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Abstract 

Large-scale streamlined glacial landforms are identified in 11 areas of NW Scotland, from the 

Isle of Skye in the south to the Butt of Lewis in the north. These ice-directional features occur 

in bedrock and superficial deposits, generally below 350 m above sea level, and where best 

developed have elongation ratios of >20:1. Sidescan sonar and multibeam echo-sounding data 

from The Minch show elongate streamlined ridges and grooves on the seabed, with 

elongation ratios of up to 70:1. These bedforms are interpreted as mega-scale glacial 

lineations. All the features identified formed beneath The Minch palaeo-ice stream which was 

c. 200 km long, up to 50 km wide and drained ~15,000 km2 of the NW sector of the last 

British-Irish Ice Sheet (Late Devensian Glaciation). Nine ice-stream tributaries and palaeo-

onset zones are also identified, on the basis of geomorphological evidence. The spatial 

distribution and pattern of streamlined bedforms around The Minch has enabled the 

catchment, flow paths and basal shear stresses of the palaeo-ice stream and its tributaries to be 

tentatively reconstructed.               
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Introduction 

The palaeo-glaciology of the British-Irish Ice Sheet remains poorly understood despite a long 

history of glacial research in the UK. Renewed interest in the former dynamics of this ice 

sheet has been prompted by several factors, namely: – the recognition of palaeo-ice streams in 

the geological record (eg. Stokes & Clark, 1999; 2001a); the publication of the BRITICE map 

and GIS (Clark et al, 2004); and the advent of new, high-resolution, remotely sensed datasets 

and improved interpretation software (eg. Jansson & Glasser, 2005; Everest et al., 2006a; 

Golledge & Stoker, 2006). The identification of palaeo-ice streams – fast-flowing zones 

responsible for discharging most of the ice – within the last British-Irish Ice Sheet is crucial to 
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understanding the former dynamics, flow paths and stability of the whole ice mass (eg. 

Boulton & Clark, 1990; Paterson, 1994; Stokes & Clark, 2001a). Moreover, ice streams are 

capable of rapidly discharging large volumes of fresh water into the ocean – a potentially key 

forcing mechanism of abrupt climate change (e.g. Heinrich, 1988; Broecker, 2003; Alley et 

al., 2003). 

 

In this paper we identify streamlined subglacial landforms on land and on the seabed in NW 

Scotland associated with a large palaeo-ice stream that drained c. 15,000 km2 of the NW 

sector of the British-Irish Ice Sheet several times during the mid to late Pleistocene (Stoker 

and Bradwell, 2005). We suggest that The Minch palaeo-ice stream would have dominated 

the configuration of the NW sector of the last British-Irish Ice Sheet (Late Devensian; Marine 

Isotope Stage 2), and probably influenced the ice-divide location and the ice-sheet thickness 

across the whole region. 

 

The quality and density of glacial geomorphological mapping in Britain vary significantly, as 

highlighted by the BRITICE database (Clark et al., 2004) and the accompanying literature 

review (Evans et al., 2005).  Although NW Scotland has long been a focus for geological 

investigation (e.g. Lapworth, 1886; Peach et al., 1907), comparatively little Quaternary 

science has been carried out in the region (eg. Peach & Horne, 1892; Read et al., 1926). Much 

of the glacial history of the NW Highlands derives from work undertaken since 1980 by 

Lawson (eg. 1986, 1990) and Ballantyne and co-workers (1990, 1994, 1995, 1998).  The 

work of the latter attempts to reconstruct the surface altitude of the last ice sheet based on 

high-level glacial ‘trimlines’ and periglacial phenomena.  Palaeo-nunataks have been 

identified on this basis throughout NW Scotland (Ballantyne et al., 1998).  However, 

distinguishing between ice-free areas and those that were covered by cold-based non-erosive 

ice is a complex issue (eg. Kleman and Stroeven, 1997; Fabel et al., 2002). 
 

The island of Lewis has received attention from only a handful of glacial geologists. Since 

John Geikie in 1873, only von Weymarn (1979), Flinn (1978), Sissons (1980), Peacock 

(1984) and Ballantyne & McCarroll (1995) have tried to unravel the complex glacial history 

of Scotland’s largest island. Recently, Stone & Ballantyne (2006) revised their earlier 

regional model (ie. Ballantyne et al., 1998) presenting a dated reconstruction of the Outer 

Hebrides ice cap at Last Glacial Maximum (LGM).  However, the glaciation of the Outer 

Hebrides is much debated. Until the 1970s it was commonly presumed that the last British-

Irish ice sheet crossed Lewis in a westerly direction from its main source area on the Scottish 

Mainland (eg. Geikie, 1873; Jehu and Craig, 1934; Sissons, 1967). This view was challenged 

by von Weymarn (1974, 1979) and Flinn (1978) who proposed, based on geomorphological 
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evidence, that the Outer Hebrides had supported an independent ice cap during the LGM.  

This view was reinforced by Peacock (1984, 1991) based on British Geological Survey (BGS) 

field mapping in Lewis, Harris and South Uist.  Reconstructed maximum ice-sheet altitudes 

are also consistent with ice from the Outer Hebrides merging with Scottish mainland ice in 

The Minch (Ballantyne, 1990; Ballantyne et al., 1998). Although the concept of an 

independent ice dome over the Outer Hebrides is now widely accepted, controversy regarding 

the lateral and vertical extent of the ice sheet in NW Scotland remains (Figure 1) (eg. 

Sutherland, 1984; Stoker et al., 1993; Bowen et al., 2002; Hall et al., 2003; Stone & 

Ballantyne, 2006).  

 

Method and Results: 

NEXTMap digital surface models, aerial photographs and field mapping were used to 

interpret the onshore geomorphology in parts of NW Scotland. The marine landscape was 

examined using UDI AS350 dual sidescan-sonar imagery (50 kHz), collected by the BGS in 

1984 as part of their regional mapping programme of the UK continental shelf, in 

combination with Kongsberg-Simrad EM120 multibeam swath bathymetry data (12 kHz; 191 

beams; 1º x 1º beam width; 10 m grid spacing in image), acquired by the British Antarctic 

Survey in 2005 onboard RRS James Clark Ross. The integration of new and legacy datasets 

allows high-resolution imagery of palaeo-ice stream bedforms in Britain, both onshore and 

offshore, to be presented here for the first time. Several key locations have been identified on 

land in NW Scotland, surrounding The Minch (Figure 2:A–L), along with one on the seabed 

(Figure 2:M & Figure 3). These are described in turn. (All places referred to are shown in 

Figure 1.) 

 

A. Streamlined landforms occur in bedrock and glacial deposits around the western 

shore of Broad Bay, NE of Stornoway (Figure 2A). The features are best developed 

in the Permo-Triassic sandstones around Vatisker Point where they are up to 1.5 km 

long.  The landforms are chiefly low-relief drumlins with elongation (length:width) 

ratios of 3 or 4:1. The overall flow set is weakly convergent, suggesting palaeo-ice 

flow from Lewis towards The Minch in an easterly direction. Large meltwater 

channels occur between the drumlins in places. 

B. Elongate streamlined landforms on Lewisian gneiss bedrock occur immediately west 

of Stornoway (Figure 2B). These features are chiefly large-scale crag and tails, 

bedrock-cored megaflutes and megadrumlins typically 1-2 km in length. Elongation 

ratios range from 3:1 to 8:1.  The flow set is weakly convergent towards Stornoway, 

suggesting palaeo-ice flow in an easterly direction in this part of Lewis. This flow 

orientation is consistent with glacial striae and till fabric data reported by Peacock 

 3



  

(1984). Rock drumlins, whalebacks and large-scale bedrock grooves (<0.5km long) 

occur around Loch Orasay.  

C. Strongly streamlined Lewisian gneiss landscape occurs around Loch Erisort, eastern 

Lewis (Figure 2C). Elongate large-scale crag and tails, bedrock-cored megadrumlins 

and streamlined bedrock hills with long axes up to 1 km trend slightly north of east. 

Elongation ratios range from 3:1 to 6:1. Ice flow in this area was along the axis of 

Loch Erisort towards The Minch, as shown by striae and small ice-moulded forms 

(Peacock, 1984).  

D. Large-scale streamlined bedrock forms occupy the ground between the Trotternish 

and Vaternish peninsulas on the Isle of Skye (Figure 2D). These subtle features 

include rock drumlins, fluted bedrock and large-scale grooves – all cut into basaltic 

bedrock. The largest rock drumlin is 1.2 km long with an elongation ratio of 5:1. Ice 

flow during the Main Late Devensian glaciation was in a NNW’erly direction along 

the axis of Loch Snizort as supported by glacial striae on the shore of the loch 

(Johnstone & Mykura, 1989). 

E. Highly abraded, streamlined bedrock forms occupy the low ground between Ben 

Stack and Arkle in NW Scotland (Figure 2E).  The primary features are large-scale 

whalebacks, and streamlined hills of Lewisian gneiss and metagranite up to 1 km in 

length.  BGS field mapping has shown that these features are ornamented with 

smaller whalebacks and other ice-moulded forms on an outcrop scale (~5-50 m long). 

Megagrooves, up to 30 m deep, dissect the terrain along structural weaknesses. Ice-

sheet flow was WNW towards The Minch, and was probably fastest flowing in the 

topographic trough occupied by Loch Laxford.  

F. Raasay is a narrow north-south aligned island adjacent to Skye with overdeepened 

rock basins to the east and west. The northern half of the island is scoured Lewisian 

gneiss bedrock. Ice-moulded forms, rock drumlins and large-scale grooves are well 

developed, particularly around Manish Point (Figure 2F).  The rock drumlins range in 

size from 50 to 500 m in length with elongation ratios typically c. 3:1.  The rock-cut 

grooves and channels are persistent over distances of 1000-2000 m.  All these 

bedrock features are orientated north-south, consistent with palaeo-ice flow from the 

mountains of Skye towards The Minch and supported by glacial striae on northern 

Raasay (Johnstone & Mykura, 1989).  

G. Drumlins occur on the Isle of Ewe in both bedrock and glacial deposits (Figure 2G). 

The southern half of the island has a streamlined till surface whilst the northern half 

has little glacial sediment cover. Many of the larger drumlins are erosional bedrock 

features with long axes typically ~0.5 km and elongation ratios of >3:1. The trend of 
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the streamlined landforms, combined with striae data (Johnstone & Mykura, 1989), 

suggest palaeo-ice flow in a NW’erly direction into The Minch. 

H. Fluted bedrock and large-scale, closely spaced, grooves occur on the ground ~5 km 

SW of Loch Glencoul in Assynt (Figure 2H).  The Moine Supergroup psammite 

bedrock shows clear evidence of strong glacial abrasion in the form of striae, 

whalebacks and other small-scale ice-moulded forms (BGS field survey). The 

features are all orientated NW and only occur in the wide topographic depression 

between Ben More Assynt and Ben Leoid. The streamlined landforms and glacial 

striae (Geological Survey of Great Britain, 1923) testify to palaeo-ice flow in a 

NW’erly direction into the Glencoul trough and towards The Minch. 

J. Stongly parallel megagrooves in Cambrian quartzite and Neoproterozoic sandstone 

bedrock trend WNW near Cam Loch, in Assynt (Bradwell, 2005) (Figure 2J).  These 

mega-scale glacial lineations are not structurally controlled and cross major 

lithological boundaries.  The megagrooves range in length from 500-4300 m and are 

generally 20-30 m wide. Spacings vary from 20 to 200 m. Palaeo-ice sheet flow in 

this area was to the NNW, parallel to the megagrooves, as evidenced by abundant 

glacial erratics, striae, and ice-moulded bedrock forms (Johnstone & Mykura, 1989; 

Lawson, 1990). 

K. Mega-scale glacial lineations (MSGL) occur in bedrock on the watershed in 

Rhidorroch, to the NE of Ullapool (Figure 2K).  These closely spaced, strongly 

parallel, features cut into hard Proterozoic Moine Supergroup psammites range from 

500 to 5000 m in length and are orientated east-west.  The primary landforms are 

erosional megagrooves ranging from 10 to 50 m wide with average spacings of 100-

200 m. The intervening bedrock ridges are highly elongate and drumlinoid in form – 

akin to megaflutes. The longest ridges have elongation ratios of 15-25:1. Palaeo-ice 

flow in Rhidorroch was from east to west, as deduced by the transport of glacial 

erratics and striae orientations (Read et al., 1926). 

L. MSGL in superficial deposits, chiefly till and morainic diamict, occur to the N of 

Beinn a’ Chlachainn on the Applecross pensinula (Figure 2L).  These highly elongate 

streamlined ridges and grooves cover an area of ~20 km2 and trend northwards. The 

ridges range in length from 2 to 4.5 km and have elongation ratios of up to 20:1.  The 

whole flow set is strongly convergent from south to north suggesting palaeo-ice flow 

from the mountains of Applecross towards The Minch. These glacially streamlined 

deposits are superimposed on glacially striated and grooved Torridonian sandstone 

bedrock possessing the same feature orientation (Johnstone & Mykura, 1989).   

M. In The Minch, swath bathymetry and sidescan-sonar images reveal large-scale ridge-

groove structures on the sea floor between the NW Scottish mainland and Lewis 
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(Figure 3). These strongly parallel, highly elongate features are developed in 

diamicton, as indicated by sub-bottom profiles and borehole data, and have been 

interpreted as MSGL (Stoker & Bradwell, 2005). The sidescan-sonar images show 

that the lineations are of high density, and are expressed by a hummocky or 

corrugated sea floor with a relief of 5–15 m, and ridge spacing of c. 100–500 m 

(Figure 3). Stoker & Bradwell (2005) reported a minimum elongation ratio of 7.5:1, 

derived from the limited horizontal range of the sidescan image, but inferred the 

likelihood of much greater ratios on the basis of the widespread distribution of these 

features on the sea bed. This is confirmed by the newly acquired multibeam data, 

which indicates that individual lineations can be traced for thousands of metres (up to 

7000 m within the confines of the dataset) indicating elongation ratios up to 70:1. 

Significantly, perhaps, the multibeam data reveal two separate lineation trends, N–S 

(mean bearing = 350) and NNW–SSE (mean bearing = 338); the latter being most 

dominant within the area of acquisition, and appearing to cross-cut the former. 

 

 

 

 

Discussion 
Stoker & Bradwell (2005) identified a major palaeo-ice stream draining the NW sector of the 

last British-Irish ice sheet based on a combination of legacy geophysical (seismic profiles and 

sidescan sonar) data and recent geological mapping.  New work, presented here, combines 

legacy data with the recently acquired NEXTMap digital surface models of the land, and new 

multibeam swath data of the seabed, to more accurately determine the spatial extent and flow 

paths of The Minch palaeo-ice stream and illustrate its geomorphological signature. The 

evidence of ice streaming is seen most clearly and unequivocally on the coastal fringes of NW 

Scotland, around Loch Broom (Rhidorroch), in Assynt, in Applecross and in eastern Lewis 

(Figure 2: B, J, K, L).  In these localities mega-scale highly streamlined bedforms occur with 

elongation ratios >7:1, and locally in excess of 20:1. MSGL in unlithified deposits are thought 

to form by subglacial deformation and attenuation of the underlying soft sediments, or groove 

ploughing by the ice-sheet bed (eg. Hindmarsh, 1998; Clark et al., 2003). However, the exact 

formation mechanism of MSGL in bedrock remains elusive. Focused glacial abrasion and 

high-energy subglacial meltwater are both likely to play key roles in megagroove formation 

(Smith, 1948; Boulton, 1979; Bradwell, 2005). Other localities with less pronounced 

streamlined bedforms (elongation ratios <6:1) indicate the onset of ice streaming – in NE 

Lewis, on Raasay, in Loch Ewe, around Loch Snizort (Skye), and around Loch Laxford 

(Figure 2: A, D, E, F, G). 
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The presence of glacial lineations on the seabed could be interpreted as either glacial sole 

markings or iceberg plough marks.  Based on the strong preferred orientation of the lineations 

(N–S and NNW–SSE), their scale (100–500 m wide; 1-7 km long), morphology (long, linear 

features, rather than irregular, wandering tracks) and strong parallelism, they are interpreted 

as MSGLs that formed at the base of a grounded ice stream. Furthermore, iceberg plough 

marks normally vary in width and depth where the keels of bergs rotate or carve erosional 

pits. The ridge and groove morphology seen in the multibeam image (Figure 3) show very 

little width or depth variation and are similar to MSGLs identified in other palaeo-ice stream 

tracks in Hudson Bay, Canada (Josenhans, 1997), offshore Norway (Sejrup et al., 2003; 

Stalsberg et al., 2003; Ottesen et al., 2005) and Antarctica  (Pudsey et al., 1994; Ó Cofaigh et 

al., 2002; Dowdeswell et al., 2004). 

 

The new geomorphological evidence (Figures 2 & 3) has been used to reconstruct the flow 

paths of The Minch palaeo-ice stream at its maximum extent (Figure 4). Examination of the 

regional pattern across the study area shows a large convergent flow set in The Minch, as 

outlined by Stoker & Bradwell (2005). In more detail, we have identified individual onset 

zones that delimit ‘tributaries’ feeding The Minch ice stream (Figure 4). Palaeo-ice-stream 

tributaries have been identified in several topographic troughs in NW Scotland: off Raasay; in 

Loch Ewe; outer Loch Broom; Enard Bay; Edrachillis Bay; Loch Laxford; possibly Loch 

Snizort on Skye; and in eastern Lewis, along Broad Bay and Loch Erisort. Therefore, The 

Minch palaeo-ice stream was fed by at least 9 ice-stream tributaries draining primary onset 

zones. These tributaries coalesced in the northern Minch to flow as a large coherent palaeo-

ice stream on the continental shelf (Figure 4). We suggest that these tributaries represent the 

zones of transition from slow flowing, cold-based, inland ice to fast-flowing, warm based, 

streaming ice. Similar ice-stream feeders have been shown to mark a flow transition within 

the Antarctic ice sheet (Bamber et al., 2000; Vaughan et al., 2006). 

Although comprising a component of ice flow from the Outer Hebrides, the ice 

stream was dominated by ice streaming west and north from the NW Scottish Highlands and 

Skye. This is consistent with the two cross-cutting sets of MSGL observed on the sea bed, 

indicating that ice flow from the Scottish mainland dominated the trunk of the ice stream. It is 

possible that the earlier flow set represents an ice stream that was predominantly fed by ice 

sourced to the south on Skye and around Loch Carron; whilst the later set represents an ice 

stream predominantly sourced to the SE in the mountains of Wester Ross and Assynt. 

Consequently, the cross-cutting MSGL may relate to shifts in dominance of the palaeo-ice-

stream source and concomitant adjustments of the main ice-stream flow path during ice-sheet 

growth and decay.  Studies in West Antarctica have shown that fluctuations in ice stream size 
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and vigour can result in a regionally lowered ice-sheet surface, ice piracy and the migration of 

ice divides (Alley & Whillans, 1991; Truffer & Echelmeyer, 2003). It is reasonable to assume 

that The Minch palaeo-ice stream probably influenced the ice-divide location and ice-sheet 

thickness across the NW sector of the last British-Irish ice sheet. Prolonged ice stream growth 

would have increased ice downdraw within the fjords of NW Scotland, consequently forcing 

the ice-sheet divide on the mainland to migrate eastwards over time.  

 

Shelly tills, Torridonian sandstone erratics and glacial deposits indicating anomalous ice-flow 

directions have been reported from northernmost Lewis (Peacock, 1984).  Tills of glacimarine 

origin, based chiefly on the presence of marine shells, are reported at Tolsta Head, Port of 

Ness and on the Butt of Lewis (Baden-Powell, 1938; von Weymarn, 1974; Peacock, 1984).  

Moreover, the presence of Torridonian erratics on the Eye Peninsula, Tolsta Head and the 

Butt of Lewis has long been held as evidence of glaciation by ice from the Scottish Mainland 

(Geikie, 1873; Peacock, 1984). In the light of our new findings, we find this compelling 

supporting evidence for the presence of a large palaeo-ice stream in the Minch, the southern 

margin of which overrode the northernmost part of Lewis.  Other anomalous field evidence in 

Lewis could be reconciled if this new ice-sheet flow model is adopted. For example, the 

identification of a large linear morainic ridge (Peacock, 1984) in northernmost Lewis could 

now be interpreted as a possible ice-stream shear-margin moraine (cf. Stokes & Clark, 

2001b). 

 

Seismic profiles show the sedimentary architecture of the Outer Hebrides Shelf to comprise a 

complex stacked sequence of diamictons and layered proglacial sediments that terminate in 

the Sula Sgeir trough mouth fan on the adjacent slope (Stoker et al., 1993). Shelf-wide 

glaciation, with ice streams terminating at the shelf-edge, has affected this part of the 

continental margin on several occasions in the last 0.5 Ma (Stoker 1995). However, the 

westward extent of the Late Devensian British-Irish ice sheet is still uncertain, though sea bed 

MSGLs are seen on the Hebrides Shelf (Stoker & Bradwell, 2005).  The presence of 

undisturbed glacimarine deposits of Early Devensian age (MIS 4) on the outer shelf (Stoker et 

al., 1993) places the grounded Late Devensian ice-sheet limit on the mid shelf (Stoker & 

Bradwell, 2005). Therefore, we hypothesise that at Last Glacial Maximum, The Minch ice 

stream terminated on the continental shelf, NW of Lewis, probably in the vicinity of Sula 

Sgeir. However, the possibility that the ice sheet extended towards the continental-shelf break 

as a floating ice shelf cannot be ruled out (Figure 4). 

 

Present-day ice streams are characterized by low surface slopes, low driving stresses and 

rapid velocities (Alley and Whillans, 1991). Low shear stresses often indicate the presence of 

 8



  

deformable subglacial sediments, but may also reflect rapid basal sliding as a result of 

abundant subglacial meltwater (e.g. Kamb, 1991; Paterson, 1994).  

 

Our reconstruction of the Minch palaeo-ice stream can be used to calculate the upper limit of 

basal shear stress (τb) conditions within the downstream section of the ice stream, using the 

equation: 

τb = ρgh tanα   (Hooke, 2005) 

Where ρ = ice density (900 kg m-3), g = gravitational acceleration (9.8 m s-2), h = ice 

thickness (m) and α = ice-sheet surface slope (°).  Assuming that Ballantyne et al. (1998) 

have correctly identified the maximum ice-sheet altitude at ~800 m on The Cuillin mountains, 

Isle of Skye, we then assume an altitude of 150 m below present-day sea level for the 

grounding line, near Sula Sgeir, 210 km away. These values yield an average surface slope of 

0.26° for the ice sheet along a palaeo-flow line. It is not realistic to assume a constant gradient 

along the length of the ice stream, however the gradient of the trunk of the ice stream would 

have been lower than the average gradient over its entire length (ie. <0.26°) as shown by 

modern analogues (Alley and Whillans, 1991; Truffer and Echelmeyer, 2003). Taking an ice-

sheet thickness of 500 m – the minimum value on the northern tip of Skye, according to 

Ballantyne et al’s (1998) reconstruction  – yields a basal shear stress value of 20 kPa. It 

follows that the gradient of the trunk of the ice stream in The Minch and, hence, the basal 

shear stress must be lower than this figure. Therefore the value of 20 kPa can be regarded as a 

maximum approximation for basal shear stress values within the trunk of The Minch palaeo-

ice stream. It is interesting to note that this is considerably lower than the values derived by 

Ballantyne et al. (1998) for the same sector of the British-Irish ice sheet where no ice stream 

was invoked (cf. 55-77 kPa). By way of comparison, basal shear stress values for many 

modern Antarctic ice streams are found to be in the region of 3-20 kPa (Alley 1993; Truffer & 

Echelmeyer, 2003). Our preliminary calculations of ice-stream flow dynamics would tend to 

support the lateral extent, approximate ice thickness and flow model proposed for the NW 

sector of the last British-Irish ice sheet.  

 

Presently, no firm dates can be given for the precise timing of ice stream operation in NW 

Scotland.  Cosmogenic-nuclide exposure dating of an ice-sheet moraine in Gairloch, Wester 

Ross, has yielded an age of c.16-17 ka BP (Everest et al., 2006b).  Whilst recently acquired 

cosmogenic dates from the east coast of Harris also yield similar exposure ages (15.4-17.6 ka 

BP; Stone & Ballantyne, 2006). These data, combined with marine fauna from borehole 78/4 

off Stornoway (Graham et al., 1990) (Figure 1), provide minimum ages for deglaciation of 

The Minch.  Consequently, it is likely that the ice stream last operated from glacial maximum 

c.22-25 ka BP until c.17 ka BP.  The exact mechanisms and causes of ice-stream demise and 

 9



  

subsequent ice-sheet disintegration are unclear. However, retreat of the NW sector of the last 

British-Irish ice sheet would have been intimately associated with sea-level rise.  Accelerated 

eustatic sea-level rise c.19 ka BP (P.U.Clark et al., 2004) may have triggered rapid retreat, or 

collapse, of the ice sheet’s Atlantic margins. It is possible that The Minch ice stream 

disintegrated soon after this eustatic event, probably around the time of Heinrich event 1 

(c.17-18 ka BP; Bond et al., 1992). By 15 ka BP arctic open-water conditions existed in The 

Minch (Graham et al., 1990), when the ice-sheet margin was situated at, or close to, the 

present-day coastline in NW Scotland (Everest et al., 2006b; Stone & Ballantyne, 2006).  

 

 

 

Conclusions 
 
Geomorphological mapping of the area surrounding The Minch in NW Scotland records the 

signature of a large palaeo-ice stream sourced in the mountains of the NW Highlands, the Isle 

of Skye and the Isle of Lewis. Onshore mapping, based on new NEXTMap surface models, 

aerial photographs and field surveys, is combined with sidescan-sonar and multibeam swath-

survey data from ~100 m water depth offshore. This has led to refinement of Stoker & 

Bradwell’s (2005) reconstruction and allows several new findings to be presented: 

• On the coastal fringes of the NW Scottish mainland, Lewis and Skye, elongate 

streamlined bedforms, with elongation ratios of 4-8:1, delimit the onset zones of a 

large (~15,000 km2) palaeo-ice stream. 

• Highly elongate streamlined bedforms, with elongation ratios >10:1, were generated 

beneath a fast-flowing zone of the British-Irish ice sheet, last active during the Late 

Devensian glaciation (MIS 2). At least 9 ice-stream tributaries coalesced to feed a 

~40 km-wide, ~200 km-long ice stream in NW Scotland flowing along the 

topographic depression of The Minch.  

• Mega-scale glacial lineations, with elongation ratios up to 70:1, are observed on the 

seabed in the central zone of the palaeo-ice stream track, demonstrating that fast-

flowing ice was in contact with the bed. Cross-cutting, MSGL flow sets probably 

relate to temporal changes in the dominance of palaeo-ice-stream source areas. 

• The southern edge of The Minch palaeo-ice stream crossed the northernmost tip of 

the Outer Hebrides, depositing shelly till on the Butt of Lewis. At its Late Devensian 

maximum extent, this grounded ice stream flowed towards the Sula Sgeir fan, and 

may have terminated as a floating ice shelf near the continental slope.  

• During the Last Glacial Maximum (MIS 2), The Minch ice stream would have 

dictated the overall pattern of ice flow in the NW sector of the British ice sheet.  
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Fluctuations in ice stream size and vigour may have lowered the ice-sheet surface 

across the whole area and forced the ice-divide on the Scottish mainland to migrate 

eastward.  

• Basal shear stresses beneath the trunk of the palaeo-ice stream at the time of 

maximum glaciation, are estimated to be <20 kPa. This value is in accordance with 

modern ice-stream observations. 

• The Minch palaeo-ice stream probably last operated between 22-25 ka BP (LGM) 

and ~17 ka BP, when ice was near the present-day coastline in NW Scotland.  Ice 

stream collapse may have been in response to eustatic sea level rise c.19 ka BP, 

disintegrating around the time of the North Atlantic iceberg-discharge event – 

Heinrich 1 (~17-18 ka BP). 
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Figure captions: 
 
Figure 1: Location map of the study area in NW Scotland showing all places referred to in the text.  

Previously proposed  British ice-sheet limits are also shown: 1 – Sutherland (1984); 2 – Bowen et al., 

(2002); 3 – Hall et al., (2003).   

 

Figure 2:  LANDSAT TM image of NW Scotland showing location of areas described in the text. A-L: 

Sub-samples from NEXTMap digital surface model (illumination from the NW) showing areas of 

glacially streamlined terrain. White arrows indicate dominant direction of ice sheet flow.  Note the 

varying scales; all figures orientated with N to the top. A – Broad Bay, Lewis; B – W of Stornoway, 

Lewis; C – Loch Erisort, Lewis; D – Loch Snizort, Skye; E – Loch Laxford, Sutherland; F – Manish 

Point, Raasay; G – Isle of Ewe, Wester Ross; H – upper Glencoul, Assynt; J – Cam Loch and Elphin, 

Assynt; K – Rhidorroch, Wester Ross; L – Applecross, Wester Ross. M – Area of multibeam swath 

survey of seabed, central zone of The Minch.   

 

Figure 3:  Mega-scale glacial lineations preserved on the sea floor of The Minch. (i) Multibeam swath 

bathymetry (illumination from the NE) and (ii) interpreted line drawing of seabed from area M (on 

Figure 2), showing two main sets of lineation — a N–S set cut by a NNW–SSE set, the trends of which 

are indicated on (v) the rose diagram; (iii) and (iv) show sidescan-sonar images from areas M1 and M2, 

respectively (along BGS seismic track 85/04-5), with the dark linear elements representing ridges and 

the pale areas being sand-filled grooves. All profiles were collected in about 100 m of water depth. (vi) 

Location map of areas M1 and M2 and BGS seismic track 85/04-5.  

 

Figure 4: Reconstruction of The Minch palaeo-ice stream at maximum extent in the Pleistocene.  Grey 

shaded area shows main trunk of ice stream and tributaries. Black lines are hypothesised palaeo-flow 

paths; line thickness gives impression of flow strength. Generalised ice-stream onset zone catchments 

are also shown.  White arrows show trend of MSGLs seen in multibeam survey (Fig 3). Dashed line 

(LGM) shows probable limit of grounded British-Irish ice sheet at last glacial maximum (Late 

Devensian). Generalised bathymetry with contours at 50 m vertical intervals.   
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