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[1] This study investigates the statistical significance of the
trends of station temperature time series from the European
Climate Assessment & Data archive poleward of 60�N. The
trends are identified by different methods and their signifi-
cance is assessed by three different null models of climate
noise. All stations show a warming trend but only 17 out of
the 109 considered stations have trends which cannot be
explained as arising from intrinsic climate fluctuations when
tested against any of the three null models. Out of those 17,
only one station exhibits a warming trend which is significant
against all three null models. The stations with significant
warming trends are located mainly in Scandinavia and Ice-
land. Citation: Franzke, C. (2012), On the statistical significance
of surface air temperature trends in the Eurasian Arctic region,
Geophys. Res. Lett., 39, L23705, doi:10.1029/2012GL054244.

1. Introduction

[2] The Arctic has experienced some of the most dramatic
environmental changes over the last few decades which
includes the decline of land and sea ice, and the thawing of
permafrost soil. These effects are thought to be caused by
global warming and have potentially global implications. For
instance, the thawing of permafrost soil represents a potential
tipping point in the Earth system and could lead to the sudden
release of methane which would accelerate the release of
greenhouse gas emissions and thus global warming.
[3] Whilst the changes in the Arctic must be a concern, it

is important to place them in context because the Arctic
exhibits large natural climate variability on many time scales
[Polyakov et al., 2003] which can potentially be mis-
interpreted as apparent climate trends. For instance, natural
fluctuations on a daily time scale associated with weather
systems can cause fluctuations on much longer time scales
[Feldstein, 2000; Czaja et al., 2003; Franzke, 2009]. This
effect is called climate noise. Even very simple stationary
stochastic processes can create apparent trends over rather
long periods of time; so-called stochastic trends [Cryer and
Chan, 2008; Cowpertwait and Metcalfe, 2009; Barbosa,
2011; Fatichi et al., 2009; Franzke, 2010, 2012]. On the
other hand, a so-called deterministic trend arises from
external factors like greenhouse gas emissions.
[4] Specifically, here I will ask whether the observed

temperature trends in the Eurasian Arctic region are outside

of the expected range of stochastic trends generated with
three different null models of the natural climate background
variability. Choosing the appropriate null model is crucial
for the statistical testing of trends in order not to wrongly
accept a trend as deterministic when it is actually a stochastic
trend [Franzke, 2010, 2012].
[5] There are two paradigmatic null models for repre-

senting climate variability: short-range dependent (SRD)
and long-range dependent (LRD) models [Robinson, 2003;
Franzke, 2010, 2012; Franzke et al., 2012]. In short, SRD
models are the most used models in climate research and
represent the initial decay of the autocorrelation function
very well. For instance, a first order autoregressive process
(AR(1)) has an exponential decay of the autocorrelation
function. LRD models represent the low-frequency spectrum
very well, have a pole at zero frequency and a hyperbolic
decay of the autocorrelation function. One definition of a
LRD process is that the integral over its autocorrelation
function is infinite while a SRD process has always an inte-
grable autocorrelation function [Robinson, 2003; Franzke
et al., 2012]. In general, both stochastic processes can gen-
erate stochastic trends but stochastic trends of LRD models
can last for much longer than stochastic trends of SRD
models. This shows that the rate of decay of the autocorre-
lation function has a strong impact on the length of stochastic
trends. In addition to these two paradigmatic models we will
also use a non-parametric method to generate surrogates
which exactly conserve the autocorrelation function of the
observed time series. Figure 1 displays the autocorrelation
function for one of the used stations and the corresponding
autocorrelation functions of the above three models. It has to
be noted that there are a myriad of nonlinear stochastic
models which can potentially be used to represent the back-
ground climate variability and the significance estimates will
depend on the used null model. However, I have chosen the
three above models because two of them represent paradig-
matic models for representing the correlation structure and
one conserves exactly the empirical correlation structure.

2. Data and Methods

[6] I use the daily mean temperatures from 109 stations
from the European Climate Assessment and Data archive
compiled by Klein Tank et al. [2002] poleward of 60�N.
Only stations with an almost continuous data coverage are
used, these have at most a few days missing at a time, and
missing data are interpolated as in Franzke [2010, 2012].
The data are de-seasonalised by subtracting the average
temperature of each day. The stations cover time periods
starting between 1881 and 1980 and ending between 1994
and 2011. The locations of the stations used is depicted in
Figure 2.
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[7] The definition of a trend is subjective and depends on
the method used [Wu et al., 2007]. In order to evaluate the
robustness of trends I use different trend identification
methods: (i) ordinary least-squares regression, (ii) robust
regression, (iii) generalised linear model regression, (iv)
wavelets and (v) ensemble empirical mode decomposition.
In the following I will only briefly describe these methods; a
more complete exposition is given in Franzke [2012].
[8] (i) Ordinary least-squares (OLS) regression fits poly-

nomial functions of arbitrary order to data. OLS decomposes
a time series into a signal and residuals and assumes that the
residuals come from a distribution which has a finite vari-
ance and are serially uncorrelated. In this study I use linear,
quadratic and cubic polynomials as the signal which will
then be interpreted as the trend [e.g., Franzke, 2012].
[9] (ii) Robust regression [Draper and Smith, 1998] is a

method which can deal with outliers. It is a form of weighted
least-squares regression and is done iteratively. At each
iteration step a new set of weights are computed by bisquare
weighting based on the residuals, with larger residuals hav-
ing smaller weights (see Franzke [2012] for more details).
The weights depend on the residuals and consequently large
deviations and outliers are down weighted and have less
influence on the regression fit.
[10] (iii) Generalized Linear Model (GLM) regression

generalises OLS regression by allowing the dependent var-
iable to stem from a distribution from the exponential family
[Draper and Smith, 1998]. GLM can be useful when the
residuals are non-Gaussian distributed.
[11] (iv) Wavelets are wave-like functions representing

brief oscillations [Mallat, 1999]. Here I use the wavelet
approach of Andreas and Trevino [1997] to detect linear and
quadratic trends. See Andreas and Trevino [1997] for more
details.
[12] (v) The Ensemble Empirical Mode Decomposition

method (EEMD) [Wu and Huang, 2009; Huang et al., 1998;
Huang and Wu, 2008] decomposes a time series into a finite
number of intrinsic mode functions and an instantaneous
mean. When this instantaneous mean is not constant I refer

to it as a trend, which is possibly nonlinear [Wu et al., 2007;
Franzke, 2009, 2010, 2012] over the time series length.
[13] The above methods will be applied to monthly mean

time series which have been computed from the daily data.
This has been done to reduce the noise and to concentrate on
the longer time scales. A comparison of the trends reveal that
a cubic regression fit gives the smallest root mean square
error (not shown). This is consistent with the results in
Franzke [2012]. Furthermore, a visual inspection gives the
impression that the cubic regression fit and the non-para-
metric EEMD trend are very similar. Also cubic OLS, robust
regression and cubic GLM regression give very similar
results. This provides further evidence that temperature
trends are non-linear [Franzke, 2010, 2012].
[14] Thus, for the significance tests, I will focus on the

cubic regression trends. The magnitude of a trend is defined
as the range between the minimum and maximum value of
the trend line which in most cases corresponds to the start
and end of the time series. This is a robust definition because
it is a very smooth function and variability on interannual
and decadal time scales has thus been removed. The cubic
regression is very similar to the EEMD trend and EEMD has
been shown to be able to extract climate variability on
interannual and decadal time scales [Wu et al., 2007;
Franzke, 2009; Franzke and Woollings, 2011] and mean-
ingful trends. Furthermore, defining the magnitude of the
trend as the range between the start and end point gives
similar results.
[15] After identifying the trends I have to assess their

statistical significance. This has been done by examining
how often they are outside the trend ranges of the ensembles
of surrogate time series generated by the three null models
representing the background climate variability of the
respective stations. To create ensembles of surrogate time
series I use a first order autoregressive model (AR(1)
[Franzke, 2010, 2012]) as a SRD model, and an auto-
regressive fractionally integrated moving average model
(ARFIMA(0,d,0)) [Robinson, 2003; Franzke, 2010, 2012] as
a LRD model, were d denotes the LRD parameter. As a non-
parametric way of computing surrogate data with exactly the
same autocorrelation function I use the phase scrambling
method by Theiler et al. [1992]. This method computes the
power spectrum of a time series and then randomises the

Figure 1. Autocorrelation functions for Falun, Sweden,
station (black line), corresponding AR(1) process (red line),
ARFIMA process (blue line) and phase scrambling surrogate
(magenta line).

Figure 2. Map of stations: Magnitude of the observed trend
in �C per decade.
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phase spectrum. Because the power spectrum is the Fourier
transform of the autocorrelation function (Wiener-Khinchin
theorem) randomising the phase spectrum does not affect the
autocorrelation function (see Figure 1).
[16] The parameters of the AR(1) and ARFIMA models

have been estimated from the observed daily data [Franzke,
2009, 2010, 2012]. I use daily data because were the time
series really to stem from a AR(1) process then one could
relate those parameters to the corresponding AR(1) para-
meters for averaged data [Kushnir et al., 2006; D. I.
Vyushin et al., Modelling and understanding persistence of
climate variability, submitted to Journal of Geophysical
Research, 2012]. Similarly, if the data were indeed from a
ARFIMA(0,d,0) process then the parameters from daily data
would also be the same as for averaged data (Vyushin et al.,
submitted manuscript, 2012). However, using monthly or
seasonally averaged data would increase the estimation error.
Surrogates were then created by the phase scrambling
method (see Franzke [2012] for more details). I created 1000
surrogate time series from each of the three models for each
station. For the AR(1) and ARFIMA models parameter esti-
mation uncertainty also was taken into account for the Monte
Carlo experiments [Franzke, 2010, 2012]. The trends in the
surrogate time series were then computed using cubic OLS.
This results in a distribution of trends. If now the observed
trend is outside the 95% percentile of the distribution of the
stochastic trends then I claim that the observed trend is a
deterministic trend with respect to the chosen null model of
climate variability and likely due to external factors like
greenhouse gas emissions.

3. Results

[17] Figure 2 displays the location of all stations and the
colour coding indicates the magnitude and sign of the tem-
perature trends. The first thing to note is that all stations
experience a warming trend over their respective observa-
tional periods. The largest trends (more than 0.4�C per
decade) are in central Scandinavia and Svalbard. Most of
Siberia experienced warming trends of about 0.2–0.3�C per
decade.
[18] After finding evidence for warming trends we have

now to assess their statistical significance; do the magnitudes
of the observed trends lie already outside of the expected
range of natural climate variability? The above three sig-
nificance tests reveal that 17 of the 109 stations are signifi-
cant against an AR(1) null model (Figure 3a), 3 stations are
significant against a ARFIMA null model (Figure 3b), and
8 stations are significant against a climate noise null
hypothesis using phase scrambling surrogates (Figure 3c).
All these trends are significant at the 97.5% confidence
level. This shows that while the Eurasian Arctic region
shows a widespread warming trend, only about 15% of the
stations are significant against any of the three significance
tests.
[19] Using the three different null models enables us to

introduce degrees of significance using the scale introduced
in Franzke [2012]. I claim strong evidence of a significant
trend if the observed trend is significant against all three null
models; I claim moderate evidence of a significant trend if
the observed trend is significant against two of the null
models; and consequently I claim weak evidence of a

Figure 3. Stations with a statistically significant trend
against (a) AR(1), (b) ARFIMA, (c) phase scrambling
null model and (d) stations with a significant trend: blue:
weak evidence, green: moderate evidence and red: strong
evidence.
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significant trend if the observed trend is significant against
just one of the null models.
[20] Applying this scale to the results I find just 1 station

with strong evidence, 7 stations with moderate evidence and
9 stations with weak evidence for a warming trend which
cannot be explained as arising from a stochastic trend
(Figure 3d). The stations with significant warming trends are
located in Iceland, the North Atlantic, Scandinavia and
north-east Russia. The station showing strong evidence is
located in Iceland. While Svalbard and Siberia are experi-
encing large warming trends these trends are not significant;
thus they can be explained as arising from natural climate
variability. My interpretation of this finding is that this is
likely due to the relatively high temperature variance in this
region. Figure 4a shows the standard deviation of the de-
seasonalised station temperature time series. The largest
standard deviations are in Siberia, Svalbard and the interior
of Scandinavia. This is confirmed by the signal to noise ratio
computed by dividing the trend range by the standard devi-
ation for each station (Figure 4b). This shows that most of
Siberia has low signal to noise ratios while Scandinavia has
higher ratios.
[21] While the data coverage period of the stations can

vary, all stations with significant trends cover periods of at
least 55 years and many cover even longer periods. This
gives confidence in the robustness of the results and that at

least at some sites there is a long-term warming trend which
is already outside of the range of natural climate variability.

4. Summary

[22] In this study I have investigated the statistical sig-
nificance of air temperature trends of 109 stations in the
Eurasian Arctic region. This region experiences strong
climate variability on all time scales. This strong natural
climate variability can create apparent trends which needs
to be captured in the null model for any statistical signif-
icance tests. Thus, for this reason we use three different
models to increase our confidence in the significance of
the results.
[23] I found evidence for significant temperature increases

in Scandinavia and the North Atlantic at 17 of the 109 sta-
tions. 9 of these 17 trends are only significant against one of
the used null models representing the background climate
variability. This means that there is only weak evidence for a
significant trend at these 9 stations. 7 of the significant
trends are significant against two of the null models; thus
there is moderate evidence for a temperature trend at these
stations. Only for one station, on Iceland, there is strong
evidence for a significant trend. This station time series is
significant against all 3 null models used.
[24] These results come with the caveat that for relatively

short time series we might not be able to identify the ‘true
model’ of the background climate variability and the used
models might all pass diagnostic tests [Percival et al., 2004]
while they might imply different long-term consequences.
This can partly be rectified by using longer climate records
like ice cores. On the other hand, using longer climate
records may also invalidate some of the results based on the
currently available data. However, I have provided here
evidence for Arctic temperature warming trends based on
modern techniques of time series analysis and a high quality
temperature data set.
[25] The thawing of the permafrost soil in Siberia is

widely seen as a potential tipping point in the climate sys-
tem. While I do not find evidence for a significant warming
trend in Siberia the raw data still indicate a widespread
temperature increase in Siberia (Figure 2). Given that the
temperature fluctuations in Siberia are large, this portends to
the possibility that the warming signal in Siberia has not yet
reached its time of emergence when it will be outside of the
range of natural temperature variability.
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