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Abstract

The use of the generalised least square (GLShiged for estimation of
hydrological regression models has become goodipeam hydrology. Through a
regression model, a simple link between a particaya@rological variable and a set
of catchment descriptors can be established. Tdgwession residuals can be treated
as the sum of sampling errors in the hydrologieaiable and errors in the regression
model. This paper presents a recursive methoddtimating a parameterised form
of the cross correlation between the regressioneinedors, the variance of these
errors and the regression model parameters. A rghtezl set of regression residuals
can be defined such that the covariance of theseuas is essentially similar to that
of the model error. The cross products of the reghated regression residuals,
pooled within bins, can be used to identify a strcecand to fit a parameterised form
for the cross-correlations of the regression errdtse procedure has been tested
successfully on annual maximum flow data from 68&lements located throughout
the UK.

| ntroduction

The use of linear regression models figures prentig among methods for
deriving simple relationships between hydrologicatiables and a set of lumped
catchment descriptors such as catchment area, laaverage rainfall and soil type.
This is partly due to regression models being cdatpnally easy to use and being
much less demanding with regards to data requiresnéman more detailed
hydrological models. A well known hydrological valoie is the index flood, as
required by the index flood method for deriving dib frequency relationships
(Stedingeet al., 1993).

The objective of this study is to develop and iempént an extended form of
Generalised Least Squares (GLS) regression in wthiehregression residuals are
treated as being the sum of two types of errognapding error and a modelling error,
and where both types of error are spatially coreelaThe procedure outlined here
provides a direct non-parametric estimate of tHation to distance of the cross
correlation between the regression modelling ervangch can be used to identify
and estimate a parametric form of this functionef@il, the procedure is a recursive
one which provides estimates of the regressionnpetiers and of the variance and
correlation of the modelling errors, given thatiaitial separate analysis provides
estimates of the variance and correlation of thepdiag errors. The method has
been tested on a dataset consisting of annual maximstantaneous peak flow
series from 602 rural catchments located througtimitJK.



Model Description

To relate the index flood variable from different catchments to a set of
catchment descriptors, consider a vector of sarfipéetransformed) median annual
maximum floods,y, where individual sites are denoted with a subpsdri Each
sample value is described in terms of a populatiegression model and two
individual error components representing the samgplsi , and modellingy; , errors,
respectively so that

Y =X{B+eE +n =X+ w (1)

wherep is a vector of regression model parametersxamsl a vector of catchment
descriptors with a value of one in the first looati The covariance of the sampling
errors is denoted. , the corresponding covariance of the modellingrerdenoted
X, , and the two errors are assumed mutually indepenBarther, it is assumed that
the elements along the diagonal of the modellimgrezovariance are identical and
equal tog;. In pioneering the use of the GLS procedure inrbipd)y, Stedinger and
Tasker (1989) assumed the modelling covarianceixitatbe of the formz, = g7l ,
i.e. there is an assumption of no cross correlatienveen the modelling errors. In
contrast, the model formulated here assumes thss @arrelation to be represented
by the associated modelling error correlation mawRj, .

While estimates of the sampling error covarianaa be obtained directly
from the dataset, the covariance of the modellmgrs has to be estimated as part of
a recursive procedure. From an initial guess ofntieelelling error covariance, a set
of regression residuals can be estimated. By reghtieig these residuals, it is
possible to obtain a set of GLS residuals from Witite modelling error variance
can be estimated. By further re-weighting the GESiduals, an estimate of the
modelling error correlation matrix can be obtain&llese recursive estimates can
then be used to estimate a new regression model aed/ set of regression residuals.
This procedure is continued until the modellingoerrariances;; has converged.

The first step in the recursive procedure is tiinéethe covariance matrix of
the vectore of total errors as

Eoo’}=X, =%, +X, =02(R, + £, /02)= 02G. )

To implement the procedure, the expression in Egis(interpreted as representing
the covariance of the total error in termsagf, being the value to be estimated from
the present step of the recursive procedure, aril af known matrix derived from
values ofg; andR,, which are either initial guesses or the estimat#ained in the
previous step. In the expressions developed bdiow(?2) is taken temporarily to be
valid even though an estimated valuésois used.

It can be shown that the individual estimateshefaverall residualsgi, can
be expressed in terms of the true underlying redsdas
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®=Vo, V=I-x[X"6"x)'x"c™* 3)

which enables the covariance matrix of the estichatgression residuals to be
represented as

Zs =E{ 0T} = 026 - X (XTa X )XT]. @)

GLSresiduals

For Generalised Least Squares analysis, it is aomio work with an
alternative set of sample residuals, the GLS redsdurhese residualéy, can be
related to the “raw” sample residuaés, in the following way. A matrix-square-
root of the scaled covariance matfixis first required, and it convenient to work
with the Cholesky decomposition:

G =ULU, (5)

whereUg is an upper triangular matrix. The sample GLS resdglare defined as

A

®=Ud=U7(y-9) (6)

Given the assumption that the value @fbeing temporarily used is correct, an
unbiased estimate @f; is provided by

~ -1 N _~

7=(N-p) Yy ar (7)

i=1

and, given the assumption, this is the minimumararé unbiased estimate fay .
The estimated value of; can then be carried forward to the next step ef th
recursion.

Re-weighted GLS

To obtain an estimate of the modelling error catieh matrixR,, a re-weighted
version of the GLS residuals is constructed: these also be considered as a re-
weighting of the raw residuals. In parallel with.E§), a Cholesky decomposition of
the correlation matrix is constructed, so that

R =UTU ®)

n non



where, againJ, is an upper triangular matrix. In implementingstisicheme, the
matrix R, used is the estimate available at the start ofpduticular step of the
recursion. Then a set of re-weighted GLS residuals;can be calculated as

o=Ula=UlU®=UIU (y-). )

The covariance matrix for the re-weighted GLS redglisagiven as

==T

Elo6’}= E{UIUT66"UZU,} = UTUS B,UU,

4 (10)
- ag[R,l ~UTUTX(XTGX) xTuz;lu,]]
Thus, the raw residual vectar, has been rescaled to form a revised residuabrect
o, which, apart from the use of estimated valuefotm the re-weighting matrix
(G), have a correlation matrix close R, .

Case study

To test the recursive GLS procedure, a case studyumdertaken which
involved annual maximum instantaneous peak flova dedm 602 rural catchments
located throughout the UK. Each catchment is astaatiaith 5 different catchment
descriptors found in a previous study by the lostitof Hydrology (1999) to be
useful for estimating the median of the annual mmaxn peak flow through
regression modelling. A summary of the data is showTable 1 where AREA is the
catchment area in KNSAAR s the standard average annual rainfalh(in) for the
period 1961-1990, FARL is an index of flood attemuatdue to reservoirs and lakes
and both SPRHOST and RESHOST describe the hydrologioaperties of
catchment soils. The FARL descriptor can take oneshetween zero and one and
SPRHOST values are in the range between 0% and 60%.

Table 1: Data from 602 rural catchment located thhowit the UK.
Min Mean Max
Median, nis” 0.2 92.7 981.4
Record length, years 4 33 117
AREA, knt 1.6 335.1 4587.0
SAAR, mm 558 1162 2848
FARL, - 0.645 0.970 1.000
SPRHOST, % 5.1 374 59.9
RESHOST, - -0.15 0.00 0.19

A further description of the catchment descript@mgrovided by the Institute of
Hydrology (1999) and Kjeldsen and Jones (2006). abtual regression model
investigated in this study is based on log-tramséa values of AREA, SAAR/1000,
FARL and SPRHOST/100. In addition, a quadratic temfAREA]? and non-
transformed values of RESHOST are included. Forh&srtbackground to the



variable selection, please refer to the comprekensiudy reported by Institute of
Hydrology (1999).

Sampling Error. Both the diagonal as well as the off-diagonal eeta of the
sampling error covariance are estimated based osideration of the asymptotic
variance of the sampling median and are given as

47 In i =

> .=

n; L 11
9T\ ey 1% .
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where 5 is the scale parameter of the GLO distributionnd#éadised to have unit
median, estimated using the method of L-momentslescribed by Institute of
Hydrology (1999). Heren; denotes the number of years for which catchmieatsl]
both have data, while;and n; denote the total numbers of years of data fortwe
catchments separately. Note that there is a miooflict between conventional
notations used for the GLO distribution and for esgion analysis in the use of
“beta” with two distinct meanings. In addition, iesation of the off-diagonal
elements requires estimates of the correlation ficomit between the log
transformed median annual maximum flood for eadhgdasites, py,y, .

A bootstrap experiment was carried out similathte experiments used by
Kjeldsen and Jones (2006) for investigating thesst@orrelation between L-moment
ratios. Bootstrapping is a technique where new $esrgre created from an original
sample by randomly selecting (with replacement)eolaions from the original
sample. Considering the annual maximum series ak ffiew from the 602 rural
catchments, a total of 11062 pairs of gauges witmiaimum of 40 years of
overlapping record were available. To investigat ¢loss-correlation between the
log-median annual maximum peak flow and relateoitgeographical distance
between catchment centroids, each of these paire mmalysed in turn. For each
station pair, a new bootstrap sample was createdach station by randomly (with
replacement) selecting years in the overlappingried-rom each selected year the
joint pair of observations was transferred to tbentj bootstrap sample, thereby
preserving the cross-correlation between the armaaimum series of the two sites.
The selection is continued until the new bootstram@e has a record length equal
to the length of the overlapping record in the ioid$ sample. From the joint
bootstrap sample, the medians of the log transfdramual maximum peak flows
are estimated for both sites and recorded. By iagdtO00 new bootstrap samples
for each station pair, the correlation between eddians can be estimated and
linked to the distance between catchment centiasds

Pyy, = Gexd— @d; )+(1_6)exd_ %dii) (12)

whered; is the distance (kfj) between centroids of catchmeitandj. The three
parameterd, ¢ and ¢, are estimated using a least-squares technigueodtceme



of the bootstrapping experiment is shown in Figlure@ogether with the correlation
function that has been fitted.

1A Py = 0.2753%exp(-0.0038%d;+(1-0.2753)exp(-0.0621*dy;)
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Figure 1: Correlation between sampling errors of log-transformed median
annual maximum flood as a function of distance between catchment centroids.

As the estimator of the at-site sampling variapilitf y in Eq. (11) involves an
estimate of the median of the annual maximum pé&ak itself, it was considered
appropriate to replace the direct estimates oGh® parameters in Eq. (11) with
corresponding estimates derived using an ordin@agtl squares (OLS) regression
model linkingIn[3, ] to a set of catchment descriptors as

n[A]=6+ Y6, n[x.,] + (13)

whereP is the total number of catchment descriptors usetie regression model,
Xip IS the value of thg'th catchment descriptor for thgh catchment and, is the
p'th regression model parameter. Only a limited stigation has been made of the
errors, y;: the results of the OLS regression are reportedl€lr2) as if they can be
assumed to be independent and normally distribwttdmean zero and varianes?,
whereas the errors are very likely to be correlétetiveen the catchments. Thus the
estimates of the standard errors of the regregsoameters are likely to be too small.
The use of OLS estimates at this stage rather@izh estimates is not thought to be
important.



Table 2: Summary statistics for regression modstudleing In[,Bi ]

Coefficient Paramete, Standard errorn t-value p-value
Intercept @,) | -1.1221 0.0664 -16.906 <
Ln[AREA] -0.0816 0.0105 -7.783 3.121H
Ln[SAAR/1000] | -0.4580 0.0401 -11.431 1%
Ln[BFIHOST] | 0.1065 0.0520 2.049 0.0409
o;=0107 df =598 r? =028

The regression model has enmvalue of only 28% which indicates less predictive
power than could have been hoped for, but thigeeléo the substantial sampling
error in the estimates of the GLO scale parameféecs.estimate the sampling

covarianceX, estimates off obtained through Eq. (13) are substituted into(Edy).

Modelling error. The two components of the modelling error covarmarfthe
modelling error varianceg;, and the modelling error correlation matrik, ) can
now be estimated using the recursive proceduranedtlin the previous section.
While the procedure provides recursive estimatdsoti o7 andR,, at present only
the former is used to determine if the procedusedummverged. To start the iterations,
it is necessary to make initial guesses of theasbf bothg; andR,,. In this study,

a large value ¢? = 10pwas chosen for the modelling error variance, anghit
matrix (R, =1) for the modelling error correlation.

The first step recursion is to transform the estadaaw residualsp, into
the corresponding GLS residuals, through Eq. (11). Using the residual sum of
squares of the GLS residuals, an iterative estirnatthe modelling error variance
o7 is obtained from Eqg. (7). Next, the off-diagon&reents ofR, are estimated.
By re-ordering Eq. (10) it can be ascertained that
Eloo |, g =R, (14)

where the matriB is a bias correction given Bs- U,TIUE;TX(XTG‘lX)_lXTUéUn.

If all catchment-pairs within a specified distanogerval, between 1 km and 2 km
say, are grouped together, and it is assumed tiatcorrelation between the
modelling errors depends only on distance, theneatimate of the average
correlation for this distance interval,; can be obtained as

fha = AZ{@ +(by )k} (15)

whereb; are elements in the bias correction maBiand wherek in the summation
represents thith (out of ng) pair of catchmentsandj whose inter-centroid distance
is in thed’th bin. The final step in the recursive procedig¢o fit a distance-based



function to the estimates af, , . In this study, distances up to 800 km were
investigated with interval lengths of 4 km, i.etagal of 200 bins. Based on initial
trial runs it was found that the weighted sum ab ®xponential-type functions

r,a =W exd-gd]+([L-y)exd-4.d]. (16)

gives a reasonable fit to the average correlati@ines derived in Eq. (15) when
fitted using a simple least square technique. Hgre ¢, and ¢ are model
parameters and is the distance. When finally constructing theurstve estimate of
the modelling error correlation matriR,, the value of each off-diagonal element is
derived from Eq. (16) substituting with the actual distancel; between the
catchment-pair being considered.

Results. With a tolerance level of 1) a total of 23 iterations were needed for the
modelling error variance to have converged. Thaltieg regression model statistics
are shown in Table 3 and the estimated averagecbrascted residual cross-product,
4, along with the fitted weighted exponential fuonatiare shown in Figure 2. The
double exponential function in Figure 2 has betadito data from the 200 bins. To
ensure convergence of the recursive procedure,ag mecessary to replace the
estimate ofg; in Eq. (15) With(a,%i-l + 0% )/2 where the extra subscriptndicate
the iteration. Figure 2 also shows the averagedwesicross-product between the
GLS residuals. For these residuals, the bias deemross-products are expected to
be close to zero, which appears reasonable froisuahinspection of Figure 2.
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Figure 2: Biascorrected correlationsfor both GL Sresiduals and re-weighted
GLSresiduals.



Note that the procedure used for assigning paicatwhments to the different
distance bins is likely to result in a differentrmoer of pairs in each bin. In fact, the
increase in the scatter of both types of residadlshort and large distances is
probably due to the relatively smaller number dtbeent-pairs allocated to these
bins.

Table 3: Summary statistics for regression modstudieing In[yi ]

Coefficient Parameter | Standard t-value p-value
B, error
Intercept (5,) 0.1010 0.4631 0.218 0.827
Ln[AREA] 0.9967 0.1509 6.605 8.8210
Ln[AREA]” -0.0140 0.0148 -0.946 0.345
Ln[SAAR/1000] 1.7505 0.2300 7.611 1.07%0
Ln[FARL] 3.7763 0.6984 5.407 9.29 fo
Ln[SPRHOST/100] 1.1228 0.1203 9.333 <290
RESHOST -3.7959 0.1008 -3.764 1.84"10
o7 =0155 df =595 r?=0.938

The results in Table 3 indicate that most catchingescriptors included in
the regression model have coefficients significadifferent from zero. One possible
exception is the Ln[AREA]term. However, for the purpose of testing the rsige
GLS procedure, no further attempts to adjust tigeession model was undertaken.

Conclusion

This paper has outlined the development of a reeurgrocedure for estimating
hydrological regression models. The procedure issicered an extension of the
GLS model presented by Stedinger and Tasker (1Bg%llowing the regression
model errors to be cross-correlated. Initial teptof the procedure, on a dataset
consisting of annual maximum series of instantaseitow from 602 catchments
located throughout the UK, has provided promisisgutts in terms of estimating the
regression model parameters. Some problems withArdegto non-convergence in
certain instances are still evident and requiréh&ur attention. These problems are
particularly evident for very simple regression mlsdwhere the index flood is
modelled using only very few catchment descripttmsexample using AREA only.
The procedure provides a method for verifying théstence or not of
correlation between the modelling errors. Once @ ctional form for this cross
correlation has been identified, it is likely that more efficient procedure for
estimating the regression model parameters (amteoh the overall set of model
parameters) can be developed using maximum-liketlhor Bayesian techniques.
However, the more exploratory approach described has two benefits. Firstly it
allows consideration to be given to other ways efining a distance to be used
within the correlation function, for example takingto account river-network
connectivity. Secondly, it allows some extra qyatibntrol of large datasets to be



made through the investigation of any anomalousetations calculated for the
distance-bins.

In the UK it is recommended practice that estimaté the index flood
obtained at an ungauged site by using a regressmutel should, if possible, be
adjusted through transfer of data from a nearbylaingauged catchment. This was
on the basis that regression errors at nearby r&icts were expected to be similar.
It was shown by Kjeldsen and Jones (2007) thab#s use of the transferred data
depends on the correlation between the regressamtelimg errors at the two sites,
as does the benefit obtained from the transferenms$ of improved prediction
variance. Thus, the functional form of the modebercorrelation estimated in this
study, i.e. the estimated form of Eq. (11) showikigure 2, can potentially become
part of an improved procedure for data transferstimation of the index flood in the
UK.
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