Geoscience after IT

Table of contents

http://nora.nerc.ac.uk/2395/

T. V. Loudon

British Geological Survey, West Mains Road, Edinburgh EH9 3LA, U.K.

e-mail: v.loudon@bgs.ac.uk

Postprint of contents of Computers & Geosciences, 26 (3A) April 2000. pp. A1-A3 (page numbers refer to the original document)

Click on Part name to download the relevant document

Motivation

Part A. Defining Information Technology, its significance in geoscience, and the aims of this publication...1

- 1. Defining Information Technology...1
- 2. The significance of IT to geoscience...2
- 3. This publication...2
 - 3.1 Target readers...2
 - 3.2 Objectives...2
 - 3.3 Structure and overview...2
 - 3.4 Acknowledgments...3
- 4. References...3
 - 4.1 Internet references...3

Part B. Benefits for geoscience from information technology, and an example from geological mapping of the need for a broad view...5

- 1. The geoscience literature...5
- 2. Managing a knowledge base...6
- 3. Sharing information...8
- 4. The need for a broad view...8
 - 4.1 Extending the language...9
 - 4.2 Connectivity and integration...11
 - 4.3 Deliver and print...12
- 5. Towards a user requirement...12
- 6. References...13
 - 6.1 Internet references...13

Familiarization with IT

Part C. Familiarization with IT applications to support the individual geoscientist...15

- 1. The route to IT familiarization...15
- 2. Desktop hardware...16
- 3. Word processors...16
- 4. Spreadsheets and business graphics...18
- 5. Capturing data and images...18
- 6. Information delivery and presentation...19
- 7. References...19
 - 7.1 Internet references...19

Part D. Familiarization with IT applications to support the workgroup...21

- 1. Project and workgroup...21
- 2. Communicating in the workgroup...22
- 3. Sharing information, metadata...23
- 4. Designing an investigation...23
- 5. Project management...24
- 6. Project documents...25
- 7. IT applications in the cycle of project activities...26
 - 7.1 Planning, analysis and project management...27
 - 7.2 Desk studies, literature search, archive search...27
 - 7.3 Field and laboratory data collection...28
 - 7.4 Explanation, classification, modeling...28
 - 7.5 Visualization, presentation...28
 - 7.6 Reconciling information and aligning ideas...29
 - 7.7 Review, revision, editing...29
- 8. References...29

Part E. Familiarization with IT background...31

- 1. The need to look at the IT background...31
- 2. What computers do...31
- 3. The computing system...32
- 4. Communication...33
- 5. Generic software systems...35
- 6. Programming languages...36
- 7. References...39
 - 7.1 Internet references...39

Part F. Familiarization with quantitative analysis...41

- 1. Background ... 41
- 2. Measurement and number...41
- 3. Descriptive statistics...42
- 4. Matrix algebra and spatial data...45
- 5. Multivariate statistics...46
- 6.References...50

Part G. Familiarization with spatial analysis...51

- 1. Digital cartography...51
- 2. The spatial model...52
- 3. Spatial relationships...54
- 4. Spatial transformations...55
- 5. Spatial statistics and surface fitting...56
- 6. The fractal model...58
- 7. Spatial configuration...60
- 8. References...62
 - 8.1 Internet references...62

Part H. Familiarization with managing the information base...63

- 1. The framework...63
 - 1.1 The requirement...63
 - 1.2 Acquisition, context and disposal...64
 - 1.3 Search strategies...65
- 2. Documents...66
- 3. Database...68
- 4. Spatial data...70
- 5. Object-oriented methods...72
- 6. References...73
 - 6.1 Internet references...73

The emerging system

Part I. A view of the conventional geoscience information system...75

- 1. A scheme of ideas...75
 - 1.2 The need for a top-down view...76
 - 1.3 A glimpse of a broad panorama...76
- 2. Systems...76
 - 2.1 Designing change...76
 - 2.2 Subsystems, interfaces, models and metadata...77
 - 2.3 Scope and components of the system...78
- 3. A student looks at the real world...79
- 4. How memory orders our thoughts...80
- 5. Interfaces in a conventional system...81
 - 5.1 Access...81
 - 5.2 Connectivity...81
- 6. Conventional repositories...82
 - 6.1 Repetition...82
 - 6.2 Organization of content...82
- 7. Processes in the conventional system...83
 - 7.1 Generalization...83
- 8. Business aspects...83
 - 8.1 Projects...83
 - 8.2 Driving forces...84
- 9. References...85
 - 9.1 Internet references 85

Part J. Human requirements that shape the evolving geoscience information system...87

- 1. Communication at the interface...87
 - 1.1 Interwoven threads...87
 - 1.2 Language and narrative...88
 - 1.3 Spatial concepts...89
 - 1.4 Structured data...89
 - 1.5 Tacit knowledge...90
 - 1.6 Knowledge-based and rules-based investigation...90
 - 1.7 Modes of thought...91
 - 1.8 The need for a Geoscience Markup Language...91
- 2. Processes and the repository...92
 - 2.1 Explanation...92
 - 2.2 Analogy...93
 - 2.3 Model and reality...93
 - 2.4 The object-oriented approach...96
- 3. References...97
 - 3.1 Internet references...97

Part K. Coping with changing ideas. Defining the user requirement for a future information system...99

- 1. Change...99
 - 1.1 Flexibility and sharing knowledge...99
 - 1.2 Paradigms...101
 - 1.3 Dynamics of change...102
 - 1.4 Reconciling ideas...103
- 2. Themes and problems...104
- 3. User requirements...105

Aide-memoire for a user requirement...105

- 3.1 User interface...106
- 3.2 Repository...106
- 3.3 Processes...107
- 3.4 Business aspects...108
- 4. References...108
 - 4.1 Internet references...108

Part L. Adjusting the emerging information system to new technology...109

- 1. Staying in the mainstream...109
- 2. User interface and middleware...109
- 3. Text-based information...110
- 4. Spatial information...112
- 5. Structured data...114
- 6. Integration...115
 - 6.1 Sharing metadata...115
 - 6.2 Linking topics...116
 - 6.3 Linking information types...116
- 7. References...120
 - 7.1 Internet references...120

Part M. Business requirements drive the information system, and provide coherent frameworks...123

- 1. Activities, participants, roles and driving forces...123
- 2. Frameworks for models...124
 - 2.1 Realigning responsibilities...125
 - 2.2 The information communities...126
 - 2.3 A basic regional geoscience framework...127
- 3. Business aspects...129
 - 3.1 Organizational consequences...129
 - 3.2 Cost recovery...130
- 5. References...132
 - 5.1 Internet references...132

Part M(4). Epilog (or Prolog)...131

Part N. Cumulated References...133

- 1. Bibliographical references...133
- 2. Internet References...135

Index...139

Disclaimer: The views expressed by the author are not necessarily those of the British Geological Survey or any other organization. I thank those providing examples, but should point out that the mention of proprietary products does not imply a recommendation or endorsement of the product.

On to Part A: Defining Information Technology, its significance in geoscience, and the aims of this publication>>> http://nora.nerc.ac.uk/2396/