
© 2012 Blackwell Publishing Ltd 

This version available http://nora.nerc.ac.uk/21366/ 

NERC has developed NORA to enable users to access research outputs 
wholly or partially funded by NERC. Copyright and other rights for material 
on this site are retained by the rights owners. Users should read the terms 
and conditions of use of this material at 
http://nora.nerc.ac.uk/policies.html#access  

This document is the author’s final manuscript version of the journal 
article, incorporating any revisions agreed during the peer review 
process. Some differences between this and the publisher’s version 
remain. You are advised to consult the publisher’s version if you wish 
to cite from this article. 

The definitive version is available at http://onlinelibrary.wiley.com 

Article (refereed) - postprint 

Gray, Alan; Levy, Peter E.; Cooper, Mark D.A.; Jones, Timothy; Gaiawyn, 

Jenny; Leeson, Sarah R.; Ward, Susan E.; Dinsmore, Kerry J.; Drewer, Julia; 

Sheppard, Lucy J.; Ostle, Nick J.; Evans, Chris D.; Burden, Annette; Zieliński, 

Piotr. 2013. Methane indicator values for peatlands: a comparison of 

species and functional groups. Global Change Biology, 19 (4). 1141-1150. 

10.1111/gcb.12120  

Contact CEH NORA team at 

noraceh@ceh.ac.uk 

The NERC and CEH trademarks and logos (‘the Trademarks’) are registered trademarks of NERC in the UK and 
other countries, and may not be used without the prior written consent of the Trademark owner. 

http://nora.nerc.ac.uk/policies.html#access
http://onlinelibrary.wiley.com/
http://dx.doi.org/10.1111/gcb.12120
mailto:nora@ceh.ac.uk


Peatland methane indicator values 

1 

Title: Methane Indicator Values for Peatlands: a comparison of species and functional 1 

groups 2 

Running Title: Peatland methane indicator values 3 

A. Gray1*, P. E. Levy1, M. D. A. Cooper2,3, T. Jones2, J. Gaiawyn1, S. R. Leeson1, S. E. 4 

Ward4,5, K. J. Dinsmore1, J. Drewer1, L. J. Sheppard1, N. J. Ostle4, C. D. Evans2 , Annette 5 

Burden2 & Piotr Zieliński3,6 6 

1Centre for Ecology and Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, U.K. 7 

2Centre for Ecology and Hydrology, Environment Centre Wales, Bangor, Gwynedd, LL57 8 

2UW, U.K. 9 

3Wolfson Carbon Capture Laboratory, School of Biological Sciences, Bangor University, 10 

Bangor Gwynedd LL57 2UW, U.K 11 

4Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster LA1 4AP, 12 

UK;  13 

5Institute of Environmental and Natural Sciences, Soil and Ecosystem Ecology Laboratory, 14 

Lancaster University Lancaster LA1 4YQ, UK 15 

6 Institute of Biology, University of Bialystok, Świerkowa 20B, 15-950 Białystok, Poland 16 

*Corresponding author 17 

Email alangray@ceh.ac.uk 18 

19  

20  

Page 1 of 30 Global Change Biology



Peatland methane indicator values 

2 

Keywords: CH4, weighted averaging, carbon cycle, vegetation, greenhouse gases. 1 

Type of Paper: Primary Research Article 2 

3 

Page 2 of 30Global Change Biology



Peatland methane indicator values 

3 

Abstract (300) 1 

Previous studies have shown a correspondence between the abundance of particular plant 2 

species and methane flux. Here we apply multivariate analyses, including a weighted 3 

averaging approach, to assess the suitability of vegetation composition as a predictor of 4 

methane flux. We developed a functional classification of the vegetation, in terms of a 5 

number of plant traits expected to influence methane production and transport, and compared 6 

this with a purely taxonomic classification at species-level and higher. We applied both 7 

weighted averaging and indirect and direct ordination approaches to six sites in the UK, and 8 

found good relationships between methane flux and vegetation composition (classified both 9 

taxonomically and functionally). Plant species and functional groups also showed meaningful 10 

responses to management and experimental treatments. In addition to the UK, we applied the 11 

functional group classification across different geographical regions (Canada and 12 

Netherlands) to assess the generality of the method. Again, the relationship appeared good at 13 

the site level, suggesting some general applicability of the functional classification. The 14 

method seems to have the potential for incorporation into large-scale (national) greenhouse 15 

gas accounting programmes (in relation to peatland condition/management) using vegetation 16 

mapping schemes. The results presented here strongly suggest that robust predictive models 17 

can be derived using plant species data (for use in national-scale studies). For trans-national-18 

scale  studies, where the taxonomic assemblage of vegetation differs widely between study 19 

sites, a functional classification of plant species data provide an appropriate basis for 20 

predictive models of methane flux.  21 
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Introduction 1 

Methane (CH4) is a potent greenhouse gas, and emissions from peatlands account for a large 2 

proportion of the global total emissions, although, there is considerable uncertainty about 3 

their magnitude (Billett et al., 2010, Conrad, 2009, Petrescu et al., 2010). Peatland CH4 4 

emissions may be expected to rise under warmer and wetter climate change predictions, and 5 

in response to practices such as peatland restoration and re-wetting (Denman et al., 2007, 6 

Waddington &  Day, 2007). It has been proposed that by changing peatland management, 7 

both a reduction in greenhouse gas emissions and positive outcomes for biodiversity can be 8 

achieved (Bain et al., 2011). In addition, policy-makers require simple emission factors that 9 

are responsive to the effects of land management activities in order to account for the net 10 

emission of greenhouse gases but as yet, these are in the early stage of development  11 

(Couwenberg et al., 2011).  12 

CH4 fluxes are usually measured at small scales (often <1m2) over a period of minutes using 13 

chamber methods, and less frequently at larger scales (<1 km2) by eddy covariance. There are 14 

considerable difficulties in extrapolating these measurements to annual estimates at regional, 15 

national, or global scales but the data are often used to parameterise CH4 emission models 16 

(Arah &  Stephen, 1998, Smith et al., 2007, Walter &  Heimann, 2000, Zhang et al., 2012). 17 

Most commonly, a process-based model is used, which attempts to represent the responses of 18 

methane production and oxidation to temperature, soil moisture, water table levels, anaerobic 19 

state, pH, substrate concentrations, and other environmental factors deemed important (Arah 20 

&  Stephen, 1998, Smith et al., 2007, Walter &  Heimann, 2000).  However, our 21 

understanding of the responses of the different microbial taxa involved to environmental 22 

variables is imperfect (Conrad, 2009). Furthermore, the correspondence between the 23 

environmental variables measured in the field and those which actually drive CH4 production 24 
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and oxidation is often not as good as would be desired. For example, Levy et al., (2012) 1 

found that environmental variables explained only 50 % of the variance in instantaneous CH4 2 

chamber flux measurements, although this was improved after temporal and spatial 3 

averaging.   4 

As an alternative or complementary approach, vegetation species composition provides a 5 

long-term integrator of environmental conditions, and some studies have shown the potential 6 

to use this to explain or predict CH4 fluxes (Bubier et al., 1995, Dias et al., 2010). Bubier et 7 

al., (1995) examined bryophytes as predictors of methane flux and found them to be good 8 

surrogates for the degree of anaerobism/aerobism in two peatlands in Canada. In two 9 

peatlands in the Netherlands, Dias et al., (2010) found that both vascular and non-vascular 10 

species composition are good predictors of methane flux. The use of vegetation-based proxies 11 

have been proposed as a basis for large-scale peatland greenhouse gas flux accounting by 12 

Couwenberg et al., (2011). However, this approach requires testing on a much wider scale to 13 

assess its applicability and generality. Because plant species data are widely available, if a 14 

robust relationship could be established between CH4 fluxes and vegetation, this may provide 15 

an effective indicative tool for CH4 fluxes to larger scales and for national-scale inventories.  16 

Despite the demonstrated importance of plant species for CH4 emissions, taxonomically 17 

defined species may not be the best approach for reflecting CH4 emissions. This is because a 18 

natural species classification seeks to classify organisms in terms of their evolutionary 19 

relationships rather than with respect to their influence on biogeochemical processes. In 20 

addition, to make comparisons across regions a common framework is required. However, 21 

species pools differ from region to region and hence a taxonomic classification may not be 22 

the best basis as methane indicators. A solution to this problem might be to classify species 23 

into functional groups; this approach has been applied several times in peatland systems (e.g. 24 

Page 5 of 30 Global Change Biology



Peatland methane indicator values 

6 

Backstrand et al., 2008, Baird et al., 2009, Ward et al., 2009). These would ideally reflect the 1 

function-process-vegetation relationship and be sensitive enough to demonstrate responses to 2 

changes in environmental conditions. However, defining a functional group in peatlands can 3 

be problematic simply because quantitative trait data are absent for many peatland vascular 4 

species and the majority of bryophytes. On the other hand, comparable qualitative attribute 5 

data for both vascular plants and bryophytes have been collated for the UK (Hill et al., 2007, 6 

Hill et al., 2004). This offers the possibility of defining an a priori set of plant attributes that 7 

relate to CH4 flux, such as the possession of aerenchyma (air channels that allow gaseous 8 

exchange between the shoot and the root) or the association of methanotrophic bacteria with 9 

Sphagnum species (Raghoebarsing et al., 2005).  In addition to the fact that plant species 10 

respond to the same environmental factors that influence CH4 emission, it also has been 11 

shown that plants can have a direct effect on CH4 production and emission (Aulakh et al., 12 

2001, Joabsson et al., 1999, Shannon et al., 1996).  13 

Levy et al., (2012) analysed nearly 5000 chamber measurements of CH4 flux from 21 sites 14 

across the UK. They found that less than half of the observed variability in instantaneous 15 

fluxes could be explained by independent variables measured but where plant species 16 

composition data were available, this provided the highest explanatory power. Here, we 17 

extended the analysis of Levy et al., (2012) by adding further data from sites where plant 18 

species composition has been determined.  We applied a “weighted averaging” approach to a 19 

range of sites in the UK, as well as continental Europe and Canada. To enable a degree of 20 

generality across continents where the degree of species overlap is incomplete, species were 21 

classified into functional groups. These are defined by a number of qualitative traits related to 22 

species responses to environmental factors that also control CH4 emission and to direct 23 

effects of plant species on CH4 emission. We compared the results based on this functional 24 
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classification with those based on the original species composition data using a purely 1 

taxonomic classification. 2 

3 
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Materials and Methods  1 

Site Descriptions 2 

The measurements analysed here were made at sites in Scotland, Wales and England in the 3 

U.K. (Table 1). These peatland sites are all characterised by high water table levels  and 4 

acidic deep peat; further site specific details can be found in Table 1 and elsewhere (Billett et 5 

al., 2010, Carfrae et al., 2007, Dinsmore et al., 2009, Gray, 2006, Ward et al., 2007). Two 6 

sites have plots located in a designed experiment (Whim and Moor House: nitrogen; burning; 7 

grazing) and the rest of the plots are located within sites on a range of different management 8 

practices (remaining sites: drainage; grazing; burning). 9 

CH4 flux measurements 10 

At each site CH4 fluxes were measured using a similar measurement procedure. A cylindrical 11 

PVC collar was inserted into the soil and left in place for a number of weeks or months. On 12 

each sampling occasion, a lid was sealed on top, and left in place for up to 2 h, but more 13 

commonly 30 min to 1 h. Samples were removed by syringe through a 3-way tap or rubber 14 

septum, and analysed on a gas chromatograph, together with replicates of three or four 15 

standard gases with known concentrations. For each sequence of gas samples from a 16 

chamber, the flux (mol m -2 s-1) was calculated as the rate of change in concentration (mol 17 

mol -1) with time (s), by linear regression; taking into account the density of air, chamber 18 

volume, and  surface area . At most of these sites, measurements were made approximately 19 

monthly over one or more years, covering all seasons.  Where there are important differences 20 

in methodology (chamber size, gas sampling method etc.), these are detailed in Table 1 of 21 

Levy et al.,(2012). Full details of the methods used can be found elsewhere (Billett et al., 22 

2010, Carfrae et al., 2007, Dinsmore et al., 2009, Gray, 2006, Ward et al., 2007). 23 
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Vegetation Sampling 1 

At each site vegetation composition was assessed as percentage cover by species for vascular 2 

plants, bryophytes, macro-lichens and bare peat from within each of the CH4 chambers 3 

except at Moor House. At Moor House vegetation was averaged from three randomly located 4 

quadrats within each treatment plot; deriving a mean cover for each treatment. Cover was 5 

assessed from the chambers located in Wales (Migneint) from photographs with species 6 

identification confirmed from voucher specimens. All percent cover values were converted to 7 

the ten point DOMIN scale (sensu Dahl and Hadač (1941) see Rodwell, 1991a) prior to 8 

analyses. 9 

Functional Classification 10 

De Deyn et al., (2008) suggest a trait base approach to plant classification in relation to 11 

carbon. However, in bryophyte dominated systems such as peatlands, quantitative plant trait 12 

data are not yet widely available. We therefore use a systematic approach to define functional 13 

groups from qualitative characteristics that we expect to have a relationship to CH4 fluxes; 14 

these attributes are defined in Table S1. Most of the attributes are taken directly from Hill et 15 

al.,  (2004) for vascular species and Hill et al., (2007) for bryophytes, however, there were 16 

some exceptions to this. For Sphagnum spp., life forms were derived to reflect a microhabitat 17 

classification with the assumption that this has a close relationship to water table depth. 18 

Vascular plants were classified as possessing aerenchyma from literature sources or this was 19 

assumed in the absence of evidence but where strong habitat association exists i.e. those 20 

known to inhabit inundated sites. We also include a literature derived nitrogen fixation 21 

classification. Functional groups were classified such that groups of species that have the 22 

same life form, woodiness, aerenchyma and N fixation, comprise the same functional group 23 

(Table S2). The following serve as examples: Myrica gale is functionally coded “PnwAAct” 24 
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meaning it is a nanophanerophyte (Pn), woody (w) , possesses aerenchyma (A), and has an 1 

actinorhizal nitrogen fixation relationship (Act); Hylocomium splendens and Pleurozium 2 

schreberi are both coded “Weh” having a weft life form (We) and being herbaceous (h); 3 

Sphagnum capillifolium and S. fuscum were coded “HumhCya” meaning hummock form 4 

(Hum), herbaceous (h) and likely to harbour N fixing cyanobacteria (Cya). An additional 5 

standalone type was also used for bare peat; ultimately the 135 different species recorded 6 

from the UK, Canadian and Netherlands sites were arranged into 20 functional groups. 7 

Abundance data were summed for each functional group. 8 

Data Analysis 9 

Vegetation data were first analysed by Detrended Correspondence Analysis (DCA) to 10 

determine the correlation between the first axis and log mean CH4 emissions, entered as a 11 

passive variable; additionally site was also included as a passive variable. We then performed 12 

a Canonical Correspondence Analysis (CCA) to determine the relationship between 13 

species/functional groups and the experimental/management treatments. Due to the 14 

differences in methodology between sites, site was included as a co-variable. As with DCA, 15 

CH4 emissions were included as a passive variable. Both these analyses were carried out 16 

using Canoco 4.5 and Canodraw 4.1 software (ter Braak &  Šmilauer, 2002). 17 

Models to derive predictions of CH4 flux were developed using weighted averaging (WA) 18 

regression as in Bubier et al., (1995) and Dias et al., (2010). WA assumes a unimodal 19 

response of species to a certain environmental variable. This means that species have their 20 

maximum abundance at their optimum position along the environmental gradient. Although, 21 

plants do not respond directly to CH4 fluxes nor have an optimal CH4 flux in any biological 22 

sense, but the terms optimum and tolerance are retained for consistency with the literature on 23 

gradient analysis. As our approach is analogous  to Bubier et al., (1995) and Dias et al., 24 
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(2010) we refer the reader to these publications, and in addition, ter Braak and Barendregt 1 

(1986), Jongman et al., (1987), Birks et al., (1990) and ter Braak and Juggins (1993) for 2 

specific details of the WA methodology. The WA species optima are calculated as an average 3 

of the CH4 flux weighted by species abundance and that these optima, together with species 4 

abundance, are used to predict fluxes. To account for the prediction of extreme values we use 5 

only the classical deshrinking procedure as inverse deshrinking gave very similar results (see 6 

Birks et al., 1990, Osborne, 1991, ter Braak &  Barendregt, 1986, ter Braak &  van Dam, 7 

1989). The deshrinking procedure corrects the inherent bias toward the median of the 8 

observed range, resulting from taking averages twice during WA reconstitution: once in WA 9 

regression and once in WA calibration (see also Bubier et al., 1995) 10 

To explore the predictive ability of the WA technique a 70/30 spilt of the data was used to 11 

perform cross-validation; for each WA model a completely random selection without 12 

replacement of 30% of the vegetation stands were left out in turn for all possible 13 

combinations. The WA function from the selected vegetation stands was then applied to the 14 

omitted ones, giving for these plots a prediction and an error prediction.  15 

Finally, our approach to functional group classification was applied to the datasets from 16 

Bubier et al., (1995) and Dias et al., (2010). Here the species were grouped in the same way 17 

as detailed above; functional classifications for each of the species included can be found in 18 

the supporting material (Table S2). As neither Bubier et al., (1995) nor Dias et al., (2010) 19 

give species abundance data, we used the published optima to derive a median value for each 20 

functional group and taxonomic family for use in the WA calculations. We confine our 21 

comparison to family and functional groups as there was as no abundance data for assessing 22 

dominant species and as Bubier does not include any vascular species so it was not possible 23 

to include aerenchymatous species. Nevertheless, by using the same approach with our larger 24 
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dataset from our sites, a comparative evaluation of the success of our functional classification 1 

outwith the UK was made.2 
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Results 1 

The DCA analysis showed a negative correlation between axis one and CH4 emission in both 2 

species (-0.54) and functional group (-0.50). This indicates a strong relationship between the 3 

variance in species or functional group and CH4 emission. The variation explained by axes 1 4 

and 2 for the species and function group data was 15.9% and 29.2% respectively. As 5 

expected some species/functional groups/species are more correlated than others to CH4 6 

(Figure 1).  7 

Monte Carlo permutations of the canonical correspondence analysis (CCA) of the species 8 

data set showed that axis 1 (eigenvalue of axis 1 = 0.174,) and all axes (sum of all axes 9 

canonical eigenvalues = 0.480) were significant (p< 0.01). The cumulative percentage 10 

variance explained by all axes of the species data was 9.7% and of the species-environment 11 

relation was 76.2%. Axis 1 and 2 were more strongly correlated with grazing treatments than 12 

other treatments. A similar pattern was evident in the functional group dataset the canonical 13 

correspondence analysis (CCA) showed that axis 1 (eigenvalue of axis 1 = 0.119,) and all 14 

axes (sum of all axes canonical eigenvalues = 0.272) were significant (p< 0.01). The 15 

cumulative percentage variance explained by all axes of the species data was 16.1% and of 16 

the species-environment relation was 36.3%. Axis 1 and 2 were again more strongly 17 

correlated with grazing treatments than other treatments. In both species and functional group 18 

analyses CH4 emissions were most highly correlated to axis 3 but the correlation was weak 19 

(0.2 in both cases); the highest treatment correlation with axis 3 was a positive correlation to 20 

burning (spp: 0.39; FG: 0.25) and negative to drainage (spp: -0.32; FG: -0.27). 21 

Functional group appear to have a slightly narrower range of WA optima than species (Spp. – 22 

0.5 to 1.6; FG - 0.9 to 1.4), in addition species also appear to have wider tolerance (Figure 2). 23 

Species also have a propensity to be less widely distributed, for example, the highest WA 24 
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optima for species are associated with Vaccinium oxycoccos (1.6) and Sphagnum 1 

magellanicum (1.6) and lowest WA optima with Deschampsia flexuosa (0.5) and Festuca 2 

ovina (0.5); these species only appear in one site Whim, Forsinard and Auchencorth 3 

respectively. In comparison the functional group members are likely to be more widespread 4 

for instance LawnhCya occur in 2 sites, bare peat in 3 sites, hch in 2 sites and tfh in 5 sites.  5 

The WA optima (Figure 2) for species and functional groups allowed reliable predictions of 6 

CH4 fluxes based on both cross validation (Table 2) and the complete dataset (Figure 3a-h). 7 

Changing the spatial resolution from individual sites to sub site, treatment and plot levels 8 

decreases the predictive power as shown by decreases in r square (adjusted) values (Figure 9 

3). On the whole, functional groups appeared to be slightly better in linear predictive power (r 10 

squared) than taxonomic classification, species/family. However, the root mean squared error 11 

(RMSE) tended to be slightly higher for functional group than in species suggesting a better 12 

1:1 relationship for taxonomic classification such as species (Table 2 and Figure 3a-h).  13 

We found two published studies (Bubier et al., 1995, Dias et al., 2010) where there was plant 14 

species data to allow our functional group classification to be applied and the original 15 

correlation between species CH4 WA predictions and observed CH4 was good. The 16 

predictions based on WA calculated for our functional group classification for these studies 17 

showed good agreement with the published observed CH4 fluxes (adj r2 = 87.7). When WA 18 

predictions are plotted for all sites including the additional published sites against the 19 

observed values the r-squared (adjusted) is very high (0.87) and close to a 1:1 fit (WA CH4 = 20 

- 8.823 + 1.796 Observed CH4) (Figure 4). However, when using the family classification the 21 

correspondence between observed and predicted was poor (adj r2 = 2.7).  22 
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Discussion 1 

The low percentage of variance explained in the unconstrained ordination analyses here is 2 

due to the presence of many zero values in the data, and is typical for such noisy data sets 3 

representing long environmental gradients (c.f. Bubier, 1995). Nevertheless, significant 4 

relationships were detected for both species and functional groups in the constrained analyses 5 

in relation to land management practices and experimental treatments. Species tend to show a 6 

better correlation with the explanatory variables than functional groups. However, both 7 

classifications were significant. This serves to underline the evidence that practices such as 8 

grazing, drainage, burning and nitrogen manipulation can have a strong influence on species 9 

and thus functional group composition (e.g. Carfrae et al., 2007, Cooper et al., 2001, Grant et 10 

al., 1976, Gunnarsson, 2000, Hobbs, 1984, Kuhry, 1994, Marrs et al., 2004, Rawes &  11 

Hobbs, 1979, Stewart &  Lance, 1991). The WA method appears to work well for explaining 12 

variance in observed mean CH4 using either taxonomic or functional classifications. Bubier  13 

(1995) used the same technique and reported similarly high r2 values using on bryophyte 14 

composition data. Again using WA, Dias et al., (2010) also reported good relationships 15 

though with slightly lower r2 (0.47 - 0.67; derived from the published r values) for the fit 16 

between vascular and non-vascular species WA predictions and observed CH4 fluxes.   17 

The increase in variance explained with increasing spatial scales from plot-18 

level/treatment/sub-site /site is in accordance with the findings of Levy et al., (2012). Possible 19 

reasons for this were discussed at length in Levy et al., (2012) e.g. random measurement error 20 

in the flux and/or independent variable data, cancelling out as more measurements are 21 

averaged. However, one additional source of random measurement error here is the 22 

unaccounted observer error in the plant abundance data, although, the use of the DOMIN 23 

scale and including site as a co-variable in the ordination should compensate for this to some 24 
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extent. 1 

Methane flux has frequently been related to abiotic variables such as temperature  (Kettunen 2 

et al., 2000, Laine et al., 2007, MacDonald et al., 1998),  and water table levels (Liblik et al., 3 

1997, MacDonald et al., 1998) and this approach frequently forms the basis of process 4 

models (e.g. Smith et al., 2007). In an analysis of a large UK dataset, Levy et al., (2012) 5 

found that when spatial and temporal variation were controlled, up to ~75 % of the variance 6 

in CH4 fluxes could be explained.  Soil carbon, peat depth, soil moisture and pH together 7 

provided the best sub-set of explanatory variables. However, for the three sites where plant 8 

species composition data were available, this provided the highest explanatory power (Levy 9 

et al., 2012). Plant species composition is less routinely examined than environmental 10 

variables such as water table levels or temperature but there is increasing evidence of their 11 

power as an indicator of methane flux. In a UK bog  (Greenup et al., 2000) and in Germany 12 

(Couwenberg et al., 2011) good relationships were evident between aerenchymatous species 13 

and CH4 emission. In contrast we found weaker relationships with aerenchymatous species 14 

than either all plant species or our functional groups. We suspect this is because 15 

aerenchymatous species are only showing one functional response and there are likely to be 16 

multi-functional responses that promote or decrease methane flux with regard to 17 

anaerobic/aerobic decomposition processes. Strong correlations between the emission of CH4 18 

and bryophytes abundance were found in Canada (Bubier et al., 1995) that were indicative of 19 

long term water table levels and temperature regimes. In the Netherlands, good agreement 20 

between plant species composition and methane flux were detected (Dias et al., 2010) again 21 

directly related to water table level. The data examined here add to this evidence and 22 

indicates that both species and functional groups appear to be good predictors of methane 23 

flux. Nevertheless, the previous analyses (Levy et al., 2012) suggests that plants may not 24 

always have simple relationships to long term water table level and temperature and that 25 

Page 16 of 30Global Change Biology



Peatland methane indicator values 

17 

other mechanisms may be responsible. That said, there still seems to be good potential for 1 

either species or functional groups to be indicators of methane flux. Species and higher 2 

taxonomic classifications tended to show a slightly better 1:1 relationship with predicted and 3 

observed CH4 emissions as indicated by lower RMSE values but higher r2 were found for 4 

functional groups. Nonetheless, if plant composition is to be used to predict or indicate 5 

methane flux on wider spatial scales then it would seem that a functional group approach may 6 

have a reasonable predictability and wider geographic applicability than species.   7 

That the functional classification applied here is at least as good (in terms of r2) as the 8 

taxonomic classification is encouraging. It also suggests that the classification of functional 9 

groups used here captures to some extent the function-process-vegetation relationship and is 10 

somewhat sensitive to responses to disturbance. In addition, the functional group 11 

classification gives generality to the method spanning multiple sites and regions, as 12 

demonstrated by the application to the Canadian and Dutch data. As the total number of 13 

species involved in larger scale studies can be quite large the use of functional groups 14 

addresses the problem of some species being isolated to single sites or regions. By 15 

aggregating species into functional groups this become less of a problem without the loss of 16 

explanatory power.  17 

To improve this approach it would be useful to evaluate whether the functional characteristics 18 

used here are the most appropriate. Quantitative traits (see e.g. De Deyn et al., 2008) with 19 

more ‘biogeochemical’ characteristics may be a more appropriate for classifying functional 20 

groups (e.g. foliar C/N ratio, annual growth rate, below and above ground biomass ratio, 21 

rooting depth, quantitative assessment of labile substrate production for methanogenesis etc.) 22 

and traits related to the response to environmental factors that also control CH4 flux (such as 23 

water table level and N availability). However, at present these cannot be defined for many 24 
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species across a range of taxa, particularly bryophytes, as pertinent data are lacking. Further 1 

refinements to improving this approach need co-located datasets of both CH4 flux and 2 

vegetation from broad geographical scales (different countries and continents). These data 3 

would give a more comprehensive testing of the WA and functional group approaches 4 

proposed here and assess its applicability on a global scale. 5 

The obvious potential strength of a vegetation indicator approach is that by using species or 6 

functional group abundance there is the potential for indicative fluxes to be mapped. For 7 

example, from data commonly gathered for vegetation mapping programmes such as the 8 

National Vegetation Classification or Countryside Survey (NVC; CS) in the UK (Rodwell, 9 

1991b) or Corine Biotope mapping in Europe (Moss et al., 1991) or national vegetation 10 

classification in Northern America (Grossman et al., 1998) one could potentially derive 11 

methane flux indicator values for plant communities from species or functional group. In 12 

addition, it may also be possible to assess the effects on methane flux indirectly through 13 

examining vegetation change in relation to vegetation degradation or restoration activities. 14 

This may however require the regional calibration of WA optima for species and functional 15 

groups within regions. In terms of UK plant communities, it appears as though functional 16 

group approach may perform slightly better than species in relation to community level 17 

fluxes (see supplementary material Fig S1). The limiting factor is that the approach requires 18 

the raw species abundance data, which is not always readily available, and a calibration of the 19 

NVC communities using co-located flux data, which is also not routinely undertaken. We 20 

would therefore encourage researchers to routinely incorporate vegetation measures into 21 

studies of methane and other GHG’s to allow more comprehensive analyses of the indicator 22 

value of vegetation for GHG inventory. 23 

The method also has the potential for incorporation into large-scale (national) greenhouse gas 24 
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accounting programmes (in relation to peatland condition/management). Couwenberg et al., 1 

(2011) have suggested a method for the incorporation of vegetation data into GHG 2 

inventories. However, much of their proposed model relies on ‘expert judgement’ and at 3 

present we lack sufficient data for a critical evaluation of the use of expert judgement. Of 4 

particular concern is the question of scaling up and the transmission of flux and vegetation 5 

data from the small scale of chambers (<1m2) to landscapes. We know of no studies where 6 

this has been attempted, yet techniques for testing this are available such as eddy covariance 7 

and co-located landscape scale vegetation survey.  8 

De Deyn et al., (2008) call for a need to identify easily measurable, cost-effective, 9 

aboveground traits that capture belowground carbon dynamics across different spatial and 10 

temporal scales. Our results strongly suggest that predictive models for methane emissions 11 

could be derived using both species (for use in national studies) and/or functional groups (for 12 

use in both national and global studies) using abundance data alone. However, we suggest 13 

that further study is required using co-located vegetation and methane flux measurements at a 14 

range of spatial scales before the links between vegetation and GHG flux are more coherently 15 

established.  16 
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Supporting Information 1 

The supporting information includes two tables and one figure comprising the following: 2 

Table S1: Attributes used in the classification of functional groups  3 

Table S2: Species functional group classification from datasets used in this analysis  4 

Figure S1: Predicted CH4 flux using a weighted average of species and functional group 5 
abundance against observed mean CH4 flux (Log) for National Vegetation Communities for 6 
the UK  7 
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Table 1: Details of site characteristics and experimental manipulations and/or management practices. *Modified here means that the vegetation is no 1 
longer indicative of semi-natural bog and has been altered by practices such as drainage, and grazing. 2 

 3 

Country Site Latitude Longitude Peatland Type Altitude 
(m) 

Annual 
rainfall 
(mm) 

Sub Sites Experimental treatments/Management 
practices 

total 
number 
of plots 

Scotland Auchencorth 55.79 N 3.24 W *Modified ombrotrophic 
blanket bog 

260 
1100 

None 9 plots, site drained and sheep grazed 
9 

 Forsinard 58.37 N 3.97 W Ombrotrophic blanket 
bog 180 1500 

Nam Breac 5 deer grazed plots 
5 

       Sletil 5 semi-natural plots 5 
       Maol Donn 5 semi-natural plots 5 
       Leir 5 semi-natural plots 5 
       Big House 3 burnt and 3 unburnt plots all open to 

sheep grazing 6 
       Cross Lochs 12 plots of drain blocked, unblocked and 6 

semi-natural controls 30 
 Whim 55.76 N 3.27 W Ombrotrophic raised 

bog 
280 

1100 

None Nitrogen manipulation experiment 4 plots 
each of NH3, NH4, NO3 additions and 
control 16 

Wales Migneint 52.99 N  3.80 W Ombrotrophic blanket 
bog 

480 
2000 

Migneint A Blocked and open drains open to (light) 
sheep grazing 36 

       Migneint C  Semi natural open to (light) sheep grazing 8 
       Migneint D Blocked and open drains open to (light) 

sheep grazing 36 
England Moor House 54.69 N 2.40 W Ombrotrophic blanket 

bog 
600 1900 Hard Hill burning 10 year rotation with (light) sheep 

grazing plots and control plots 16 
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Table 2: Results of cross-validation predictions for CH4  emission from plant species 1 
composition for five sites using weighted averaging from different classification levels, 2 
taxonomic:  family, species and dominant species, and functional: functional group and 3 
aerenchymatous/Sphagnum spp. only. A 70/30 split was used as training and test sets. 4 

Scale Classification Level r2 (adj) RMSE 
Site Family 0.66 0.18 
  Species 0.72 0.14 
  Dominant Species 0.67 0.23 

  Functional Group 0.81 0.23 
  Aerenchymatous/Sphagnum 0.24 0.24 
Sub-site Family 0.44 0.23 

 
Species 0.52 0.20 

 
Dominant Species 0.00 0.26 
Functional Group 0.59 0.25 

 
Aerenchymatous/Sphagnum 0.12 0.26 

Treatment Family 0.13 0.33 
  Species 0.25 0.28 
  Dominant Species 0.01 0.31 
  Functional Group 0.21 0.30 
  Aerenchymatous/Sphagnum 0.06 0.31 
Plot Family 0.08 0.34 

Species 0.18 0.30 

 
Dominant Species 0.14 0.33 
Functional Group 0.23 0.34 

  Aerenchymatous/Sphagnum 0.06 0.34 

  5 
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Figure Legends 1 

Figure 1: DCA biplots of plant species (a) and functional group (b) composition. CH4 2 

flux and site centroids plotted as supplementary variables. Only species with weight 3 

above 10% were included for clarity. 4 

Figure 2: Methane flux weighted averaged optima and tolerances of plant species and 5 

functional group derived from the complete data set. 6 

Figure 3: Plots of WA-predicted CH4 flux (nmol CH4 m
-2 s-1) using species (a) and 7 

functional group (b), versus observed values for the five main sites, sub-sites and 8 

treatment plots based on all data. In all plots the black line represents a 1:1 fit. (i) Mean 9 

plot level WA predictions for species, r2 (adj) – 0.31, and functional group, r2 (adj) – 10 

0.24. (ii) Mean treatment level WA predictions for species, r2 (adj) – 0.39, and 11 

functional group, r2 (adj) – 0.33. (iii) Mean sub-site level WA predictions for species, r2 12 

(adj) – 0.59 and functional group. r2 (adj) – 0.80. (iv) Mean site level WA predictions 13 

for species, r2 (adj) - 0.91, and functional group, r2 (adj) - 0.96. 14 

Figure 4: Predicted CH4 flux  using a weighted average of functional group abundance 15 

against observed median CH4 flux data from Bubier et al. (1995) and Dias et al. (2010); 16 

the UK sites analysed here are also included. The blue line indicates a 1:1 fit (r2 (adj) - 17 

0.87). N.B. This Figure has units in mg CH4 m
-2 d-1 (c.f. Figs 1-3 where units are nmol 18 

CH4 m
-2 s-1 ) for consistency with the data presented in Bubier et al., (1995) and Dias et 19 

al., (2010).  20 
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Methane Indicator Values for Peatlands: a comparison of taxonomic species and 

functional groups 

Supporting Information 

Table S1: Attributes used in the classification of functional groups (from Hill et al., 

2007a, Hill et al., 2004). V and NV superscripts relate to whether traits are associated 

with vascular or nonvascular plants. Species are attributed to functional groups 

according to which attributes they possess in relation to life form, woodiness, 

aerenchyma, N fixation, and an additional standalone type of bare peat. Note that not all 

life forms shown here were included in our functional groups but they are included for 

completeness. 

  



Functional trait  

(relationship to CH4 flux) Code Definition 

Life Form Ch Chamaephyte V 

(disturbance/decomposition/water table) Gb Bulbous geophyte V 

 Gn Non-bulbous geophyte (rhizome, corm or tuber) V 

 hc Hemicryptophyte V 

 Hy Perennial hydrophyte (perennial water plant) V 

 Hz Annual hydrophyte (aquatic therophyte) V 

 Ph Mega-, meso- and microphanerophyte V 

 Pn Nanophanerophyte V 

 Th Therophyte (annual land plant) V 

 Holl Plants (mainly Sphagnum and other) that are associated with Hollows NV 

 Hum Plants (mainly Sphagnum and other bryophytes) that are associated with  Hummocks 

 Lawn Plants (mainly Sphagnum and other bryophytes) that are associated with  Lawns or Mats NV 

 Loo Plants (mainly Sphagnum and other bryophytes) that are associated with  Loose Hummocks NV 

  Pool Plants found mainly in Pools NV 

 Ac Aquatic colonial (formless loose colonies) NV 

 At Aquatic trailing (attached to substrate) NV 

 Cu Cushion (dome-shaped colonies) NV 

 De Dendroid (with stolons and erect shoots) NV 

 Fa Fan (branches in plane on vertical substrate) NV 

 Le Lemnoid (floating on the water) NV 

 Mr Mat, rough (creeping, lateral branches erect) NV 

 Ms Mat, smooth (creeping, branches lying flat) NV 

 Mt Mat, thalloid (creeping, thalli forming a layer) NV 

 Sc Solitary creeping (creeping solitary shoots) NV 

 St Solitary thalloid (rosette forming patch not mat) NV 

 Tf Turf (vertical stems with little or no branching) NV 

 Thread Thread (solitary thread-like creeping stems) NV 

 Tp Turf, protonemal (persistent protonema) NV 

 Ts Turf, scattered (scattered vertical shoots) NV 

 Tuft Tuft (loose cushions, not dome-shaped) NV 

 We Weft (intertwining branched layers) NV 

Woodiness (decomposition substrate) h Herbaceous V &NV 

 sw Semi-woody V 

  w Woody V 

Aerenchymatous  

(CH4 emission) A Plants possessing aerechymatous tissue in the roots V 

 PA 

Plants possessing aerechymatous tissue and have been shown to have increased methane 

emission or pressurised flow V 

 a Plants assumed to posses aerechymatous tissue in the roots V 

N Fixation Rhi Rhizobia N fixing V 

(CH4 emission/root exudation) Act Actinorhizal N fixing V 

 Cy Known relationship with N fixing Cyanobacteria NV 

 Bare peat (decomposition) Bare peat No above ground vegetation present 

 



Table S2: Species functional group classification from datasets used in this analysis. 

Each study is coded as follows: 1-This study; 2 - Bubier et al. (1995); 3 - Dias et al. 

(2010). Codes for Figure 1 are shown for this study only. 

Plant Type Species Author Functional 

Groups 

Fig 1 code Study 

Vascular Agrostis canina L. hch  1 

 Agrostis stolonifera L. hch  3 

 Alopecurus pratensis L. hcha  3 

 Anthoxanthum odoratum L. hch  3 

 Bellis perennis L. hch  3 

 Calluna vulgaris (L.) Hull Chw Cal vulg 1 

 Caltha palustris L. hchA  3 

 Cardamine pratensis L. hcha  3 

 Carex acuta L. hchPA  3 

 Carex cuprina (I. Sándor ex Heuff.) Nendtv. 

ex A. Kern. 

hchPA  3 

 Carex echinata Murray hchPA  1 

 Carex nigra L. hchPA  1 

 Carex panicea L. hchPA  1+3 

 Cerastium fontanum Baumg. hch  3 

 Cirsium palustre (L.) Scop. hcha  3 

 Deschampsia flexuosa (L.) Trin. hch  1 

 Drosera anglica Huds. hcha  1 

 Drosera rotundifolia L. hcha  1+3 

 Dryopteris carthusiana (Vill.) H.P. Fuchs hchA  3 

 Dryopteris cristata (L.) A. Gray hchA  3 

 Eleocharis palustris (L.) Roem. & Schult. hchPA  3 

 Empetrum nigrum L. Chw  1+3 

 Erica tetralix L. Chwa Eric tet 1+3 

 Eriophorum angustifolium Honck. hchPA Erio ang 1+3 

 Eriophorum vaginatum L. hchA Erio vag 1 

 Festuca pratensis Huds. hcha  3 

 Festuca rubra L. hch  3 

 Festuca ovina L. hch  1 

 Galium saxatile L. hch  1 

 Galium palustre L. hcha  3 

 Glechoma hederacea L. hch  3 

 Glyceria fluitans (L.) R. Br. hcha  3 

 Glyceria maxima (Hartm.) Holmb. hcha  3 

 Holcus lanatus L. hch  3 

 Huperzia selago (L.) Bernh. ex Schrank & Mart. Chsw  1 

 Hydrocotyle vulgaris L. hchPA  3 

 Juncus acutiflorus Ehrh. hchA  3 

 Juncus effusus L. hchPA Junc eff 3 



Plant Type Species Author Functional 

Groups 

Fig 1 code Study 

 Vascular Juncus squarrosus L. hchA  1 

 Leontodon autumnalis L. hch  3 

 Lolium perenne L. hch  3 

 Lonicera periclymenum L. hch  3 

 Lotus uliginosus Hoffman hchA  3 

 Molinia caerulea (L.) Moench hchA  1+3 

 Myrica gale L. PnwAAct  1 

 Nardus stricta L. hch  1 

 Narthecium ossifragum (L.) Huds. hcha Nar ossi 1 

 Pedicularis palustris L. hchA  3 

 Persicaria maculosa Gray hch  3 

 Phragmites australis (Cav.) Trin. ex Steud. hchPA  3 

 Plantago lanceolata L. hch  3 

 Poa pratensis L. hcha  3 

 Poa trivialis L. hcha  3 

 Polygala serpyllifolia Hose Chh  1 

 Potentilla anserina L. hch  3 

 Potentilla erecta (L.) Raeusch. hch  1 

 Ranunculus acris L. hch  3 

 Ranunculus repens L. hch  3 

 Rhinanthus angustifolius C.C. Gmel. hch  3 

 Rubus chamaemorus L. hcha  1 

 Rubus sp. N/A Pnw  3 

 Rumex acetosa L. hch  3 

 Taraxacum officinale F.H. Wigg. hch  3 

 Trichophorum cespitosum (L.) Hartm. hchA Tri cesp 1 

 Trifolium repens L. hch  3 

 Vaccinium myrtillus L. Chw  1 

 Vaccinium oxycoccos L. Chwa  1 

 Vaccinium vitis-idaea L. Chw  1+3 

Non 

Vascular 

Algae N/A Msh  1 

 Aulacomnium palustre (Hedw.) Schwägr. Tfh  1+2 

 Calliergon giganteum (Schimp.) Kindb. Tfh  2 

 Calliergon stramineum (Dicks. ex Brid.) Kindb. Weh  2 

 Calypogeia meylanii H. Buch Msh  2 

 Calypogeia muelleriana (Schiffner) K. Müller Msh  1 

 Campylium stellatum (Hedw.) C.E.O. Jensen Weh  2 

 Campylopus atrovirens De Not. Tufth  1 

 Cephalozia bicuspidata (L.) Dumort. Msh  1 

 Cephalozia sp. N/A Msh  2 

 Cinclidium stygium Sw. Tfh  2 

 Cladonia arbuscula (Wallr.) Hale & W.L.Culb. Weh  1 

 Cladonia bellidiflora (Ach.) Schaerer Tfh  1 

 Cladonia chlorophaea (Flörke ex Sommerf.) Sprengel Tfh Clad port 1 
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Cladonia portentosa (Dufour) Coem. Weh  1 

 Cladonia uncialis (L.) Weber ex F.H.Wigg. Weh  1 

 Cladopodiella fluitans (Nees) Jörg. Weh  2 

 Cratoneuron filicinum (Hedw.) Spruce Weh  2 

 Dicranum polysetum Sw. Tufth  2 

 Dicranum scoparium Hedw. Tufth  1 

 Dicranum undulatum  Schrad. ex Brid. Tufth  2 

 Diplophyllum albicans (L.) Dumort. Msh  1 

 Drepanocladus aduncus (Hedw.) Warnst. Weh  2 

 Hypnum jutlandicum Holmen & Warncke Msh Hypn jut 1 

 Hylocomium splendens (Hedw.) Schimp. Msh  1 

 Hypogymnia physodes (L.) Nyl. Mth  1 

 Limprichtia revolvens  (Sw.) Loeske Weh  2 

 Loeskhypnum badium (Hartm.) Paul Weh  2 

 Lophocolea bidentata (L.) Dumort. Weh  1 

 Lophozia sp N/A Msh  2 

 Meesia longiseta Hedw. Tfh  2 

 Moerckia hibernica (Hook.) Gottsche Mth  2 

 Mylia anomala (Hook.) Gray Msh  2 

 Mylia taylorii (Hook.) Gray Tufth  1 

 Odontoschisma sphagni (Dicks.) Dumort. Msh  1 

 Oncophorus wahlenbergii Brid. Tfh  2 

 Paludella squarrosa (Hedw.) Brid. Tfh  2 

 Plagiomnium ellipticum (Brid.) T.J. Kop. Tfh  2 

 Plagiothecium undulatum (Hedw.) Schimp. Msh  1 

 Pleurozium schreberi (Willd. ex Brid.) Mitt. Weh Pleu sch 1+2 

 Pohlia nutans  (Hedw.) Lindb. Tufth  2 

 Polytrichum commune Hedw. Tfh Poly com 1+3 

 Polytrichum strictum Menzies ex Brid. Tfh  2 

 Pseudoscleropodium purum (Hedw.) M. Fleisch. Weh  1 

 Ptilidium ciliare (L.) Hampe Weh  1 

 Ptilidium pulcherrimum (Weber) Hampe Weh  2 

 Ptilium crista-castrensis (Hedw.) De Not. Weh  2 

 Racomitrium lanuginosum (Hedw.) Brid. Tfh Raco lan 1 

 Rhytidiadelphus loreus (Hedw.) Warnst. Weh  1 

 Rhytidiadelphus squarrosus (Hedw.) Warnst. Weh  1+3 

 Sanionia uncinata  (Hedw.) Loeske Weh  2 

 Scapania sp. N/A Weh  2 

 Scorpidium scorpioides  (Hedw.) Limpr. Weh  2 

 Sphagnum angustifolium (Warnst.) C.E.O. Jensen HumhCya  2 

 Sphagnum annulatum  Warnst. LawnhCya  2 

 Sphagnum capillifolium (Ehrh.) Hedw. HumhCy Spha cap 1+2 

 Sphagnum centrale C.E.O. Jensen LoohCya  2 

 Sphagnum compactum Lam. & DC. LoohCya  2 



Plant Type Species Author Functional 

Groups 

Fig 1 code Study 

Non 

Vascular 

Sphagnum cuspidatum Ehrh. ex Hoffm. PoolhCy  1 

 Sphagnum fallax H. Klinggr. LoohCy Spha fal 1+2+3 

 Sphagnum flexuosum  Dozy & Molk. LoohCya  2 

 Sphagnum fuscum (Schimp.) H. Klinggr. HumhCya  2 

 Sphagnum girgensohnii Russow LoohCya  1 

 Sphagnum lindbergii Schimp. LoohCya  2 

 Sphagnum magellanicum Brid. LawnhCy  1+2 

 Sphagnum majus (Russow) C.E.O. Jensen LoohCya  2 

 Sphagnum palustre L. LoohCya Spha pal 3 

 Sphagnum papillosum Lindb. LawnhCy Spha pap 1 

 Sphagnum platyphyllum (Lindb.) Warnst. LoohCya  2 

 Sphagnum pulchrum (Lindb.) Warnst. LoohCya  2 

 Sphagnum russowii Warnst. HumhCya  2 

 Sphagnum subnitens Russow & Warnst. HumhCya  2 

 Sphagnum tenellum (Brid.) Brid. LoohCy  1 

 Sphagnum tenerum Sull. & Lesq. ex Sull. HumhCya  2 

 Sphagnum warnstorfii Roll LoohCya  2 

 Tomenthypnum falcifolium Ren. ex Nich. Tfh  2 

 Tomenthypnum nitens (Hedw.) Loeske Tfh  2 

 Warnstorfia exannulata (Schimp.) Loeske Weh  2 

N/A Bare Peat N/A Bare Peat Bare peat 1 

  

  



Figure S1: Predicted CH4 flux using a weighted average of species and functional group 

abundance against observed mean CH4 flux (Log) for National Vegetation Communities 

for the UK. Plots were classified according to the NVC community they best fitted by a 

weighted species match and then an NVC community mean for observed and WA flux 

estimates were calculated. The blue line indicates a 1:1 fit (species r
2
 (adj) - 0.46; 

functional group r
2
 (adj) - 0.85). Bare peat is a not an NVC community but indicates 

those plots where bare peat dominates and NVC community was ambiguous. NVC 

communities are: M1 - Sphagnum auriculatum bog pools; M2 - Sphagnum 

cuspidatum/recurvum bog pools; M6 - Carex echinata, Sphagnum auriculatum 

/recurvum mire; M15 - Scirpus cespitosus, Erica tetralix wet heath; M16 - Erica 

tetralix, Sphagnum compactum wet heath; M17 - Scirpus cespitosus, Eriophorum 

vaginatum mire; M18 - Erica tetralix, Sphagnum papillosum mire. 
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