+FVA))     (5) 

 

 RH = (1-H)H(1-kH)((1-)DT + (FBA+FVA))     (6) 

 

The detritivore pathway is closed by an infinite chain of higher zooplankton. Fraction Z 

is lost to DOC during transfer between trophic levels, and remaining food assimilated 
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with efficiency Z and used for growth with net growth efficiency kZ. The summed 

production and respiration of this chain, FZ2 and RZ2, are then: 

 

 FZ2 = FH


1i

[(1-Z)ZkZ]i = FH(f[(1-Z)ZkZ]-1)    (7) 

 

 RZ2 = FHf[(1-Z)ZkZ](1-Z)Z(1-kZ)      (8) 

 

where function f[x] is (e.g., Anderson and Ducklow, 2001): 

 

 f[x] = 
x

x
i

i






 1

1

0

, 0 < x < 1       (9) 

 

The third food web pathway in the model, that of free-living bacteria and their associated 

food chain, is fuelled by supply of DOC.  Supply from food web pathway 1 occurs via 

hydrolysis of POC by attached bacteria and from release of DOC by associated 

bacterivores, JDOC,ex and JDOC,VA respectively (normalized to detritus supply, DT):   

 

JDOC,ex =          (10) 

JDOC,VA = (1-)A(1-)V       (11) 

 

Similarly, DOC is supplied via detritivores and associated higher zooplankton in food 

web pathway 2, JDOC,H and JDOC,HZ:  

 

JDOC,H =  (1-)H + (1-)AHJH,BA      (12) 

JDOC,HZ = Z(1-)JZ,H + (1-)AZJH,BAJZ,H     (13) 

 

where JH,BA is the fraction of production by bacteria that is consumed by detritivores, 

including carbon in bacterivores one trophic level higher in the food chain, and JZ,H 

quantifies production of detritivores and associated higher zooplankton, normalized to the 

carbon input to food web pathway 2: 
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JH,BA = +(1-)(1-V)VkV       (14) 

JZ,H = (1-H)HkHf[(1-Z)ZkZ]      (15) 

 

The total carbon supplied by food web pathways 1 and 2 that enters the DOC pool, 

JDOC,D, is now: 

 

JDOC,D = JDOC,ex + JDOC,VA + JDOC,H + JDOC,HZ     (16) 

 

As well as being responsible for turnover of DOC, the microbial loop (food web pathway 

3) also acts as a source of dissolved material via free-living bacterivores and associated 

higher zooplankton, JDOC,ML: 

 

JDOC,ML = JDOC,D


1i

(FLJDOC,BFL)i      (17) 

 

Here, JDOC,BFL is DOC produced by bacterivores and higher zooplankton per unit carbon 

entering pathway 3 during a single passage through the trophic levels, and the infinite 

summation term accounts for carbon cycling repeatedly around the loop. 

 

JDOC,BFL = V + ZJZ,V        (18) 

 

JZ,V = (1-V)VkVf[(1-Z)ZkZ]      (19) 

 

Production and respiration by free-living bacteria, FBFL and RBFL, are now calculated as: 

 

FBFL = FL(JDOC,D+JDOC,ML)DT = FLJDOC,Df[FLJDOC,BFL]DT   (20) 

 

 RBFL = (1-FL)JDOC,Df[FL JDOC,BFL]DT     (21) 
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Equations for the growth and respiration of bacterivores grazing on free-living bacteria, 

FVFL and RVFL, and the resulting chain of higher zooplankton, FZ3 and RZ3, are: 

 

FVFL = FBFL(1-V)VkV       (22) 

 

 RVFL = FBFL(1-V)V(1-kV)       (23) 

 

 FZ3 = FVFL(f[(1-Z)ZkZ]-1)       (24) 

 

 RZ3 = FVFLf[(1-Z)ZkZ](1-Z)Z(1-kZ)     (25) 

 

All that remains is to quantify DT, the total consumption of detritus by the food web. For 

each unit of detritus entering food web pathways 1, 2 and 3, fractions JD1, JD2 and JD3 are 

returned to the detritus pool as fecal material, rather than being released as DOC or 

respired as CO2: 

 

 JD1 = (1-)A((1-Z)(1-Z)JZ,HJH,BA+(1-H)(1-H)JH,BA+(1-)(1-V)(1-V)) 

           (26) 

 

JD2 = (1-)((1-H)(1-H)+(1-Z)(1-Z)JZ,H)     (27) 

 

JD3 = FLJDOC,Df[FLJDOC,BFL]((1-V)(1-V)+(1-Z)(1-Z)JZ,V)  (28) 

 

The total carbon entering the detritus pool, DT, is then calculated taking into 

consideration repeated cycling of organic matter within the food chain:  

 

 DT = DEX(1 + JD + JD
2 + JD

3 + …) = DEXf[JD1+JD2+JD3]   (29) 

 

where JD is the sum of JD1, JD2 and JD3. 
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2.2. Parameterization 

 

The starting point of the flow analysis is to divide the utilization of POC supplied to 

the mesopelagic zone, DEX, between attached bacteria (and detritivorous 

mesozooplankton (1-). Assigning a value to this parameter is problematic given that the 

relative roles of bacteria and zooplankton in POC turnover by the mesopelagic food web 

are so poorly understood. Anderson and Ryabchenko (in press) estimated  using 

calculations of bacterial and zooplankton consumption of POC between 150 and 1000 m 

at stations ALOHA (22º 45’N, 158 ºW) and K2 (47 ºN, 160 ºE) provided by Steinberg et 

al. (2008). The average ratio of bacterial production to zooplankton respiration at the two 

sites was 0.75. Anderson and Ryabchenko (in press) tuned parameter  to give this ratio 

in their model, giving  = 0.76, i.e., indicating that 76% of particle consumption was 

carried out by bacteria and 24% by zooplankton. We use  = 0.76 here, but will examine 

model sensitivity to this parameter. 

Another difficult parameter to quantify is , the fraction of detritus turnover due to 

attached bacteria that is lost as DOC to the free-living bacteria food chain (pathway 3, 

Figure 1). Many investigators have suggested that most of the hydrolytic products of 

attached bacteria are lost to the surrounding water, thereby fuelling growth of their free-

living counterparts (Cho and Azam, 1988; Smith et al., 1992; Grossart and Simon, 1998; 

Unanue et al., 1998). Cell-specific enzymatic activity of attached bacteria is usually at 

least an order of magnitude higher than that of free-living bacteria (Grossart et al. 2007), 

supporting the hypothesis that attached bacteria solubilize detrital material faster than 

they are able to take up the resulting products and leading to significant leakage of DOC 

that can be exploited by free-living bacteria. Further, deep water prokaryotes express 

more extracellular enzymes per cell than those in surface water (Baltar et al., in press). 

Vetter et al. (1998) undertook a modeling study that provided a cost-benefit analysis of 

attached bacteria in terms of quantities of enzyme release. Results suggested that 

enzymatic activity by bacteria on particle aggregates usually causes solubilization one to 

two orders of magnitude greater than the uptake of hydrolysate by the bacteria. Substrate 

quality likely affects solubilization losses. Smith et al. (1992), for example, found that 

leakage of dissolved combined amino acids varied with the type of detritus with release 
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of 95-98%, 98% and 50% from larvacean houses, diatom aggregates and fecal pellets 

respectively. It should be noted, however, that Smith et al. (1992) sampled relatively 

fresh detritus from the upper 25 m of the water column. The residence time of detrital 

material within the mesopelagic zone is at least several days, even if sinking rate is as 

high as 150 m d-1 (Shanks 2002), by which time all the detritus-bound amino acids would 

have been lost if aggregates comprise only fresh material. The degree of leakage is likely 

to decrease as the detritus ages in the mesopelagic zone. Grossart and Ploug (2001), for 

example, detected enzymatic activity and production of attached bacteria on old 

aggregates, albeit at much reduced rates. They estimated that 26% of the POC and >50% 

of the particulate combined amino acids (PCAA) of aggregates were successfully taken 

up by attached bacteria, much higher than the estimates of Smith et al. (1992). In similar 

fashion, Müller-Niklas et al. (1994) also reported a tight coupling between attached 

bacterial production and enzymatic activity on amorphous aggregates collected from the 

northern Adriatic Sea, contradicting the idea of loose coupling between hydrolysis of 

detritus and DOC uptake by attached bacteria. Accordingly, we may expect that α is 

much less than a value of 0.9 that might be expected for fresh aggregates, and instead 

chose a more conservative value of 0.5 for our standard run of the model.  

The available evidence points to bacterial growth efficiency (BGE) in the ocean 

being low. In their review of the literature, del Giorgio and Cole (1998) indicated a mean 

oceanic BGE of 0.15. What values might be expected for particle-attached and free-living 

bacteria in the mesopelagic zone? Two (partially related) factors are of importance, 

namely the cost of enzyme synthesis and the quality of the substrate. Regarding the 

former, the activity of hydrolytic enzymes can increase by 10 fold or more when bacteria 

move out of solution and attach to particles (Grossart et al. 2007) which, if these enzymes 

are a significant fraction of the total proteins produced by the cell, would suggest that 

BGE should accordingly be reduced because of the associated cost of synthesis (Vetter et 

al., 1998). Conversely, higher BGEs may be associated with fresh labile material in 

particles rapidly exported from the euphotic zone. Grossart and Ploug (2000) recorded a 

BGE of 0.45 for aggregate-associated bacteria during the first 3 days of colonization, 

subsequently declining to 0.23 and 0.04 after 7 and 14 days, respectively. These values 

are higher than the BGEs of between 0.09 and 0.17 estimated by Smith et al. (1995) for 
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bacteria growing on 1-3 day old aggregates produced during the breakdown of a diatom 

bloom. We are restricted to using a single value for the BGE of attached bacteria in our 

flow analysis, and chose to use A = 0.24 which is the mean of the three values given in 

Grossart and Ploug (2000) corresponding to measurements on days 1-3, 7 and 14. 

Estimates of BGE for bacteria growing on laboratory-generated diatom aggregates are 

similar in magnitude, e.g. 0.1-0.5, mean 0.26 (Ploug and Grossart, 2000) and 0.23 (old 

aggregates: Grossart and Ploug, 2001). BGEs of between 0.10 and 0.21 were recorded by 

Panagiotopoulos et al. (2002) during in vitro incubation experiments examining the 

degradation of large particles in the southern Indian Ocean. In the case of free-living 

bacteria, one might expect a relatively low BGE in the mesopelagic zone given that BGE 

varies systematically with bacterial production and the trophic richness of ecosystems, 

with lowest values in the most dilute oligotrophic systems (Del Giorgio and Cole, 1998). 

We chose to use FL = 0.15, equal to the mean ocean value calculated by del Giorgio and 

Cole (1998), although recognizing that in actuality BGE in the mesopelagic zone may be 

even lower. 

Grazing is a major process in the model, both by bacterivores on attached and free-

living bacteria, as well as by detritivores and higher zooplankton. Parameters V, H and 

Z express the fractions of grazed material lost to DOC during each trophic transfer. The 

mechanisms of this release of DOC are break up of food while feeding (so-called “sloppy 

feeding”), excretion, and voiding of feces with loss of included dissolved matter (Jumars 

et al., 1989). Strom et al. (1997) found in laboratory experiments that heterotrophic 

protists and copepods released 16-37% of their ingestion as DOC. Heterotrophic 

flagellates use a variety of mechanisms, including pallium feeding, tube feeding and 

direct engulfment (Hansen and Calado, 1999; Montagnes et al., 2008), which likely entail 

negligible sloppy feeding losses because prey are ingested whole or have their 

constituents sucked out. DOC is however released by flagellates, possibly as loss of their 

own digestive enzymes and incompletely digested membranes as well as other cellular 

components from the prey (Nagata and Kirchman, 1992). We set V = 0.25, the fraction 

of uptake by flagellates excreted as organic matter in the model of the microbial food 

web of Blackburn et al. (1997). Regarding mesozooplankton, Copping and Lorenzen 

(1980) found that DOC released by Calanus pacificus was 27% of grazed material when 
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fed phytoplankton in the laboratory. A much higher value of 43% was estimated by 

Møller et al. (2003) for Calanus spp. feeding on diatoms (excluding 6% leakage from 

fecal pellets that may be atypically high because of rapid gut passage times under high 

food concentration condition in their experiment). For higher zooplankton, we set Z = 

0.3, the same value used by Anderson and Ducklow (2001). We can safely assume that 

sloppy feeding is even more likely in the case of detritivores because fecal pellets and 

aggregates are large and fragile (Møller et al., 2003). We therefore set H = 0.4.  

Remaining grazed material is subject to assimilation before being utilized for growth. 

The fraction of carbon egested by flagellates varies between 13 and 44% (Fenchel, 1982; 

Geider and Leadbeater, 1988; Pelegrí et al., 1999). Using an average of these two values 

gives an assimilation efficiency, parameter V, of 0.72. Anderson (1994) developed a 

model relating C:N ratios in mesozooplankton food and the resulting fecal pellets in 

which different carbon fractions (lipids, carbohydrates, proteins) were assigned different 

assimilation efficiencies based on the data of Head (1992) for copepods off the coast of 

Labrador and in the Gulf of St. Lawrence. Fresh diatoms with a C:N ratio of 6.5 (with C 

content 61% protein, 12% lipid and 27% carbohydrate) were assimilated with an average 

efficiency of 0.66, and so this value was assigned to parameter Z. Material that had 

passed through the gut once, i.e. pellet material, was assimilated with efficiency 0.60, 

giving H = 0.60. The recalcitrant nature of most detrital material means that relatively 

low assimilation efficiencies are to be expected in detritivorous food chains (Chervin, 

1978; Anderson et al., 2004).  

Assimilated carbon is used by zooplankton for growth, with the remainder being 

respired as CO2. Based on a review of the literature, Straile (1997) calculated average 

gross growth efficiencies (GGEs) for flagellates and copepods of 0.32 and 0.26 

respectively. These values can be converted to net growth efficiency (NGE), i.e. the 

fraction of assimilated carbon converted to biomass, by dividing by assimilation 

efficiency (V and Z), yielding 0.44 and 0.39 for flagellates and copepods respectively. 

The former value, from which we set kV = 0.44, is similar to the NGE of 0.4 estimated for 

flagellates by Pelegrí et al. (1999). For simplicity, we set both kH and kZ to 0.39. 

Detritivores tend to have significantly lower carbon GGE than herbivores and predators 

(Frost et al., 2006), but this may be largely a result of the lower assimilation efficiencies, 
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which have no effect on NGE. It is possible that limitation by nutrient elements in food 

may put severe constraints on detritivores (Cross et al., 2003), negatively impacting 

production efficiency, but the same is also likely the case for herbivorous 

mesozooplankton (Kuijper et al., 2004). 

Finally, parameter  specifies the fraction of the attached bacteria and bacterivore 

community that is consumed by detritivores. There is little empirical evidence to help 

with setting a value for this parameter. For simplicity, we assumed that this partitioning is 

the same as the partitioning of detritus between bacteria and zooplankton, and thereby set 

 = 1- = 0.24. The model is not sensitive to this parameter. 

 

The equations presented above provide a steady state solution to carbon cycling by 

the mesopelagic food web. As a first approximation, it is probably reasonable to assume 

that the mesopelagic zone is in steady state although, for some ocean regions such as the 

Arabian Sea where lateral transports are significant, it is necessary to consider timescales 

of ocean physics and their interaction with the biota (Burd et al., this issue).  

The model was implemented in Microsoft Excel, and is available on request from the 

first author. 

 

3. Results 

 

Fluxes associated with the cycling of POC through to its ultimate respiration by the 

mesopelagic food web, as predicted by the model with default parameter settings (Table 

1), are shown in Figure 2. Attached and free-living bacteria are each responsible for 38% 

of detritus turnover (indirectly via solubilization to DOC in the case of the latter), which 

includes POC supplied from the euphotic zone and an additional 13% from the 

production of fecal material in situ by zooplankton within the mesopelagic zone. 

Zooplankton account for the remaining 24% of detritus turnover. A considerable 

proportion of the carbon processed by the food web is cycled via DOC, which is 

generated either by the action of hydrolytic enzymes produced by particle-attached 

bacteria on detritus (70% of DOC production), or by release of DOC by grazers (30%). 

The ultimate fate of carbon supplied as POC from the euphotic zone is respiration by the 
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mesopelagic food web, in addition to flux out of the base of the mesopelagic zone (which 

is included implicitly within DEX). Bacteria are predicted to account for 84.7% of total 

respiration (32.5% and 52.2% from attached and free-living bacteria), relatively higher 

than their contribution to consumption of POC (76%) because of their low growth 

efficiency and the fact that bacteria are the sole users of DOC recycled within the food 

web. Of the 15.3% contribution to total respiration by zooplankton in the model, only 

6.6% is due to detritivores, remarkably lower than their 24% contribution to detritus 

consumption. The other 6.5% and 2.2% are contributed by bacterivores and higher 

zooplankton, respectively. The relatively low contribution of detritivores to food web 

respiration occurs because only 22% of what they consume is respired, while 40% is 

released as DOC, 24% lost as pellets and 14% incorporated into biomass. Results thus 

demonstrate a marked asymmetry between bacteria and zooplankton in their relative 

contributions to detritus consumption and total respiration.  

Total production of the mesopelagic ecosystem as predicted by the model is low 

because of the low growth efficiencies of the organisms involved. Production by attached 

and free-living bacteria, normalized to DEX, are 0.10 and 0.092 respectively, with 

incorporation of just 0.042, 0.040 and 0.014 for detritivores, bacterivores and higher 

zooplankton. Attached bacteria and bacterivores were predicted to contribute only 9.7% 

to the diet of detritivores. The microbial food web thus appears to be a sink for organic 

matter in the mesopelagic zone, with relatively little carbon being incorporated into 

bacterial biomass let alone higher trophic levels. 

A sensitivity analysis was undertaken of the effect of altering parameter values on 

the relative contributions of different organisms to the consumption of detritus, as well as 

production and respiration by the food web (Figure 3). The greatest changes in 

consumption and respiration are seen by altering parameters  and . Indeed, the 

asymmetry between these two processes becomes even more exaggerated if the 

zooplankton share of detritus consumption is increased by decreasing the value of 

parameter . If, for example, the relative contributions of bacteria and zooplankton are 

made equal by setting  = 0.5 then, although detritivores directly consume half the 

detritus in the system, they account for just 13.8% of total respiration (with bacteria, 

bacterivores and higher zooplankton accounting for 76.9%, 5.5% and 3.8% respectively). 
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Going yet further and reversing the relative contributions of bacteria and zooplankton by 

setting  = 0.24 leads to an even more extreme mismatch with detritivores accounting for 

76% of detritus consumption, but just 22.2% of total respiration.  

Varying parameter , the fraction of POC solubilized by attached bacteria that leaks 

to the surrounding water and which fuels the growth of free-living bacteria, directly 

affects the relative contributions of these two groups of microbes as regards processing of 

carbon by the food web, but has little impact on the overall balance of respiration 

between bacteria in total versus that of zooplankton. Slightly more carbon is predicted to 

reach higher trophic levels if attached bacteria are relatively dominant (low ) because of 

their greater BGE. Increasing A by 50% (from 0.24 to 0.36), for example, gives rise to 

an increase in the production of attached bacteria of 52.0%, yet a decrease in their 

respiration of just 14.7%. Increasing FL by 50% (from 0.15 to 0.225) increases 

production of free-living bacteria by 56.3%, with a corresponding decrease in respiration 

of just 5.0%.  Even if this parameter is given a more extreme setting of 0.6 (an increase of 

300%), production increases by over 427% and yet respiration decreases by only 38.0%. 

Thus, the role of microbes as the dominant sink for carbon in the food web is relatively 

insensitive to the microbes’ growth efficiency. 

Finally, the overall balance of respiration was relatively unaffected by parameters for 

zooplankton although production, and therefore potential transfer to higher trophic levels, 

was significantly increased by decreasing , increasing  or increasing k (note that, for 

ease of interpretation, parameters were varied simultaneously for each of the three 

zooplankton groups, detritivores, bacterivores, and higher predators). The relative 

contribution of zooplankton to respiration is increased by decreasing their resupply of 

carbon to the food web via DOC and fecal pellets, but the overall effect was small. For 

example, decreasing parameters  and  by 50 and 25% respectively led to decreases in 

the bacteria share of total respiration from 84.7% to 79.9 and 80.9% respectively. 

Likewise, the model is insensitive to parameter , which quantifies the grazing of 

attached bacteria and bacterivores by detritivores (not shown). Although it is impossible 

to exhaustively examine sensitivity in multidimensional parameter space, our findings 

appear to be generally robust to choice of parameter values. 
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4. Discussion 

 

4.1 Sources and sinks of C in the mesopelagic zone 

 

Attempts to budget carbon in the mesopelagic zone by comparing estimates of POC 

supply and respiration by the food web have generally shown large imbalances, 

highlighting our ignorance of remineralization pathways and compromising the 

construction of models to predict sequestration of carbon in the ocean (Burd et al., this 

issue). At the most basic level, the relative contributions of the two main groups of 

organisms, bacteria and zooplankton, in the turnover of POC remain poorly understood. 

Various studies have found that the carbon demand of bacteria alone falls short of the 

supply of POC from the euphotic zone (Ducklow, 1993; Turley and Mackie, 1994; 

Nagata et al., 2001; Baltar et al., 2009). Others have attempted to reconcile the combined 

carbon demands of bacteria and zooplankton with the diminution of POC flux in the 

mesopelagic zone. Steinberg et al. (2008), for example, estimated that bacterial carbon 

demand in the mesopelagic zone (150-1000 m) was 3- to 4-fold (station ALOHA) and 

10-fold (K2) greater than the POC supply, while the carbon demand of zooplankton was 

1-2 fold (ALOHA) and 3-9 fold (K2) greater. Anderson and Ryabchenko (in press) 

estimated that bacteria and zooplankton accounted for 82% and 18% of particle flux 

respectively in the mesopelagic zone of the Arabian Sea, but also concluded that the total 

carbon demand of the biota was significantly in excess of carbon supply. Findings such 

as these led Burd et al. (this issue) to ask: “What the @$#! is wrong with present 

calculations of carbon budgets?”. 

Here, we examined the balance between POC supply and respiration by bacteria and 

zooplankton using a simple flow analysis of the mesopelagic food web. The starting point 

was to divide detritus consumption between attached bacteria and detritivorous 

zooplankton (parameter ). One approach is to assume that bacteria account for most of 

this consumption. Indeed, the apparent dominance of microorganisms in the turnover of 

POC below the euphotic zone has generally prevailed as conventional wisdom, e.g., “The 

flux of organic matter decreases strongly with depth in oceanic water columns, reflecting 

microbial remineralization” (Fenchel et al., 2000). The role of zooplankton should not 
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however be discounted. Although there exist many qualitative reports of zooplankton 

colonizing and consuming detritus (e.g., Shanks and Edmondson 1990; Steinberg, 1995; 

Green and Dagg, 1997), quantitative estimates of the resulting degradation rates of POC 

are rare and highly variable, ranging between <0.1% and 91% d-1 (Koski et al. 2007). The 

extent of detritivory is likely species specific as some zooplankton species, such as the 

copepods Oithona spp., Oncaea spp. and Microsetella spp., are frequently found 

concentrated around detritus (Steinberg et al., 1994; Green and Dagg, 1997). Koski et al. 

(2005) estimated that the fraction of detrital aggregates (phytoplankton and other 

microbes) consumed by Microsetella norvegica is a function of aggregate size and 

copepod abundance. Using their field data, we estimated that even at the reported 

maximum in situ abundances, M. norvegica would consume 20% or less of the available 

detrital aggregates. Similarly, Koski et al. (2007) estimated that the zooplankton 

community consumes less than 30% of discarded larvacean houses within the upper 50 

m. In a recent experimental study, Poulsen and Kiørboe (2005) estimated that only 5% of 

the fecal pellets encountered by epipelagic copepods were actually ingested. Using field 

measurements, these authors likewise found that mesozooplankton consumed an 

insignificant fraction of the fecal pellets in the North Sea (Poulsen and Kiørboe, 2006). 

We set  = 0.76, i.e. indicating that attached bacteria were responsible for 76% of 

detritus consumption, with 24% by detritivorous zooplankton, based on the model of 

Anderson and Ryabchenko (in press). Overall, we believe that this parameter setting is 

reasonable but note that, because the ratio of detritus consumed by bacteria and 

zooplankton is a fixed parameter in the model rather than an emergent property, we make 

no claim to have constrained it using the analysis. 

In the model, bacteria account for a dominant 84.7% share of total respiration (32.5% 

and 52.2% from attached and free-living bacteria respectively), greater than their 76% 

contribution to POC consumption. Detritivores contribute just 6.6% toward total 

respiration, despite consuming 24% of POC, with the remaining respiration divided 

between bacterivores (6.5%) and higher zooplankton (2.2%). Growth efficiencies are low 

for organisms in the mesopelagic food web, notably the bacteria, hence the low transfer 

of carbon to bacterivores and higher zooplankton. Even if the relative roles of bacteria 

and zooplankton in consumption of POC are reversed by setting  = 0.24, detritivores 
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account for only 22.2% of respiration despite being responsible for 76% of POC 

turnover. At first sight, results appear to be consistent with the conventional view of the 

microbial loop as a sink for carbon because it includes several trophic levels such that 

most organic carbon is dissipated as CO2 (Fenchel, 2008). Matters are however more 

complicated here because bacteria are predicted to dominate food web respiration even if 

detritivorous zooplankton are responsible for consuming much of the POC. Zooplankton 

in the model acted primarily as recyclers of carbon to the base of the food web as fecal 

pellets or DOC, rather than as a carbon sink through respiration. Of the material that 

detritivores consumed, just 22% is respired which at first sight is surprising given that 

gross growth efficiencies of zooplankton are usually low (Straile, 1997). In fact, the 

growth efficiency of detritivores is low in the model, but rather than being respired, most 

carbon is recycled back to the food web as DOC (40%) and fecal pellets (24%), with just 

14% utilized for growth. The model thus indicates that bacteria dominate respiration in 

the mesopelagic zone and zooplankton act primarily to recycle carbon as detritus and 

DOC. This conclusion, which was remarkably robust to parameter sensitivity analysis 

(Figure 3), implies that estimates of respiration are not necessarily reliable indicators of 

the relative roles of bacteria and zooplankton in consuming POC in the mesopelagic zone 

of the ocean. 

POC provides the sole supply of carbon in the model, which is then processed by the 

food web and ultimately respired by bacteria or zooplankton. There are however various 

other potentially significant sources of carbon to the mesopelagic zone (for a more 

extensive treatment, see Burd et al., this issue). Convective mixing of DOC from the 

euphotic zone is one additional source of carbon which may support 10% of 

heterotrophic metabolism below 500 m (Arístegui et al., 2002). DOC, as well as fecal 

pellets, could also be supplied to the mesopelagic zone by vertically migrating 

zooplankton (Banse, 1990). Estimates indicate that between 15 and 50% of zooplankton 

biomass above 500 m migrates downward during the day (Honjo et al., 2008 and 

references therein), excreting labile organic carbon that becomes available for microbes 

in deep water (Doval and Hansell, 2000). Vertical migrators were suggested by Steinberg 

et al. (2008) as a possible missing term in current estimates of the carbon budget of the 

mesopelagic zone. If included in our model, these sources of organic matter would 
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increase the size of the microbial sink for carbon, further exaggerating the primacy of 

bacteria over zooplankton as the ultimate fate of carbon in the system. 

An intriguing source of organic carbon to the mesopelagic zone that might be 

considerably more important than hitherto assumed is chemoautotrophy, particularly by 

marine Crenarchaeota (Francis et al., 2005; Ingalls et al., 2006). These prokaryotes fix 

CO2 using oxidation of ammonia as an energy source, with the resulting production of 

organic carbon being as much as 1 mmol C m-2 d-1 (Herndl et al., 2005). The extent to 

which this source of organic carbon drives the mesopelagic food web remains to be 

determined (Herndl et al., 2008).  

 

4.2 Carbon cycling by the mesopelagic food web 

 

The model indicates that zooplankton recycle most of the carbon that they process as 

fecal pellets or DOC. A similar conclusion was reached by Xu and Wang (2003) who 

studied the fate of diatom carbon when grazed by subtropical copepods, their results 

indicating the role of zooplankton in recycling organic matter in the ocean, particularly as 

DOC. High recycling in the model was due to low assimilation efficiencies (H and Z of 

0.60 and 0.66) and high release of DOC during grazing (H and Z of 0.4 and 0.3) by 

zooplankton (see section 2, the model description, for justification of parameter values). 

These combinations of parameters led to detritivores and higher zooplankton respiring 

just 22% and 28% of the material they consume. Is this realistic? Complete metabolic 

budgets of organisms, in which measurements of respiration and intake are compared, are 

rare, particularly in the contemporary literature. Early studies with copepods by Copping 

and Lorenzen (1980) and Abou Debs (1984) indicated respiration losses as a fraction of 

intake of 7-10% and 20% respectively. More recently, Thor et al. (2002) found that 

respiration by Acartia tonsa could be as much as an order of magnitude lower than intake 

of different algal diets. Conversely, Mayzaud et al. (2002) measured respiration rates in 

five Southern Ocean copepods and found that they varied from 50% to 255% of 

ingestion. Xu and Wang (2003) noted that respiration was 21-56% in the copepod Acartia 

spinicauda. Estimates of respiration are known to vary according to experimental 

protocols (temperature, degree of acclimation, etc.). Respiration also depends on food 
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quantity (Bohrer and Lampert, 1988), as well as stoichiometric constraints on metabolic 

budgets (Anderson et al., 2005).  Zooplankton consuming a diet rich in carbon, as might 

be expected for detritus, may be limited by nutrient elements, in which case they must 

dispose of the excess carbon (Hessen and Anderson, 2008). One option is to respire it 

(e.g. Anderson et al., 2005), although zooplankton may instead release it as DOC 

(Darchambeau et al., 2003; Jensen et al., 2006). Further studies are required in order to 

provide improved metabolic budgets of zooplankton.  

The extent to which zooplankton influence the downward passage of sinking 

particles is notable given that they apparently are second to the microbes when acting as 

agents of POC turnover. They are key players in modifying this flux as it descends 

through the water column, both by repackaging food items into fecal pellets (Wilson et 

al., 2009) and in the disaggregation and fragmentation of particles (Dilling and 

Alldredge, 2000; Iversen and Poulsen, 2007). Lampitt et al. (1991), for example, reported 

that copepods break up their own pellets when attempting to ingest the contents, a 

wasteful process that they named “coprorhexy”. Modeling studies have suggested that 

zooplankton likely play a major role in consuming the large particles that occur in the 

upper mesopelagic zone, whereas bacteria are responsible for degradation of the smaller, 

more recalcitrant particles that are present further down the water column (Jackson and 

Burd, 2002; Stemmann et al., 2004b). A further consideration is that, in addition to 

copepods, the mesopelagic food web contains all manner of “lurkers of the deep” such as 

appendicularians, siphonophores, fish and squid (Robison, 1978, 2004). While these 

animals may contribute little to overall respiration, their wide diversity in function makes 

predicting their impact on particle flux through the mesopelagic zone a particularly 

difficult challenge. 

The role of zooplankton in detrital food webs is not well understood (Artolozaga et 

al., 2002). Microzooplankton are known to be efficient bacterivores (Zubkov and Sleigh, 

2000; Kiørboe et al., 2004), and indeed in the model it was assumed that bacteria were 

their sole source of nutrition. As microbial biomass is small relative to that of the detritus 

they colonize, it may be that bacterivores also consume some of the aggregate material, 

particularly if it contains relatively fresh algal matter (Simon et al., 2002). The extent to 

which microzooplankton associated with particles are selective in their feeding is 
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however unclear. On the one hand, some species of flagellates and ciliates have become 

specialized to feed on bacteria inside aggregates (Caron, 1987). On the other, particles 

may serve as a refuge for bacteria and, further, a number of species exist that cannot be 

readily ingested due to their morphology (Jürgens and Güde, 1994). Bacteria attached to 

particles can also be consumed by larger zooplankton (Schoenberg and Maccubbin, 1985; 

Lawrence et al., 1993), although the overall contribution of microbes to animal nutrition 

may only be small (Baker and Bradnam, 1976). In the model, bacteria, along with 

associated bacterivores, contributed only 9.7% of detritivore diet in terms of carbon. The 

ability to consume different kinds of food is nevertheless important in achieving a 

nutritionally replete ration (Kleppel, 1993). Bacteria may provide an important source of 

nitrogen and phosphorus, as well as essential compounds such as amino and fatty acids, 

and their role in the nutrition of detritivores should therefore not be underestimated.  

Microbial processes lie at the heart of the model, with bacteria dominating food web 

respiration. A key unknown is the extent to which POC solubilized by hydrolytic 

enzymes produced by attached bacteria is lost to the surrounding water. High losses of 

solubilized products have been suggested (Cho and Azam, 1988; Smith et al., 1992; 

Grossart and Simon, 1998; Unanue et al., 1998), but it may be that these are most 

applicable to fresh detritus and that losses associated with older aggregate material are 

lower. A 50% loss of solubilized products to the surrounding water was assigned in the 

model ( = 0.5), leading to attached and free-living bacteria accounting for 32.5% and 

52.2% of total respiration (greater in the latter because of the lower growth efficiency of 

free-living bacteria, 0.15 versus 0.24). Production of the two groups was predicted to be 

similar, 0.10 and 0.092 (normalized to DEX) for attached and free-living bacteria 

respectively. In this regard, the lower growth efficiency of free-living bacteria was offset 

by the greater recycling of carbon as DOC (relative to detritus) in the system. 

Observations have generally suggested that the contribution of attached bacteria to total 

bacterial production is < 5 to 15% (Iriberri et al., 1990; Turley and Mackie, 1994), largely 

due to the fact that free-living bacteria are much more abundant than attached bacteria. 

Because total bacterial production in our model is ultimately constrained by detritus input 

from the euphotic zone, the discrepancy between model predictions and observations in 

term of attached vs. free-living bacterial production can be partly explained by release of 
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progeny by attached bacteria to the ambient water (Jacobsen and Azam, 1984; Batty et 

al., 2000), and additional sources of DOC (discussed in section 4.1) that are used 

primarily by free-living bacteria. The model highlights the need for improved estimates 

of, and understanding of, BGE in aquatic systems. One problem that, for example, arises 

when measuring BGEs of bacteria from deep water is decompression, which tends to 

induce increased energy costs and so leads to underestimates of this quantity (Tamburini 

et al., 2003).  

The fate of bacteria in marine systems, and particularly the mesopelagic zone, is 

another subject of debate. Bacterivory is the obvious sink term. Virus induced mortality 

may occasionally be as important as grazing in the removal of bacteria, particularly under 

eutrophic conditions (Fuhrman and Noble, 1995; Weinbauer and Peduzzi, 1995), but less 

so when nutrients are scarce. Weinbauer et al. (2003), for example, estimated that viruses 

were responsible for only 3-5% of bacterial mortality in the mesopelagic waters of the 

Mediterranean Sea. In contrast, Tanaka et al. (2005) suggested that virus induced 

mortality of bacteria in the mesopelagic layer could be similar to or greater than that by 

heterotrophic nanoflagellates using a steady state food chain model. The fate of bacteria 

inhabiting the nutritionally dilute environment away from particles is unclear, especially 

as they appear able to withstand prolonged periods of starvation (Jones and Rhodes-

Roberts, 1981; Kurath and Morita, 1983), although starvation does reduce the motility of 

bacteria and the rate at which they colonize aggregates (Yam and Tang, 2007). Lysis 

products as a result of mortality induced by viruses likely contribute to the pool of DOC, 

thereby sustaining further microbial uptake (Noble and Fuhrman, 1999; Middelboe and 

Lyck, 2002). This “viral loop” (Bratbak et al., 1992) thus prevents organic carbon 

reaching higher trophic levels such that if lysis was added to our model, it would have 

served to further strengthen the already dominant microbial sink for carbon. 

A further complication regarding the role of microbes in carbon cycling in the 

mesopelagic zone is that the distinction between attached and free-living bacteria is not 

clear cut. Many marine bacteria are motile, exhibiting chemotactic behaviour that allows 

them to cluster around patches of dissolved organic matter or to rapidly colonize sinking 

particles (Grossart et al., 2003b, 2007). During the early age of a detritus particle a 

bacterium may attach and detach repeatedly, leading to an active exchange of bacteria 
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between the “attached” population and the “free-living” population (Kiørboe et al. 2002). 

As a result, free-living bacteria may inhabit the microzones of organic enrichment that 

surround particles, the so-called detritosphere (Biddanda and Pomeroy, 1988) rather than 

the barren aqueous environment in between. We are not suggesting that attached and 

free-living bacteria are one and the same within the confines of the detritosphere, as the 

two groups appear to be phylogenetically distinct (DeLong et al., 1993). A permanently 

attached and increasingly specialized bacteria population will establish as particles age 

(Grossart et al. 2006). Further work is needed to understand the consequences of 

changing microbial diversity on and around detritus particles in terms of carbon cycling 

in the mesopelagic zone (Robinson et al., this issue).  

 

4.3 Concluding remarks 

 

A great advantage of models is that they offer a framework in which the 

ramifications of existing knowledge can be articulated, and from which novel predictions 

can be made (Anderson, in press). We developed a simple food web model in order to 

study carbon cycling by the mesopelagic food web, highlighting areas that merit further 

research. The major conclusion of the work is that respiration by bacteria is the dominant 

sink for organic carbon in the mesopelagic zone, with zooplankton acting primarily to 

recycle material back to the base of the food web as fecal pellets and DOC. This 

asymmetry urges caution when using estimates of respiration by bacteria and 

zooplankton to infer the relative roles of these two groups of organisms in processing and 

recycling carbon in the mesopelagic zone. An advantage of the model is its simplicity. 

Results were shown to be robust with respect to the limited number of parameters, the 

dominance of the microbial sink for carbon being insensitive to whether bacteria or 

zooplankton are the major consumers of POC and to chosen values for BGEs. The model 

highlights how little is known about the mesopelagic food web, and in particular the 

relative roles of bacteria and zooplankton in consuming detritus, the degree to which the 

solubilized products of enzymatic hydrolysis of POC by attached bacteria are lost to the 

surrounding water, the magnitude and factors responsible for BGE, the role of microbes 

in the nutrition of detritivorous zooplankton, and metabolic budgets of zooplankton and 
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the extent to which these animals respire what they consume or return it to the food web 

as detritus or dissolved organic matter. 

Simple models such as the one presented here are ideal for helping to focus our 

attention on the different aspects of carbon cycling in the mesopelagic food web. There 

are however limits to what can be deduced, with a need to complement these with more 

complex models (e.g. Jackson and Burd, 2002; Stemmann et al., 2004 a,b; Jackson et al., 

2005) that address in greater detail the structure of the mesopelagic food web and the 

transformations of particulate and dissolved organic matter, such as size distribution and 

biochemical composition, as it descends through the water column. In order to underpin 

such models it is not enough to have estimates of the relative contributions of bacteria 

and zooplankton to total respiration in the mesopelagic zone – we also need to know the 

extent to which these two groups of organisms consume organic matter and alter its 

characteristics by repackaging and recycling it within the food web. Complex models will 

require intensive field programmes in order to constrain the many processes they 

incorporate. They are essential to future progress because it is only by understanding how 

not just the quantity, but also the quality of POC and DOC changes as material descends 

through the water column that a full picture of the dynamics of carbon cycling in the 

mesopelagic zone will become complete.  
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Table 1. Model parameters and default values (note, all parameters are dimensionless). 

 

Parameter Description Value 

 partitioning of detritus to attached bacteria 0.76 

 solubilization losses: attached bacteria 0.50 

A BGE: attached bacteria 0.24 

FL BGE: free-living bacteria 0.15 

V grazing losses to DOC: bacterivores 0.25 

H grazing losses to DOC: detritivores 0.40 

Z grazing losses to DOC: higher zooplankton 0.30 

V assimilation efficiency: bacterivores 0.72 

H assimilation efficiency: detritivores 0.60 

Z assimilation efficiency: higher zooplankton 0.66 

kV NGE: bacterivores 0.44 

kH NGE: detritivores 0.39 

kZ NGE: higher zooplankton 0.39 

 particle microbial losses to detritivores 0.24 
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Figure Legends 

 

Figure 1. Flow diagram of model. Detritus input from the euphotic zone (EZ) is cycled 

through the  mesopelagic food web via POC (dark blue fluxes) and DOC (pink fluxes) 

and is ultimately respired as CO2 (yellow fluxes); fluxes to small coloured circles enter 

either detritus, DOC or CO2, according to colour code. The three main food web 

pathways are (1) via attached bacteria, (2) via detritivores and (3) via DOC and free-

living bacteria (see text).  

 

Figure 2. Model results for standard parameter settings (Table 1), normalized to detritus 

input from the euphotic zone (DEX): detritus sources, DOC sources, detritus consumption 

(in the case of free-living bacteria via solubilization to DOC), production and respiration.  

 

Figure 3. Model sensitivity to parameters: a) consumption of detritus, b) production, c) 

respiration. Parameters for zooplankton (detritivores, bacterivores, higher predators), ,  

and k, were varied simultaneously. Results are normalized to DEX. 
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