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Prediction uncertainty in index flood modelling at ungauged catchments

Thomas R Kjeldsen and David A Jones
Centre for Ecology & Hydrology, Wallingford, UK: trkj@ceh.ac.uk/daj @ceh.ac.uk

Abstract

This paper discusses the prediction variance afidex flood when estimated for an
ungauged catchment. Three different methods aestigated: i) using only a newly
developed regression model linking median annwalfito a set of four catchment
descriptors, ii) an extension using the FEH datasfer method from a nearby gauged
catchment to an ungauged catchment, and iii) usimgdified version of the data transfer
scheme. The results illustrate the link betweersthecture of the errors of the regression
model and the utility of the data-transfer from ged to ungauged catchments.

Introduction

Flood frequency analysis based on the index-floethod is the most widely applied method
for design flood estimation at ungauged catchmientise UK, as described in the Flood
Estimation Handbook (Institute of Hydrology, 1998he method is based on analysis of
annual maximum peak flow data. The index-flood radthssumes that data from all
catchments within a specified homogeneous regior dentical frequency distributions,
except for a site-specific scale parameter, thexritbod (Hosking and Wallis, 1997). The
FEH adopted the median annual maximum flood agitiex flood, which differs slightly

from the more traditional choice of the mean anmuakimum flood. Estimates of the index
flood can be obtained using both direct and indineethods, depending on the availability of
data at the site of interest. Direct methods inelastimation of the index flood directly from
available at-site annual maximum data, whereasaenotimethods attempt to estimate the
index flood at ungauged sites where no observed dlata are available.

This paper discusses and compares the uncertditiig prediction errors of the index flood
when estimated at an ungauged site using threereliff methods: i) using a newly developed
regression model linking median annual flood tetaod four catchment descriptors, ii) using
an extension of this with the FEH data transferhoétto incorporate data from a nearby
gauged catchment, and iii) using a modified versibtine data transfer scheme. Both data
transfer methods rely on the regression model,jtanil be shown that the correlation
structure of errors of the regression model areonamt when evaluating the uncertainty of
the prediction errors of estimates obtained usatg ttansfer.

A hydrological regression model

The estimation of a regression model linking thaeflood to a set of catchment descriptors
in the UK is described in detail by Kjeldsen andel®(2008) and only a short summary is
given here. To relate the index flood variablesrfrodifferent catchments to a set of
catchment descriptors, consider a vector of saifigpdetransformed) median annual
maximum floodsy, where individual sites are denoted with a supscrEach sample value

is described in terms of a population regressiodehand two individual error components
representing the modelling and sampling errgreind £, respectively so that

Y, =X 0+ +& =x0+Q 1)



where® is a vector of regression model parameters»and a vector of catchment
descriptors with a value of one in the first looatiBoth errors are assumed normally
distributed with zero mean values. The covarianagimof the sampling errors is
denoted, , the corresponding covariance of the modellingrerdenote&, , and the two
errors are assumed mutually independent. Furthisrassumed that the elements along the
diagonal of the modelling error covariance matr identical and equal tg; . The
covariance matrix of the vector of total errogs, is defined as

X,=%, +%, =0R, +X,/0?)=0%G )
whereR, is the correlation matrix of the modelling erréhe matrixG is introduced for
computational convenience and is derived from \&abfes; and R, . In pioneering the use

of the Generalised Least Squares (GLS) procedumgdrology, Tasker and Stedinger (1989)
assumed the modelling covariance matrix to be®fdhm X, = g}l , i.e. there is an
assumption of no cross correlation between the thogerrors. In contrast, the model
formulated here is more general and assumes tlss caorelation to be represented by the
associated modelling error correlation matrx.

The sampling and model error components represendlistinctly different sources of error

in the regression model. Start by assuming thaua’value of the index flood could be
estimated for each catchment if an infinite longeseof annual maximum peak flow data was
available. In practice, the index flood has to signeated from finite series which introduces a
sampling error representing the difference between this sampimate and the notional true
value. Thamodelling error represents the inability of a particular regressiodel to
adequately predict the true value of the indexdldeor hydrological models such as the
regression model studied here, the model errdités anuch larger than the sampling error if
a reasonable number of years have been usedmaéstihe index flood.

Similarly, the correlations between catchmentsefihdividual error terms have very
different interpretations for the two types of eérGorrelation between sampling errors is a
result of rainfall events causing increased floménghbouring catchments at the same time.
The existence of correlation in model errors ondtieer hand, signifies an inability of a
particular regression model to adequately reprebentrue values of the index flood in
neighbouring catchments, i.e. the existence obregiclusters of under and over prediction.
It can be argued that the existence of model ewmelation is a result of an inadequate
regression model and should be removed by impraviagegression model. However, the
approach taken here argues that a simple regresgidel is unlikely to capture the complex
behaviour of real catchments and acknowledgesriatslity by explicitly allowing model
error correlation into the modelling framework.

While the sampling errors are related to the dataised for estimation of the index flood at
each individual site, the model errors are spetifia particular regression model, i.e. each
choice of a set of catchment descriptors will resuits own specific model error structure.
This means that the statistical properties of #ming error can be estimated once and used
in all regression models whereas those of the merdet need to be estimated for each
regression model tested. Details of the estimaifdhe sampling error covariancg,, are

not shown here but can be found in Kjeldsen anésd¢2008). Based on detailed
investigations, Kjeldsen and Jones (2008) fountrtie@del error correlation across sites could
reasonably be described for most regression madels
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Here,d; is the distance between catchment centroids [k]ga, ¢, and ¢, are model
parameters that must be estimated for each indiVigagression model.

Having specified the error structure, the regressi@del parameters can be estimated using a
maximume-likelihood procedure which incorporates tdr@ essentially the steps involved in
calculating the GLS estimates of the regressioarpaters. If it is assumed that the regression
residuals are normally distributed with mean zerd a total covariance matrig:G , as
described in equation (2), the objective of therallestimation procedure is to minimise the
negative log-likelihood function,

~2In(L)= In[del(a,fG )] +(y - xo)" (J,fG)_l(y - X9), 4)
with respect to the three model error correlatiarameters¢,, ¢. and ¢;), the model error
variance,o?, and the regression parametd¥s,The problem is simplified by noting that, for

given values oo? , ¢., ¢, and ¢; (which between them determi® , the value 0®
which minimises (4) is given the GLS estimator

0=(x"GX)'x"Gy. (5)

Thus, estimation by Maximum Likelihood is implemethtas a search over the four
parameterss;, ¢, ¢, and @;. The results are shown in Table 1.

Table 1. Summary statistics for regression model desayitire (log transformed) median
annual maximum flood. (Maximum-Likelihood estimgtes

Coefficient Paramete, | Standard errof t-value p-value
Intercept @) 2.1170 0.1172 18.06 0.000
Ln[AREA] 0.8510 0.0114 74.35 0.000
[SAAR/1000]* -1.8734 0.0968 -19.35 0.000
Ln[FARL] 3.4451 0.2654 12.98 0.000
BFIHOST -3.0800 0.1158 -26.60 0.000
o’ =0.1286, df =597, r®>=0.945 (log scale)

¢, =04598 ¢, =0.0200 ¢,=0.4785

Using annual maximum data from 602 rural catchmiatisted throughout the UK, a five
parameter regression model was developed, linkiadag-transformed median annual
maximum flood to a set of four different catchmdascriptors. The estimated model
parameters are shown in Table 1 where AREA, SAARRIEand BFIHOST are catchment
descriptors describing catchment areakistandard average annual rainfall 1960-90 [mm],
upstream reservoir attenuation and a measure otlhive baseflow contribution as derived
from HOST soil data. These catchment descripta@swailable for all gauged and ungauged
catchments in the UK larger than 0.5%¢mstitute of Hydrology, 1999).



The particular choice of catchment descriptorsabl@ 1 and their transformation used here
has been based on other analyses which are natlsasbere but which included the
examination of the model residuals by plotting thegmainst catchment descriptors.

To estimate the variance of the prediction erroossider first an estimate of the (log
transformed) index flood obtained at an ungaugégestisite

¥, =x.0 (6)
which is considered an estimate of the true (lagsformed) index flood¢,, defined as

¢ =X0+7), (7)
where subscripg indicates the ungauged subject site. The predi@roor is then defined as
J-€, =x10-x10-n, =1 (6-0)-n, (®)

The full variance of the prediction error in eqoati8) is given by Kjeldsen and Jones (2007).
However, under the assumption that the model @anance is significantly larger than the
sampling error in such estimates, the predictioararariance can reasonably by simplified to
the model error variance only, i.e.

vafy, - &} =7 (9)

Table 1 also contains estimates of the three paeameéescribing the correlation between
model errors across sites through equation (3)l&\his correlation does not have a
significant effect on the variance of the predieteyror when using the regression model at a
particular site, it is important in determining giediction error variance when combining
these estimates with data transferred from neighibggauged sites, as will be discussed in
the next section.

Using data transfer

As the UK has a relatively dense gauging netwdr&,REH generally recommends using data
transfer from ‘hydrologically similar’ sites for we¢h annual maximum series are available.
The data transfer from the gauged to the ungaugethment is conducted using a scaling
factor applied to the non-transformed index flostireate:

m ons
My o = My egs 9 m= eXF(y) (10)

g,cds

where the subscripts are as followsndg: the ungauged subject site and the gauged sites,
respectivelycds. catchment descriptor estimates at the gauged mgalged sitegibs: the
observed value at the gauged sidj; the adjusted value at the subject site. Kjeldseh a
Jones (2007) found the variance of the predictioor ®f the (log transformed) adjusted index
flood, Y, , to be given as

var{;“/s’aOIj - Es} =20, (1— I e )+ hy,. (11)



Herer, 4 is the correlation between the model errors atthgect site and the gauged site and
hyg is the sampling error of (the logarithm of) thediam at the gauged site (see Kjeldsen and
Jones (2007) for an analytical expressiohginot shown here). The record length at the
gauged site is often sufficiently long that the r@gsion above is dominated by the first term
only. Note that if the model error correlatian,, , was assumed zero, as done in the GLS
model proposed by Tasker and Stedinger (1989), ttieeprediction error variance becomes
almost twice as large as the variance of the dérmon the regression model alone.

Kjeldsen and Jones (2007) suggested an alterrdaitgetransfer scheme

Mg = rns,cds( mgpbsj , M= eXF(Y) (12)

mg ,cds

where the new parameter is estimated by minimizing the variance of thedmegon error
for the (log transformed) adjusted index flogd,; and is given by

g,
a=r  —1—. (13)

Consequently, the variance of the prediction eiaothe (log transformed) adjusted index
flood is given by

Var{ys,adj -<, s} = U,f (1_ rnz,sg ) + rrzz,sg hy, - (14)

If a sufficiently long record is available at thaugied site the adjustment factor reduces to
a =r,, and the prediction error variance in equation (&dl)be dominated by the first term.

Example

The effect of data transfer on the prediction ewaance at an ungauged site as compared to
the prediction error variance of an estimate oleinom the regression model only is
illustrated in Figure 1 by comparing the standagdiation of the prediction error from each

of the three methods. Assuming that a long enoagbrd would be available at a gauged site,
the only parameter controlling the value of thedprton error variance obtained using data
transfer is the distance between catchment cestreid equation (3) with parameter values
listed in Table 1.
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Figure 1. Comparison of standard error of prediction eradrsngauged sites using the
regression model only, FEH data transfer and thedsa transfer scheme.

From Figure 1 it is clear that unless catchmeregd@sated very close together, estimates of
the index flood obtained using the original FEHsf@r scheme will have prediction error
variance twice the size of the corresponding esérfram the regression model only. The
new transfer scheme, however, ensures that thé&cpogderror variance never exceeds the
corresponding variance obtained from the regressiodel only as the effect of the gauged
site is reduced as the distance increases. Ind-iguhe standard deviation has been plotted
without considering the sampling uncertainty arehde, the two curves representing the data
transfer methods show zero variance at distanae aérere in fact they should show the
sampling variance of the gauged site, which woedethd on the record-length for that
particular record.

Conclusions

By explicitly identifying and estimating the tworer sources in a regression model it is
possible to derive analytical expressions of thegljmtion variance of estimates obtained at the
ungauged site using data transfer from a gauged®ie results clearly show any
improvement to be gained from data transfer afiggs correlation in the modeling error. If
the model error correlation is not fully taken imocount (as in the FEH method) the resulting
prediction error of the index flood will have a \aarce twice as large as the variance of the
error from using the regression model only.
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