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Abstract 
 
This article reviews evidence from previous growth-rate studies on lichens of the yellow-

green species of Subgenus Rhizocarpon – the family most commonly used in lichenometric 

dating.  New data are presented from Rhizocarpon section Rhizocarpon thalli growing on a 

moraine in southern Iceland over a period of 4.33 years. Measurements of 38 lichen thalli, 

between 2001 and 2005, show that diametral growth rate (DGR, mm yr-1) is a function of 

thallus size. Growth rates increase rapidly in small thalli (<10 mm diameter), remain high (c. 

0.8 mm/yr) and then decrease gradually in larger thalli (>50 mm diameter). Mean DGR in 

southern Iceland, between 2001 and 2005, was 0.64 mm yr-1 (SD = 0.24). The resultant 

growth-rate curve is parabolic and is best described by a third-order polynomial function.  

The striking similarity between these findings in Iceland and those of Armstrong (1983) in 

Wales implies that the shape of the growth-rate curve may be characteristic of Rhizocarpon 

geographicum lichens. The difference between the absolute growth rate in southern Iceland 

and Wales (c. 66% faster) is probably a function of climate and micro-environment between 

the two sites. These findings have implications for previous lichenometric-dating studies; 

namely, that those studies which assume constant lichen growth rates over many decades are 

probably unreliable. 
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Introduction 

Lichens are valuable dating tools for geoscientists. The combination of extremely 

slow growth in certain crustose species and their wide distribution in nature have been 

key factors in most lichenometric dating studies. Knowledge of a species’ growth rate 

can be used to estimate the age of the surface on which they are growing, assuming 

that lichen colonisation occurs immediately after exposure. Lichenometric-dating 

studies have been performed by numerous workers to answer a wide range of 

geochronological questions since the technique was pioneered by Beschel in 1950 

(Table 1).  Most lichenometric-dating studies have focused on the yellow-green 

species of Rhizocarpon, more precisely known as Rhizocarpon Ram. em. Th. Fr. 

subgenus Rhizocarpon (Poelt, 1988). 

 
Despite the numerous dating studies that have utilised the growth rate of crustose 

lichens (Table 1), few attempts have been made to analyse the actual growth 

mechanisms or to study the growth history of a Rhizocarpon lichen thallus. Such a 

relatively poor understanding has led to considerable controversy regarding the use of 

lichenometry, particularly amongst biologists. Given the current popularity of 

lichenometric-dating studies in the earth sciences (eg. Noller and Locke, 2001; 

McCarthy, 2003; Solomina and Calkin, 2003; Lowell et al., 2005, Matthews, 2005), a 

review of measured lichen-growth rates within the Rhizocarpon species seems timely. 

In addition, we present new data from Iceland regarding the growth curve of 

Rhizocarpon geographicum. 

 

Review of previous growth-rate studies 

The direct method 

Twelve articles have reported growth data measured over a period of 12 months or 

more for species within the Rhizocarpon subgenus:– Hausmann (1948), Ten Brink 

(1973), Hooker (1980), Armstrong (1983), Proctor (1983), Rogerson et al., (1986), 

Haworth et al., (1986), Matthews (1994), Winchester & Chaujar (2002), McCarthy 

(2003), Sancho and Pintado (2004) and Armstrong (2005). With the exception of 

Matthews’ and McCarthy’s studies, all the measurements refer to thalli of 

‘Rhizocarpon geographicum’.   
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Ethel Hausmann (1948) was probably the first to publish information regarding the 

growth rate of Rhizocarpon geographicum. Her observations of a single R. 

geographicum ‘map lichen’ growing near the summit of Mt. Monadnock, New 

Hampshire, showed that the growth rate of R. geographicum over a four-year period 

was slow, typically around 0.5 mm yr-1. She also made a basic physiological 

assumption that the rock-lichens in question grew fastest in the wettest year when the 

mountain was “more swathed in clouds” than normal.   

 

Roland Beschel (1956, 1961) measured and photographed Rhizocarpon lichens in 

west Greenland. Ten Brink (1973) revisited Beschel’s control sites and determined the 

growth rate of several Rhizocarpon geographicum thalli over the intervening 12-year 

period using the photogrammetric method.  The results show that growth rates had 

been very slow, averaging 0.1-0.2 mm yr-1.  No conclusions were drawn in these 

studies regarding the growth history of the plants. 

 

Antarctic crustose lichens are presumed to be amongst the slowest-growing and, 

hence, longest-living organisms on Earth. Hooker's photogrammetric studies on the 

South Orkney Islands between 1972 and 1977 were published in 1980. He detected no 

measurable growth during a 2.5-year period in any of the 63 Rhizocarpon 

geographicum thalli being monitored.  However, after a subsequent three-year period, 

small amounts of radial growth were recorded, optimally around 0.1 mm yr-1. Using 

this data he estimated average radial growth rates in the maritime sub-Antarctic to be 

of the order of 4 mm 100 yr-1.  Hooker (1980) was unable to demonstrate any 

significant effect of thallus size on growth rate. 

 

Armstrong’s (1983) observations on the growth of Rhizocarpon geographicum in 

North Wales comprise the first major study of the growth curve of a crustose lichen.  

He measured the radial growth of 39 thalli over a period of 1.5 years, using a 

graduated scale under high magnification. Armstrong’s results detected three distinct 

phases of growth – an initial phase where radial growth rates increased rapidly, a 

second phase where radial growth rates are high and relatively constant, and a 

declining phase where growth rates fell.  The statistical representation of this growth 

rate decline has been questioned (Innes, 1985). However, the growth rate of each of 

the thalli over 55 mm in diameter falls below the mean growth rate of thalli between 
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15 and 55 mm in diameter.  Armstrong’s evidence suggested that a phase of declining 

growth occurs in thalli over ~50 mm in diameter and hence that growth is a size (age) 

dependent phenomenon in Rhizocarpon geographicum. 

 

Proctor (1983) studied the growth rate of thalli growing on the moraines of an Alpine 

glacier in Switzerland.  He took photographs of numerous sites at four-year intervals 

and using these, calculated the radial growth rate of 22 Rhizocarpon geographicum 

thalli.  He then constructed a curve of mean radial growth increment against thallus 

radius showing that smaller thalli (<10 mm) grew significantly more slowly than 

larger thalli.  Unfortunately, Proctor’s dataset does not include any thalli of more than 

36 mm in diameter. In addition, Proctor assumed constant growth rates in thalli over 

~10 mm in diameter and extrapolated the linear part of his growth curve for thalli up 

to 60 mm in diameter, without any further measurements.  The statement then made 

regarding the growth curve of Rhizocarpon geographicum would seem to be over-

optimistic, viz., “That lichen thalli can grow with a near-constant radial increment for 

periods of many years is now established beyond question” (1983: 258). 

 

Rogerson et al. (1986) photographed and measured 7 thalli of Rhizocarpon section 

Rhizocarpon geographicum growing on rocks in the coastal mountains of northern 

Labrador in 1978 and again in 1983.  Diameter increases of 0.10 – 0.58 mm yr-1 were 

derived using the photogrammetric method of Locke et al. (1979). They reported an 

average diameter increase of 0.34 mm yr-1 over the five-year period, with a range 

from 0.10 to 0.54 mm yr-1. Due to the small number of thalli measured, including only 

two greater than 50 mm in diameter, their study sheds little new light on the 

relationship between thallus size and growth rate. 

 

Haworth et al. (1986) measured 92 Rhizocarpon geographicum  ‘sensu lato’ thalli 

over a 4-6-year period in the Central Brooks Range, Alaska. They determined mean 

annual change in diameter using a combination of photogrammetric and tracing 

techniques. Diametral growth rates ranged from 0 to 0.35 mm yr-1 with variability 

being high within and between sites. Their study, like Armstrong's (1983), also found 

evidence, though poorly defined, for an inverse relationship between thallus growth 

rate and thallus size.  The authors reached the following conclusion (1986: 294):  

         "The growth curve developed for Rhizocarpon geographicum shows 
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          continuously slowing increases in diameter throughout the life of the  

          thallus." 

Haworth et al., (1986) also stated that lichen age was only one of many factors 

contributing to variations in growth rate, along with substrate lithology, micro-climate 

and competition between thalli. 

 

Matthews (1994) presented direct measurements of 63 thalli of the Rhizocarpon 

subgenus (probably only species within sections Rhizocarpon and Alpicola, 

(Matthews, pers. comm. 2000)).  His measurements were conducted over a five-year 

period on the outermost moraine at Nigardsbreen, southern Norway. Dial callipers 

were used to measure the long axes of only well-defined thalli. Matthews found no 

indication of a decline in growth rate with increasing thallus size.  However, the 

extreme scatter within the dataset precludes the identification of any possible trends. 

Furthermore, the use of an “aggregate species” may cause any growth rate decline in 

Rhizocarpon geographicum to be obscured amongst data from species within different 

lichen groups (i.e. Rhizocarpon alpicola; (see Innes, 1983; 1985)).  The reported 

linear growth rate in Rhizocarpon thalli up to 120 mm in diameter should therefore be 

viewed with caution.  

 

Winchester and Chaujar (2002) measured Rhizocarpon geographicum lichens on 

gravestones in North Wales, as part of a lichenometric study on mass movement 

deposits. Measurements were made with a flexible tape accurate to ±1 mm. They 

recorded thallus diameter increases from 2 to 11 mm over a 4.25 yr period, with an 

average of 1.47 mm yr-1. Winchester and Chaujar (2002) found no relationship 

between thallus size and growth rate. However, their study of 32 lichens only 

included two below 20 mm in diameter, and also combined data from two sites 8 km 

apart.  

 

McCarthy (2003) has provided the largest dataset on Rhizocarpon growth rates to 

date. 105 Rhizocarpon section Rhizocarpon thalli, ranging from 5-50 mm in diameter, 

were measured at annual intervals over a four-year period. (McCarthy states that most 

of the 105 thalli belonged to the species Rhizocarpon lecanorinum Anders.)  The 

lichens were growing on boulders on a moraine crest in front of the Illecillewaet 

Glacier, British Columbia. Measurements were made using digital calipers accurate to 
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±0.02 mm. His measurements showed that mean radial growth rates, between 1996 

and 2000, ranged from 0.26 to 0.41 mm yr-1.  However, there was considerable scatter 

around the mean in every year (range = ~1.0 mm yr-1).  McCarthy found that thallus 

size was a poor predictor of thallus growth rate. Only weak positive correlations (r2 < 

0.3) were found between radial growth and thallus diameter. However, it should be 

remembered that all but 2 of the thalli were under 45 mm in diameter in McCarthy’s 

dataset, and none was over 50 mm in diameter. Consequently, any growth-rate decline 

in large thalli (>50 mm), as suggested by Armstrong (1983), is unlikely to have been 

detected in McCarthy’s (2003) study. 

 

Leopoldo Sancho measured and photographed Rhizocarpon geographicum (L). DC. 

thalli in 1991 on Livingston Island in the maritime Antarctic.  Revisiting the same 

boulders on moraines in 2002 he was able to calculate the diametral growth rate of 

around 400 crustose lichens over 11 years, including ~100 Rhizocarpon 

geographicum (Sancho and Pintado, 2004). Measurments were made with digital 

calipers accurate to ±0.1 mm.  This study deduced mean growth of 0.50 mm yr-1 for 

the five largest thalli between 1991 and 2002.  Unfortunately, the diameters of the 

thalli were not included in the results table making it difficult to draw conclusions 

about the role of lichen size on growth rate.  However, all the Rhizocarpon lichens in 

the study were less than 20 mm in diameter (Sancho and Pintado, 2004).  

Interestingly, this study highlights faster than expected growth rates in a maritime, 

subantarctic environment.   

 

Most recently, Armstrong (2005) measured the growth of 39 yellow-green 

Rhizocarpon section Rhizocarpon lichens on boulders in the Cascade Mountains of 

Washington State, USA. Measurements were made between 1988 and 1994 using a 

micrometer scale under x8 magnification. His study found slow radial growth rates in 

this high-altitude montane environment (typically c. 0.1 mm yr-1), probably as a direct 

result of the short snow-free periods experienced. In this environment, Armstrong 

found no relationship between lichen size and growth rate, which may have been 

masked by the slow growth rates recorded during the 6-yr study (Armstrong, 2005).  
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The Indirect method 

Earth scientists interested in dating recently exposed rock surfaces have contributed 

valuable information on lichen growth rates.  Measuring the size of lichen thalli on 

surfaces of known age offers a method of studying the growth rates of slow-growing 

lichens over periods of many decades. The majority of workers have derived non-

linear dating curves using Rhizocarpon species (eg. Beschel, 1958, 1961; Miller, 

1969; Miller and Andrews, 1972; Mottershead and White, 1972; Denton and Karlén, 

1973; Matthews, 1974; Innes, 1985; Benedict, 1985; Bull and Brandon, 1998; 

Bradwell, 2001a; Solomina and Calkin, 2003; Larocque and Smith, 2004; Lowell et 

al., 2004). These age-size curves provide indirect evidence that lichen growth slows 

with time, possibly as a function of thallus size. Those workers who report a linear 

relationship between exposure age and lichen size, using Rhizocarpon lichens, have 

probably identified only part of a larger curve or have extrapolated growth rates 

without justification (eg. Burrows, 1975; Gordon and Sharp, 1983; Maizels and 

Dugmore, 1985; Kugelmann, 1991; Evans et al., 1999; Kirkbride and Dugmore, 

2001). 

 

Two recent indirect growth-rate studies should be discussed at this point. Karlén and 

Black (2002) revisited surfaces hosting Rhizocarpon geographicum lichens, originally 

measured by Karlén in 1970-71 (Karlén, 1973). Lichen measurements were conducted 

in the year 2000 on “close to identical surfaces” as those used in 1970. The results 

indicate that growth rates were apparently similar in large and small thalli.  Karlén 

and Black (2002) found diameter increases in lichens on 14 surfaces equivalent to 

‘growth rates’ of 0.17 - 0.62 mm yr-1.  This experiment provides a good proxy for 

lichen growth rates over the intervening 30 years. However, the measurements were 

not made on exactly the same thalli and therefore are not actual, directly measured, 

lichen growth rates.  Karlén and Black (2002: 229) also stated that the “maximum 

lichen diameter may have been underestimated in 2000” due to snow restricting the 

observable area. Furthermore, the inclusion of lichens from other sections within the 

subgenus (including R. alpicola) could not be ruled out.   

 

A second recent study by O’Neal and Schoenenberger (2003) revisited surfaces in the 

Cascade Mountains hosting Rhizocarpon geographicum, originally measured by 

Porter (1981). They constructed a growth curve from repeated measurements of 
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‘largest lichens’ diameters at three sites: Mt Hood, Mt Rainier and Mt Baker. The 

resultant growth curve was curvilinear, implying increasing, then constant, then 

decreasing growth rates. Interestingly, the implied decrease in growth rate occurred in 

thalli >60 mm in diameter. When the role of thallus size on growth rate over the ~25 

year period is examined, lichens <40 mm in diameter appeared to grow at c. 0.5 mm 

yr-1; whilst the largest lichens (>50 mm) increased in diameter by only c.0.25 mm yr-1.   

 

 

New growth rate data from Iceland 

A direct study of lichen growth rates was conducted on the terminal moraine complex 

at Gigjökull, southern Iceland, over a 4.33-year period between May 2001 and 

September 2005.   

 

Study site 

Gigjökull is a steep glacier flowing from the summit of the ice-capped Eyjafjöll 

volcano. Parts of the Eyjafjalljökull ice cap receive in excess of 4000 mm 

precipitation a year, although the valleys and outwash plains to the north and east 

experience considerably less (<2500 mm yr)(Figure 1; B).  Rainfall data from Basar, 

10 km east of Gigjökull, records an annual mean of 2350 mm yr-1 (between 1991-

2001). The study site experiences a mean annual temperature of c. 3oC, and a mean 

annual temperature range of 11oC (Einarson, 1991) (Figure 1, B). 

 Four, large, porphyritic basalt, boulders were selected: two near the base of 

the ice-proximal slope and two on the broad crest of the terminal moraine, 300 m 

away. These are referred to as measurement stations 1 and 2, respectively (Figure 1, 

C). Yellow-green Rhizocarpon lichens were selected for measurement on gently 

sloping north and west-facing boulder surfaces. Lichens on horizontal surfaces or in 

small depressions were avoided, as these could act as collection points for rainwater.  

The area is free from human disturbance, has no trees and is 300 m from the nearest 

stream. Hence, all thalli are thought to share the same microclimatic conditions. 

 

Methods 

41 non-competing, approximately circular, Rhizocarpon section Rhizocarpon thalli 

were marked and photographed in early May 2001. All lichens had sharp margins 

with clearly defined hypothalli. All thalli were identified in the field, using the criteria 



 9 

of Poelt (1988), as Rhizocarpon section Rhizocarpon (formerly the Geographicum 

group of Runemark (1956)). Although chemical identification to species level was not 

undertaken in Iceland, all 41 thalli were examined using a x8 handlens against the 

broadly circumscribed criteria of Purvis et al. (1992); most could be identified as 

Rhizocarpon geographicum (L.) DC.  Furthermore, each thalli was examined to 

ensure that it did not comprise two or more intergrown individuals. Identification 

marks were made with white oil-based paint and Rotring pen, several millimetres 

away from the edge of the thallus margin (as done by Benedict, 1988; McCarthy, 

2003). Each lichen was numbered – GIG01 to GIG41.  Measurements of thallus 

diameter, longest axis and 90 degrees to the longest axis, were made in the field using 

a clear flexible rule with 0.1 mm graduations and x8 handlens (Figure 2, A). 

Measurement precision using this technique is probably only ±0.5 mm, particularly on 

larger thalli and rough surfaces. All measurements were made by the same operator. 

Photographs were taken with a Canon EOS 35mm camera on Fujicolour slide film. 

The distance from lichen to camera was kept below 10 cm using a Sigma macro lens 

to minimise photographic distortion. The lichens were re-photographed and re-

measured in September 2005. Slide photographs from 2001 and 2005 were scanned 

using a Sony film scanner UYS100. To obtain more precise measurements of lichen 

growth, the images were enlarged 400% in Adobe Photoshop and accurately overlaid, 

using the identification marks as reference points. Minor corrections were made for 

geometric distortion using the method outlined by Locke et al. (1979). Tracings of the 

thallus margin in 2001 and 2005 allowed the lichen growth to be visualised and 

quantified.  On-screen measurements of thallus diameter, longest axis and 90 degrees 

to the longest axis, were made for all thalli from photographs taken in 2001 and 2005 

(Figure 2, B). Using this photogrammetic technique, measurement precision increases 

to ±0.05 mm.   

 

Results 

38 of the lichens showed measurable growth over the study period. Two thalli could 

not be positively identified in 2005; one had died and disintegrated. The diametral 

growth rate (DGR) of 38 individual thalli was calculated assuming constant growth 

throughout the 4.33-year period (ie. total diameter increase divided by 52 months) and 

expressed in mm yr-1.  The average maximum growth rate of each lichen thallus has 

been plotted against its respective maximum diameter in May 2001 (Figure 3). The 
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resultant graph shows DGR between thalli varies from 0.23 mm to 1.39 mm yr-1; the 

mean DGR in the 38 thalli being 0.65 mm yr-1. The range (1.16) and standard 

deviation of the dataset (0.24) reveal a moderate degree of scatter around the mean.  

 

The data reveal a distinct relationship between thallus size and DGR in Rhizocarpon 

geographicum, with growth appearing to be most rapid in 10-40 mm diameter thalli.  

Whilst slower DGR were recorded in the smallest thalli (<10 mm in diameter) and in 

the largest thalli (>50 mm in diameter). The shape of the growth-rate curve is 

optimally described (r2 = 0.44) by a third-order polynomial curve, initially 

accelerating to a peak around 30 mm before gradually declining, possibly in an 

asymptotic way. Linear regression (r2 = 0.004) and a second-order polynomial (r2 = 

0.34) yield weaker best-fit values. The evidence for slower radial growth in the 

smallest thalli is clear, as all 7 thalli <10 mm in diameter have DGR less than the 

average of the whole dataset. The evidence for slower growth in large thalli is also 

clear with 9 out of the 10 largest thalli (>40 mm) having DGR less than the mean of 

the whole dataset. The mean DGR of lichens in the 40-80 mm size range is 30% less 

than the mean DGR of those in the 10-40 mm size range (0.54 mm yr-1 cf. 0.78 mm 

yr-1).  Furthermore, three of the four largest lichens, all >60 mm in diameter, have 

growth rates of <0.45 mm yr-1; which is appreciably slower than those thalli in the 10-

40 mm size range. 

 

Discussion 

The new growth study described above was set up in 2001, following lichenometric 

investigations by one of the authors in southern Iceland (Bradwell, 2001a, 2004, 

Bradwell et al., 2006), to determine whether the growth rate of Rhizocarpon lichens 

was linear over time or a function of thallus size.  Previous direct-measurement 

studies have revealed considerable uncertainty over the exact shape of the growth 

curve of Rhizocarpon geographicum, with some studies suggesting that growth rates 

decline in larger thalli (Armstrong, 1983; Haworth et al, 1986), whilst others found no 

evidence of this decline (Matthews, 1994; Winchester and Chaujar, 2002). 

 

The present study suggests that in south Iceland Rhizocarpon geographicum thalli 

conform to a parabolic growth-rate curve. The steep rising limb corresponds to 

accelerating DGR in small, younger thalli; the crest of the curve corresponds to the 
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period of maximum DGR; and the slowly declining phase represents a growth rate 

decline in larger, older thalli.  This model of growth fits well with indirect lichen 

growth-rate studies that predict accelerating growth, followed by rapid, then 

exponentially decreasing growth (eg. Matthews, 1975; Thompson and Jones, 1986; 

Bradwell, 2001a; O’Neal and Schoenenberger, 2002; Larocque and Smith, 2004).  

 

The new data from Iceland can be compared with the results of a similar study carried 

out in north Wales almost 25 years ago (Armstrong, 1983). Armstrong’s dataset 

(1983) involved 40 lichen thalli of R. geographicum, ranging in size from 3 – 65 mm, 

measured over an 18-month period. The trend was best described by a third-order 

polynomial function (r2 = 0.48). The similarity between the growth-rate curve of 

Armstrong’s dataset (1983) and the present study is striking (Figure 4). (Armstrong’s 

dataset has been normalised to show growth rates over a 12-month period).  Both 

curves display an increasing growth phase, followed by a maximum at ~30 mm and a 

more gentle declining phase. The coincidence of the maxima and the overall shape of 

the curves implies strongly similar growth curves in the two contrasting 

environments.  The growth curves can be broadly divided into four phases of growth: 

an initial phase of lichen establishment; followed by increasing growth rates in the 

juvenile phase; relatively rapid, constant growth rates during maturation; and 

declining growth rates during maturity/senescense (Armstrong, 1974; Bradwell, 

2001b) (Figure 5; a-d). 

Naturally, the absolute growth rates at the two sites differ markedly.  This 

difference in lichen growth rate is highly significant, being 66% greater at the 

maximum in north Wales than southern Iceland.  Faster average growth rates in north 

Wales are likely to be attributable to environmental conditions being more favourable 

to growth at temperate latitudes – consistent with the results of other workers (eg. 

Beschel, 1950, 1961; Rydzak, 1961; Armstrong, 1973; Benedict, 1990).  In particular, 

the combination of a longer snow-free growing season (Benedict, 1990), higher 

frequency of rain days (Lawrey and Hale, 1977), and warmer average daytime 

temperatures (Kershaw, 1985) in north Wales will all tend to promote faster growth 

than in Iceland.   

 

We propose that the form of the growth curve identified in the present study, together 

with the study of Armstrong (1983), and supported by lichenometric studies 
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conducted on five continents, is characteristic of this lichen species (and possibly 

subgenus). The shape of this growth-rate curve has wider implications; firstly for the 

growth of Rhizocarpon geographicum in other climatic zones, and secondly for the 

use of lichens as a dating tool. 

In more arid regions, where environmental conditions are not conducive to 

rapid growth, meangrowth rates may be relatively low, thus flattening the growth 

curve (Figure 5; curve 4). Where growth is extremely slow (DGR <0.2 mm yr-1), such 

as in parts of Greenland and Antarctica (Ten Brink, 1973; Hooker, 1980), the growth 

curve would be almost completely flat, thus effectively obscuring the 3 stages (Figure 

5; curve 5). In sharp contrast, where mean R. geographicum growth rates are 

particularly rapid (DGR > 1.5 mm yr-1), for example in parts of maritime western 

Europe, New Zealand and South America, the curve would be ‘stretched’, 

emphasising the parabolic nature of lichen growth (Figure 5; curve 1). 

Lichenometric studies that report a linear relationship between lichen age and 

lichen size in Rhizocarpon lichens over many decades should be viewed with caution. 

The overwhelming majority of lichenometric, and some lichenological, studies find 

the age-size relationship to be non-linear, slowing with time. Hence, studies that 

report a linear relationship may have identified only part of a larger curve or may 

have extrapolated growth rates without justification. In the latter cases, serious doubt 

should be placed on the estimated lichenometric ages reported. 

 

 

Conclusions 

Thirteen studies have now reported directly measured growth rates of lichens in the 

Rhizocarpon subgenus.  Of these, ten studies have examined the role of thallus size on 

growth rates. Three of these studies (Armstrong, 1983; Haworth et al., 1986; Bradwell 

and Armstrong, this study) show evidence for a decline in the growth rate of large 

thalli; whilst three do not include large thalli (>50 mm) (Proctor, 1983; McCarthy, 

2003; Sancho and Pintado, 2004); one is inconclusive owing to the size of the dataset 

(Rogerson et al., 1986); and a further three studies show no evidence for a growth-rate 

decline (Matthews, 1994; Winchester and Shaujar, 2002; Armstrong, 2005), although 

Matthews (1994) used an aggregate Rhizocarpon ‘species’; and Armstrong (2005) 

recorded very slow growth rates.  Both of these factors are likely to obscure growth-

rate trends. On balance, these direct studies suggest that larger Rhizocarpon 
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geographicum thalli grow more slowly than smaller thalli (excluding the smallest 

thalli <10 mm). In addition, new data (this study) suggests initially increasing then 

gradually decreasing growth rates, probably describing an asymptotic curve with a 

long tail.  

 

The striking similarity between these new data from Iceland and those of Armstrong 

(1983) in Wales implies that the shape of the growth-rate curve of Rhizocarpon 

geographicum is probably characteristic of this species (and possibly subgenus). The 

difference between the absolute growth rates is probably a function of climate and 

microenvironment between the two sites. We find that, at its optimum, the same  

species grows ~66% more rapidly in a more oceanic climate – probably as a result of 

the higher frequency of rain days and longer growing season in north Wales than in 

southern Iceland. This study highlights the need for correction factors when using 

lichen-growth curves across different climatic regions.  

 

Finally, indirect lichenometric studies lend further support for a growth rate decline in 

larger thalli. A consensus finds a non-linear relationship between lichen size and age. 

Hence, those studies that assume a constant relationship between lichen growth and 

time over many decades are probably unreliable. However, indirect studies still leave 

question marks surrounding the role played by climatic change and the effects of 

ecological competition. Further long-term direct observations are required from 

different climatic regions to show, beyond reasonable doubt, that age is the primary 

control on the growth rate of lichens within the Rhizocarpon family.  
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Figure captions 

Figure 1: A. Location map of the study site in Southern Iceland.  B. Climatic setting of the 

study site at Gigjökull (G).  Shaded values show mean annual precipitation (1960-1990); 

dashed lines show mean annual air temperature isotherms (°C) (1960-1990) (Einarsson, 

1991).  Ice caps: M = Myrdalsjökull; E = Eyjafjallajökull.  Central volcanoes shown as 

triangles.  C.  Detailed map of the study site at Gigjökull showing the location of lichen 

measurements stations (1) and (2).   D.  Photograph of the moraines at Gigjökull in September 

2005 (taken from x on map C). Note that the ice margin has receded c. 1.5 km since 1996. 

 

Figure 2: A. Photographs of Rhizocarpon geographicum thalli (GIG31 & GIG33) measured 

in this study (taken in September 2005). The paint marks around the edge were made in 2001 

as reference points. B. The outline of the thallus traced from photographs taken in May 2001 

and September 2005. Measurement axes are also shown. Note the change in diameter over the 

intervening period (c. 4-6 mm). 

 

Figure 3:  Diametral growth rate of Rhizocarpon geographicum (mm/yr) plotted against 

lichen diameter (mm in 2001), from Gigjökull, southern Iceland.  

 

Figure 4:  Comparison of diametral growth rates of Rhizocarpon geographicum from 

Armstrong (1983) (grey dots) and this study (black dots).  (Armstrong’s (1983) radial growth 

rate data have been converted to DGR (ie. multiplied by 2) and scaled to mm/12 months for 

direct comparison with this study). 

 

Figure 5:  Growth-rate curves of R. geographicum from different climates. (1) South Island, 

New Zealand (hypothesised); (2) north Wales (Armstrong, 1983); (3) south Iceland (this 

study); (4) north Iceland (hypothesised); (5) west Greenland, 68°N (hypothesised).  Letters 

denote phases of lichen growth – a: establishment; b: juvenile; c: maturation; d: maturity or 

senescense. DGR – diametral growth rate. 

 

Table 1:  Some worldwide applications of lichenometric dating. 
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Type of surface Location Author(s) 

Type of surface Location Author(s) 

River channels (abandoned) England Macklin (1986); 

Macklin et al. (1993)  

Earthquake-induced 

faults/disruptions 

 
Tadjikistan 

Nikonov and Shebalina (1979); Smirnova and 
Nikonov (1990);  

River terraces England Merrett and Macklin (1999)  California Bull (1996) 

 Iceland Maizels and Dugmore (1985);                                Earthquake-induced Russia  Nikonov (1988) 

  Thompson and Jones (1986)     rockfalls New Zealand Bull et al. (1994); Bull and Brandon (1998) 

 Norway Maizels and Petch (1985) Snow-free areas Colorado Benedict (1993) 

Flood deposits Greece Maas & Macklin (2002) Moraines Iceland Thompson (1988); Evans et al. (1999); 

 Corsica Gob et al. (2003)   Caseldine (1990, 1991); Kugelmann (1991) 

Lake shorelines Norway Matthews et al. (1986)   Bradwell (2004); Bradwell et al. (2006)  

 Spitsbergen Andre (1985, 1986)   McKinzey et al. (2004) 

 Iceland Evans et al. (1999)  Norway Denton and Karlen (1973); 

Raised beaches Gulf of Bothnia Broadbent and Bergqvist (1986)   Matthews (1974, 1977, 1994, 2005) 

Rock glaciers Norway Vere and Matthews (1985)   Innes (1986); Erikstad and Sollid (1986);  

 Iceland Martin et al. (1994)   McCarroll (1994); Ballantyne (1990); 

 Swiss Alps Haeberli et al. (1979);   Bickerton and Matthews (1992); Winkler et al. (2003) 

  Burga et al. (2004)  Spitsbergen Werner (1990)  

Protalus ramparts Norway Shakesby et al. (1987)  Greenland Beschel (1958, 1961); Geirsdottir et al. (2000) 

Patterned ground Norway Cook-Talbot (1991)  Alaska Denton and Karlen (1973); Solomina and Calkin (2003) 

Talus Spitsbergen Andre (1985, 1986)  Canada Luckmann (1977); Smith et al. (1995) 

Debris flows Scotland Innes (1982)   Larocque and Smith (2004) 

 Poland Jonasson et al. (1991)  Patagonia Winchester and Harrison (1994, 2000) 

Landslides Italian Alps Porter and Orombelli (1981)   Winchester et al. (2001) 

 Norway Dawson et al. (1986)  New Zealand Burrows (1975); Gellatly (1982) 

Statues Easter Island Follmann (1961)   Winkler (2000); Lowell et al. (2005) 

Stone walls England Laundon (1980)  Kenya Spence and Mahaney (1988) 

 Colorado Benedict (1985)  Peru Rodbell (1992) 

Stone circles England Winchester (1984, 1988)  Antarctica Sancho and Valadares (1993); Goodwin (1996) 
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