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Abstract

This paper investigates a new approach to spatial generalisation of rainfall-runoff model parameters — site-similarity with pooling groups
— for use in flood frequency estimation at ungauged sites using continuous simulation. The method is developed for the generalisation of a
simple conceptual model, the Probability Distributed Model, with four parameters which require specific estimation. The study is based on a
relatively large sample of catchments in Great Britain. Various options are investigated within the approach. In the final version, the pooling
group comprises the 10 calibrated catchments closest, in catchment property space, to the target site, where the catchment properties used to
define the space differ for each parameter of the model. An analysis that, explicitly, takes account of calibration uncertainty as a source of
error enables the uncertainty associated with generalised parameter values to be reduced, justifiably. The approach uses calibration uncertainty
estimated through jack-knifing and employs a weighting scheme within pooling groups that uses weights which vary both with distance in the
catchment property space and with the calibration uncertainty. Models using generalised values from this approach perform relatively well
compared with direct calibration. Although performance appears to be better in some areas of the country than others, there are no obvious

relationships between catchment properties and performance.

Keywords: flood frequency, continuous simulation, uncertainty, ungauged catchments, generalisation, regionalisation

Introduction

This paper looks at spatial generalisation of the parameters
of a continuous simulation rainfall-runoff model for use in
flood frequency estimation. Continuous flow simulation
capitalises on advances in hydrological modelling, together
with computing technology and the increasing availability
of good quality fine-time-resolution data. It provides
catchment modelling of the whole time series (including
peaks, durations and hydrograph shapes), including effects
of antecedent wetness conditions, river junctions and, if
required, it can incorporate changes in climate drivers.
However, even in a developed country such as the UK, many
catchments have insufficient data for the calibration of such
amodel. The transfer of information from data-rich to data-
poor catchments via relationships derived between model
parameters and catchment properties is, therefore, an
important area of research.

Regression analysis has traditionally been profitable in
developing tools for estimation of model parameters at
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ungauged sites. Many examples of the development of
spatial generalisation of rainfall-runoff model parameters
through regression analysis are available, in locations such
as, in the UK (Sefton and Howarth, 1998; Calver et al,
2001), in mainland Europe (Seibert, 1999; Xu,1999; Parajka
et al., 2005), in the USA (Abdulla and Lettenmaier, 1997),
in Japan (Yokoo ef al, 2001), in Australia (Post and
Jakeman, 1999) and in Africa (Servat and Dezetter, 1993).
Such studies have used a variety of models and their results
have been variable, with only weak relationships between
catchment properties and some parameters of some models.
This might mean that such relationships do not exist but the
explanation is more likely to lie in the model itself (e.g.
parameter interdependence, Kokkonen et al., 2003), in the
lack of appropriate independent variables (catchment
properties), or in the restrictive assumptions of regression.

This paper assesses an alternative method of spatial
generalisation for parameter estimation, namely site-
similarity, as a potential way of overcoming the limitations
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of regression. Often the term site-similarity is used, simply,
to mean the direct transfer of parameters from the gauged
site most similar, in some sense, to the target, ungauged
site. In a study involving 320 catchments in Austria, Parajka
et al. (2005) found transferring parameters from a donor
catchment (defined by mean catchment elevation, stream
network density, lake index and areal proportion of porous
aquifers, land-use, soils and geology) generally out-
performed regression. Similarly, in Austria, Merz and
Bloschl (2004) found that averaging parameters from the
nearest catchments up- and down-stream performed better
than global or local regression; this is more likely to be due
to site-similarity rather than spatial proximity. Kokkonen et
al. (2003) suggested that the direct transfer of parameters
from a donor catchment, rather than the use of regression
equations, may be preferable “when there is reason to believe
that, in the sense of hydrological behaviour, a gauged
catchment resembles the ungauged catchment”.

Site-similarity can be used to define a pooling group — a
set of gauged sites most-similar to the target site. In the
UK, this form of site-similarity approach is an important
part of the statistical method for flood frequency estimation
in the Flood Estimation Handbook (FEH) (Institute of
Hydrology, 1999, Volume 3) and in Low Flows 2000
(Holmes et al., 2002), where it is used to estimate statistics
for the ungauged site. The idea behind this form of site-
similarity evolved from regional flood frequency analysis,
presented as the region-of-influence approach by Burn
(1990), based on work by Acreman and Wiltshire (1987,
1989). Burn and Boorman (1992) tested a number of site-
similarity-type approaches for estimating model parameters
in the flood-event models developed in the Flood Studies
Report (FSR) (NERC, 1975); the best of these methods
outperformed the linear regression approach originally
suggested in the FSR.

It is the latter form of site-similarity, for pooling group
formation, which will be investigated here for estimation
of continuous simulation rainfall-runoff model parameters.
To the authors’ knowledge, such a site-similarity/pooling
group approach has not previously been applied in this
context. Mclntyre et al. (2004) used a site-similarity
approach with a continuous simulation model but did not
use the pooling group to estimate parameters for the target
site. Instead, they applied pooling group parameter sets at
the target site directly and used Bayesian averaging on the
resulting set of flow series to construct a single time-series
for the site. The resulting series generally performed better,
in terms of fit to observed flows, than flows simulated with
parameters estimated through regression (for six catchments
in the UK). In this paper, an attempt is made to define and
test the best version of site-similarity for estimation of

rainfall-runoff model parameters, specifically in the context
of flood frequency estimation at ungauged sites.

Methods

DATA

This study is based on data from 119 catchments across
England, Wales and Scotland; of these, 46 have hourly
rainfall and flow data, while the remaining 73 catchments
have daily data. The map in Fig. 1 shows the catchment
boundaries and locations of the catchment outlets, labelled
with the catchment number from the UK National River
Flow Archive. Information on the UK flow gauging network
can be obtained from the series Hydrological Data UK:
Hydrometric Register and Statistics, published annually by
the Centre for Ecology and Hydrology and the British
Geological Survey.

The catchments range in size from about 1 km? to
1200 km?, with a mean of around 250 km?; the smallest daily
catchment had an area of over 50 km? and the largest hourly
catchment was about 450 km? in area. Daily data were
incorporated alongside the hourly sites to improve the
coverage of the UK (both spatially and in terms of catchment
properties), as well as providing longer data sets.

The catchment average rainfall data required by the runoff
model were produced from daily rainfall totals using the
triangle method (Jones, 1983). For hourly sites, the available
hourly raingauge data were quality-checked against daily
data; then, any good quality hourly data were used to
distribute catchment average daily rainfall through the day.
For days where hourly data were missing or of bad quality,
average profiles (dependent on location and daily rainfall
total) were used to spread the daily catchment rainfall
(Pilgrim et al., 1969). Catchment potential evaporation (PE)
data were calculated from monthly MORECS data, available
on a 40 km x 40 km grid across the UK (Thompson ef al.,
1982), with monthly values divided equally down to the
time-step required for input to the runoff model. For model
calibration, hourly/daily flow data were acquired.
Catchments with hourly flow and rainfall data generally
covered the period 1985-2001; for daily catchments, the data
length was generally longer, with the earliest records from 1961.

To provide the means of spatial generalisation, sets of 24
catchment properties were derived for each catchment,
covering aspects of topography, soil and geology, lakes and
reservoirs, land cover, rainfall and drainage networks. To
improve the potential to gain information from catchment
properties, some of them were transformed before use in
generalisation, with the transformation chosen to make the
distribution of the quantity less skewed.
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Fig. 1. Locations of catchment outlets (hourly — triangles, daily — circles), with catchment boundaries and ID numbers.

THE RAINFALL-RUNOFF MODEL

The model used here is a simplified version of the Probability
Distributed Model (PDM) (Moore, 1985, 1999; 2007). It is
based on conceptual water stores and represents non-
linearity in the transformation of rainfall to runoff by a
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probability distribution of soil moisture storage. This
determines the time-varying proportion of the catchment
which contributes to runoff, through either ‘fast’ or ‘slow’
pathways. The form used here (Fig. 2) has five parameters:
reducing the number of parameters improves the
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Fig. 2. Structure of the 5-parameter version of the PDM rainfall-runoff model

performance of spatial generalisation (Lamb et al., 2000).
Lee et al. (2005) tested various combinations of runoff and
routing schemes, although not this particular one, and
conclude that a form very similar to this is one of the best
candidates for regionalisation.

Rainfall inputs to the soil store are first multiplied by a
rainfall correction factor f, which can also, if required,
compensate for loss or gain of water via lateral, sub-surface
routes. The soil moisture store can be depleted by
evaporation, with content of the store determining the
proportion of the potential evaporation which actually
occurs. The distribution of the soil moisture storage capacity
with store depth is assumed to be uniform; the minimum
store depth is set to zero and the maximum is given by the
parameter ¢, . The soil store, then, generates direct runoff
from a varying proportion of the catchment area, depending
on how full it is. It is assumed that a proportion « of the
direct runoff goes to the (linear) fast flow store, whilst 1—«
goes to the (cubic) slow flow store. The time constants of
the fast and slow flow stores are k, and &, respectively. The
catchment discharge, then, results from a combination of
fast and slow flow.

Although the model as described here has five remaining
parameters, only four of these require calibration or
generalisation for a specific catchment. The parameter
determining the split between the fast and slow flow stores, ¢,
is set as SPRHOST/100, where SPRHOST is standard
percentage runoff inferred from soil information (a readily-
available catchment property). This was deemed an
appropriate simplification, because of the directly
comparable meanings of & and SPRHOST.

MODEL CALIBRATION

The large number of catchments meant that automatic
calibration was necessary, so a sequential procedure was
developed which calibrated each of the model parameters
in two passes. For the first pass, each parameter is calibrated
in turn, following Monte-Carlo sampling of the parameter
space of the so-far uncalibrated parameters. A different
objective function is chosen for fitting each parameter,
according to hydrological judgement and plots of objective
functions versus parameter values. Each objective function
considers the whole flow time-series but some give more
weight to certain aspects of it. For example, when calibrating
the parameter determining the overall water availability (7)),
only 30-day average flows are considered, whereas when
calibrating the parameter of the fast flow store (k) more
weight is given to the higher flows. For the second pass,
each parameter is calibrated in turn, following Monte-Carlo
sampling of its own value, with the values of the other
parameters held at their previous calibrated values. This
second pass allows a re-adjustment of parameter values,
once other values have been estimated, and uses the same
objective functions as the first pass. As this method is
sequential, alternative ordering of parameters in the
calibration is possible, and no testing has been done to assess
the effect of this. The order used for each pass was f, &,
. Kk, with the choice of order based on hydrological
judgement and on the behaviour of the response surfaces in
the objective function dot plots. Lastly, it was found helpful
to allow a final re-calibration of the first parameter, this
time using an objective function that concentrates on fit of
the flood frequency curve.

4
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A key consideration was how to merge information from
catchments with data at different time steps. In theory, the
PDM is structured so that its parameters have the same
intrinsic meaning (in particular, the same units) regardless
of the length of the internal time-step. However, tests on a
small number of the hourly catchments showed that the
parameters would be calibrated differently if they were
treated at a daily time-step. Thus, using a daily internal time-
step for the daily sites was not appropriate. Instead, a
common internal time-step of one hour was adopted for all
of the catchments. Tests showed that spreading the daily
rainfall uniformly over the 24 hours of the day to produce
the hourly inputs for the daily sites, and then averaging the
simulated hourly flows to compare with observed daily
flows, led to calibrated parameter values matching much
more closely those using full hourly data rather than the
daily time-step. Hence, this method was adopted.

An advantage of automatic calibration is that it enables
the estimation of calibration uncertainty. In this case, a
variation of the standard statistical method of jack-knifing
(Shao and Tu, 1995) was used. This entails initial calibration
of the model using all 7 years of data, then performing 7
recalibrations, in each of which one year of flow data is
treated as missing (all rainfall data are retained, to maintain
the water balance). The spread of these values gives an
indication of the calibration uncertainty for each catchment
due to the finite amount of data available. For a given
catchment, the variance, o2 of the estimation error of a
given model parameter, ¢, is calculated from the 7" values
for that parameter using the formula

2
T-14 1
2
ct=—>|ay—-=) o |, Q)]
5 w15 |
where o, is the parameter estimate treating the ith year of
flow data as missing.

SITE-SIMILARITY GENERALISATION

The idea behind site-similarity approaches to generalisation
is to find a set of calibrated sites most similar to the target
site — a pooling group — and then to form the parameter
estimates for the target site by combining the calibrated
parameter values for the sites in the pooling group.

Similarity is defined by Euclidean distance in a space of
catchment properties that must be determined for a given
model parameter:

2)

where ; indicates one of a total of J catchment properties,
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X, is the value of that catchment property at the ath site
and Oy is the standard deviation of the property across all
the N sites. The M closest neighbours (minimum distance)
are selected to create a pooling group for the target site.
The catchment property space, and so the pooling group
for a target site, can differ for each model parameter. Note
that, just as some of the catchment properties are transformed
before use in generalisation, so too are some of the model
parameters: log-transformations are used for &, and £,.
Having formed the pooling group, the estimate «[° of
the model parameter at a target site a is calculated as a
weighted average of the corresponding parameters from the
sites in the pooling group. However, it is more convenient
to write the expression for this as a weighted average of the
estimated parameter values, «,,, over all catchments:

N

Z hamam

PG m

] a— 3)
h

am

I
5N

Mz

=1

3

Catchments not in the pooling group are given a weight /2,
equal to zero but those in the pooling group are assigned
weights to reflect their importance where this can reasonably
be based on the distance measure dist, defined in Eqn. (2).
In their simplest form, the weighté for pooling group
members can be expressed as

haw =1- S, “4)
where
0 for equal weights
Sy =4 dist, /dist, . for linearly decreasing weights
(dist,, /dist, ... J  for quadratically decreasing weights
(with dist set to be 10% larger than the maximum

a, max

distance of a pooling group member from the target site a).
In addition to subjective weighting schemes such as the
distance weighting schemes above, schemes can be
constructed to take some account of the differing
uncertainties inherent in the estimates «, for each
catchment; an uncertainty-weighting scheme of the form

B 1
1+ cr,ig /cr,f

am (%)
can be derived as providing an optimal set of weights. Here
o-m,gzdescribe the uncertainty (variance) in the calibrated
model parameters for catchment m, and G,f the variation
between the parameter values for catchments in the pooling
group. In this scheme, less weight is given to those
catchments for which the calibration variance vagz is high.

The different types of weighting considered here are
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expressed in a combined form which includes both distance-
weighting and uncertainty-weighting:
h - 1-s,,
M 1eko?, ©)

where £ is either estimated iteratively as the reciprocal of
the generalisation variance o, or is set to zero so that the
weighting is simply a distance weighting. The latter option
is equivalent to assuming that the calibration variances o, 2
are all zero: the calibration uncertainty is ignored in forming

the weights.

MODEL FOR UNCERTAINTY

The initial development of an uncertainty-weighted scheme
such as outlined above can be based on a simple statistical
model that can also form the basis of measures for assessing
how well various weighting schemes perform. The model
is a local one, specific to each target catchment and the
catchments included in the pooling group for that catchment.
For convenience, the subscript m is used for catchments
within the pooling group, while the special subscript * is
reserved for the target catchment. Firstly, it is assumed that
the estimated parameters «,, are related to notional true
values of the parameters y,, via an error model:

Q= + &y (M

Here, the true values g, are defined to be the values to
which the parameter estimates would converge as the record
length available for model calibration increases. The error
terms &, correspond to calibration errors. There is an
assumption that, within the pooling group, the true values
M., are scattered about an unknown central value, 3, and
the true parameter value g, for the target catchment is an
unknown value from this same population:

Hoy = B+17,. ®)

Here 7,, represents the generalisation error, the extent to
which catchment parameters are predictable within a
pooling-group method. The term S represents a notional
central value for sites in the pooling group, which will differ
across pooling groups.

Note that the objective in creating a weighted combination
of the estimates ¢, is not to estimate the parameters that
might have been obtained had calibration data been available
for the catchment, but rather to estimate the true value . ,
where

=L+, )

If the generalised estimate is

[l* :Zg*mama (10)

with Z 0., =1, it follows that the error in estimating s, is
given by

M= L= =) Gty

=1~ 3 Gl + 1) (n

From the above formula, the variance of the estimation
error can be calculated and this gives a criterion to be
minimised in selecting the weights g.,,. This calculation
assumes that the calibration and generalisation errors are
all uncorrelated, that the generalisation errors 77,,,7. have
constant variances,

var(n,,) = var(n.) =o;, (12)

and that the calibration errors have variances o *. The
weights giving minimum variance for the error in Eqn. (11)

are found to be
Wm
j b

O = ZW

where, for catchments in the pooling group for the target
site,

(13)

R/
m 2 z, (14)

- 2 2
o, +0n, 1+0'm'g/0'ﬂ

and w,, = Ootherwise.

. . . 2 .
In general, the variance of the generalisation error, o, is

estimated iteratively because the required weighting schéme
may depend on this unknown quantity. Note that the
weighting schemes considered are not limited just to the
weights given in Eqn. (14), which are optimal given some
special assumptions, but include the more general form
given in Eqn. (6). As will be seen, the same estimation
scheme can also be employed when uncertainty weighting
is not used at all. Firstly, weights of the form

K, =1+ko? (15)

m,e °
are constructed. Here Kk is either set to zero, or as

k=1/c2 (16)

7o

where O',f takes the value generated in a previous iteration.
Note that the choice k =0 is equivalent to imposing the
assumption that all the calibration-error variances are zero,
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meaning that all of the sample estimation variance is
attributed to the generalisation error variance. In either case,
the following relation is treated as true:

05 + ofm = KmO'j, 17
where the quantities on the left hand side are theoretical
variances while the 0'5 on the right hand side is the value
that will be calculated in the present iteration. Estimation
of U; is based on a weighted sum of squared residuals
calculated by treating each catchment in the calibration set
as a target for generalisation. The same procedure can be
applied either including or excluding each target catchment
from the pooling group being used for that catchment.

In the following, there is a need to account for the fact
that the location parameter £, used in Eqn. (8), varies with
the target catchment and that the same model cannot hold
simultaneously for all target catchments. Use is, therefore,
made of the implicit assumption that, if S, and j. are
values corresponding to each catchment, these values vary
slowly enough for the condition

B = 9By =0, (18)

to be approximately valid. The values f,, represent the
generalised values that would be produced by a best-possible
generalisation procedure of the given type for all catchments
having catchment properties identical to catchment .

If the generalised estimate for target catchment 7 is

A :zgijaj ) (19)

with Zgj =1, the weighted sum of squared residuals is
given by
N

2= KMoy - i) (20)

i=1

The expected value of S* can be found by noting that

a -~ i =a _Zgijaj =B +n, +8j_zgij(ﬂj+’7j+gj)v
=1 +8,-—Zgu(m+sj),

21
where use is made of Eqn. (18), and thus that
“i_ﬁizzuij(ﬁj’ng) (22)
where
U = 1_gij’ I = j1
A 3)
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E(S?) = i Kil{i uZvar(y, +é, )}, (24)

. . 2 . .
Hence, an unbiased estimate of o, given the assumption

made in setting K, is given by
-1

G, =5 ZKi_l 2UK ] (25)

While U,f is a useful measure of how well a generalisation
procedure performs, it must be augmented to encapsulate
all the uncertainty in the estimated value produced by the
generalisation procedure. The generalisation variance is only
a part of this: G; relates to variations about an unknown
local mean value for the pooling-group and the procedure
needs to account for errors in estimating that local mean.
The adjustment required varies from catchment to
catchment. The total estimation error for an ungauged
catchment is, as in Eqn. (11),

o=l =1 = Y Qe+ 51). (26)

The error variance is, therefore, given by
var(. 1) =07 + Y. @202 +02,)
. 27
—o2{1+ 3 g2 K @7

where K, is as given in Eqn. (15). Derivation of this
formula has assumed that, for a ‘new’ target catchment *,
n. is not the same as any of the /m for the calibrated
catchments.

PERFORMANCE MEASURE

The requirement from the investigation is to define the site-
similarity approach for each model parameter, in terms of
the catchment properties used in the distance measure, the
number of catchments in the pooling group, and the best
weighting scheme when combining pooling group
parameters to form the target estimate. To compare different
approaches, a measure of overall performance is required,
in terms of how well the estimated parameter values agree
with the values calibrated. The estimation-error variance
derived above (Eqn. (27)) is not immediately useful as a
performance measure for the generalisation procedure since
it varies for each target catchment. This difficulty can be
overcome by arguing that the calibration catchments are
representative catchments to which the procedure might be
applied in future and, hence, they provide a representative
collection of catchment properties. An overall measure of
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generalisation performance can, therefore, be created by
averaging the estimation error variances that would be
obtained for a collection of ungauged catchments that
happened to coincide in catchment properties with the
calibration set. This gives the measure o, of the total
accuracy of the generalisation procedure as the average
estimation error variance

o2 - o {1+ Nliigm}.

i=1 m=1

(28)

This measure aims to encapsulate all the uncertainty in the
estimated value produced by the generalisation procedure,
of which the generalisation variance ol is only a part: 0:
relates to variations about an unknown local mean value
for the pooling-group and the procedure needs to account
for errors in estimating that local mean. Note that lower
values of 1 indicate better performance but they cannot
be used to compare performance across different model
parameters, just for the same model parameter across
different generalisation approaches.

Investigation of approaches

The number of options within the site-similarity method
means that a thorough investigation of all possible
combinations is impracticable. Instead, options are
investigated subject to other choices being fixed, using a
comprehensive search procedure in each case to find the
best performing combinations of catchment properties

NUMBER OF SITES IN THE POOLING GROUP

The first option relates to the value of M, the number of
closest neighbours chosen to form the pooling group for a
target site. Investigations suggested that, although the choice
of M was not as important as other factors, the use of a
pooling group with around ten members was preferable to
a much larger group, particularly when more catchment
properties are used to define proximity for the pooling group
(Fig. 3). Although a smaller pooling group seems to perform
marginally better for some parameters when five or more
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Fig. 3. The performance of site-similarity generalisation with size of pooling group, M. The performance measure o, is plotted against the
number of catchments used in the pooling group, for the top three combinations of 1, 3 and 5 catchment properties (respectively, squares,

diamonds and triangles).
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catchment properties are included, a pooling group size of
ten was chosen for use in later investigations, due to concerns
that, if pooling groups are too small, a single catchment
might have an overly large impact on pooled parameter
estimates.

DISTANCE WEIGHTING

The second option relates to the use of equal, linear or
quadratic functions in the distance weighting. An exhaustive
search of combinations of one up to six catchment properties
was used to identify the top three combinations in each case.
For each distance weighting, these are plotted against
performance in Fig. 4. Although distance weighting does
not make much difference to performance, linear distance
is marginally preferable to either equal or quadratic for most
parameters, particularly when more catchment properties
are included. Linear distance weighting is, thus, used in later
investigations.
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ACCOUNTING FOR CALIBRATION UNCERTAINTY
The third option relates to the treatment of calibration
uncertainty. Essentially similar analyses can be made which
either account for the calibration errors as a specific source
of variability, or ignore the existence of this source. In each
case, the performance measure o7, represents the typical
uncertainty to be associated with the generalised parameter
values. Results for the best three combinations of up to six
catchment properties are shown in Fig. 5: the weighting
scheme used in this example is linear distance weighting
including weighting for calibration uncertainty but other
cases reach the same conclusion. Clearly, the generalisation
uncertainty is reduced substantially when the analysis takes
the calibration uncertainty into account; then, the analysis
can recognise that some of the variation in the empirical
residuals (o — /) can be ignored in assessing the proximity
of the true value 4, to the generalised value /. for new
target catchments. All the other results presented here take
calibration uncertainty into account.

cmax
90 X
o
80 | oA 4
o_A
OBA
<
) ga
8.
70 BEA B
Oo
oA oo
ofa o84
60 !
0 1 2 3 4 5 6
number of CPs
kb
1
X
09 -
Ooa
[eI=1N
£08 ©
© oa
oo,
o"a
Opg
N OE%
07t ©a 8a,
OA [eI=PN g8
A
06 . . . . . . .
0 1 2 3 4 5 6

number of CPs

Fig. 4. Comparison of the performance of site-similarity generalisation with equal, linear and quadratic distance weighting (respectively,

circles, squares and triangles). The performance measure

o, is plotted against the number of catchment properties used to define the pooling

group, for the top three combinations of catchment properties (CPs) in each case. The cross, at 0 CPs on each figure, indicates the
performance when the generalisation for any catchment is simply an average over all 119 catchments.
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Fig. 5. Comparison of the performance of site-similarity generalisation using analyses which either do or do not take account of calibration
uncertainty (respectively, plus signs and crosses). Both use linear distance weighting. The performance measure o,, is plotted against the
number of catchment properties used to define the pooling group, for the top three combinations of catchment properties (CPs) in each case.

CHOICE OF CATCHMENT PROPERTIES

The final option, when forming the pooling group for a target
site, is the choice of the catchment properties used to
determine catchment similarity. This is not straightforward;
many different combinations perform similarly in terms of
overall parameter estimation. Hence, the hydrological
relevance of particular properties to particular parameters
must be considered.

The top ten combinations of one up to six catchment
properties were listed and patterns of dominant properties
(which appear in almost all combinations) and stable
groupings (which pass down the lists as the number of
catchment properties is increased) were identified. In
addition, the inclusion of properties related to urban
development (with the potential to increase peaks) and
reservoirs and lakes (which can attenuate peaks) was
important for parameters relating to the responsiveness of
the catchment. No catchment property was ‘forced’ in but

combinations including certain properties were selected
from the lists in preference to others. Plots of calibrated
versus generalised parameter values were also inspected.

Accordingly, the set of catchments properties chosen for
each model parameter is given in Table 1 (with catchment
property definitions in Table 2), along with the R? values
for the fit of calibrated and generalised parameters. Two R?
values are given for each parameter: the first is where the
estimate for a target catchment has included the site in its
own pooling group while, for the second, the target site is
excluded. The latter is more representative of potential
performance for a truly ungauged site, whereas the former
represents the potential to use the site-similarity method to
augment the use of at-site data, for instance where only a
short record is available. The large difference in performance
is due to a target site potentially having a high weight when
used in its own pooling group.
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Table 1. The catchment properties (including their transformations) used for each
model parameter. Definitions of the properties are given in Table 2.

Parameter fL Coron kl kb

Catchment JAREA PROPWET BEIHOST BFIHOST

properties BFIHOST JURBEXT DPLBAR JURBEXT
JDPSBAR HOSTNG JO-FARL) HYDC
SAAR JHOSTP JURBEXT JLANDC
LANDB JLANDA JLANDB DRAIN2
JLANDC

R? (inc. target) 0.78 0.70 0.82 0.74

R? (exc. target) 0.55 0.41 0.66 0.50

Table 2. Definitions of catchment properties used in the generalisation

CP Name Range, units Source Notes

AREA [0,00] km? FEH DTM-derived

BFIHOST [0,1] — FEH Base flow index, calculated from weighted average of HOST classes over the
catchment

DPLBAR [0,00] km FEH Mean drainage path length

DPSBAR [0,00] m/km FEH Mean slope of DTM drainage paths to site

FARL [0,1] FEH Index of flood attenuation due to reservoirs and lakes

PROPWET [0,1] — FEH Proportion of time catchment wet (SMD<6mm)

SAAR [0,00] mm FEH Standard average annual rainfall, 1961-90

URBEXT [0,1] — FEH Extent of urban/suburban land cover

HOSTNG [0, 100] % HOST % of catchment area covered by HOST classes 16-29 (essentially ‘non-
groundwater’)

HOSTP [0.1] HOST Index of porosity as a weighted average of values inferred from HOST classes.

HYDC [0,00] cm/d SEISMIC/ Saturated soil hydraulic conductivity, as weighted average of values inferred

HOST from HOST classes

LANDA [0.1] ITE Proportion of catchment area covered by grassland based on ITE land cover data
(classes 5-8,19,23)

LANDB [0.1] ITE Proportion of catchment area covered by upland based on ITE land cover data
(classes 9-13,17,24,25)

LANDC [0,1] ITE Proportion of catchment area covered by trees based on ITE land cover data (classes
14-16)

DRAIN2 [0,00] km/km? DTM Drainage density (total length of river (km) divided by the catchment area (km?))

Notes on sources:
FEH

HOST
SEISMIC/HOST
ITE

DTM

Properties appearing on the FEH CD-ROM or based on FEH catchment properties (Institute of Hydrology 1999)
Properties derived from the HOST soil classification system (Boorman ez al. 1995)

Properties derived from the SEISMIC soils characteristics database for each HOST class

Properties derived from the ITE 1990 land cover classification (Fuller, 1993)

Properties derived from the CEH-Wallingford ‘Integrated Hydrological Digital Terrain Model’ (Morris and Flavin, 1990)

Generalised flood frequency results

However, examples are given in Fig. 6. Figure 7 summarises

In assessing the performance of the flood frequency curves the results for each catchment in terms of percentage errors
estimated using the generalised parameters from the site- in estimated flood frequency (compared with flood
similarity approach defined earlier, curves for all 119 frequency from observed flows for the same time period) at
catchments cannot be presented because of space constraints. three return periods. Also shown, for comparison, are the
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Fig. 6. Examples of generalised flood frequency curves (solid lines and filled squares) compared with those using calibrated parameters
(dashed lines and open squares) and from observed flows (dotted lines and open circles).

errors when calibrated parameters are used for each be due to significant groundwater abstraction from the
catchment. catchment, whereas the generalised parameters could be

Figure 7 shows significant over-estimation in flood representive of the catchment under more natural conditions.
frequency at the 50-year return period for two catchments. The other catchment for which there is significant
The worst error is for 38003 (The Mimram at Panshanger overestimation is catchment 94001 (the Ewe at Poolewe) in

Park, located just north of London, see Fig. 1.) This could north-west Scotland; this is dominated by a large loch and
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Fig. 7. Percentage errors in flood frequency at three different return periods, for parameters estimated using site-similarity (target included)
(dotted line) compared with calibrated parameters (solid line) for each of 119 catchments. The vertical axis has every fifth catchment marked
(in order of catchment number). The error bars at the bottom of the plots show the mean error + 2 standard deviations, for calibrated and

generalised flood frequency curves.

so has a FARL value of 0.67, the lowest in the study set.
The relative lack of similar catchments with which to form
a pooling group for this catchment has thus affected the
performance of the method there. A further catchment for
which there is serious overestimation at higher return periods
is 44002 (the Piddle at Baggs Mill, in southern England),
perhaps reflecting difficulties of gauging higher flows from
the catchment.

Figure 7 also suggests that, compared to calibration,
generalisation tends to perform less well for catchments with
numbers between 26000 and 45000, which lie roughly to
the south/east of a line from Middlesbrough on the north
east coast, to Bournemouth on the south coast. These
catchments are more likely to have a significant groundwater
component of flow, which could make consistent calibration
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and generalisation more difficult, in the light of the
simplified nature of the rainfall-runoff model. However,
the errors for these catchments are not consistent in direction.
For catchments outside this range, the trace for
generalisation generally tracks that for calibration more
closely. The same is true of the performance of generalisation
when the target site is excluded from its pooling group but
errors are generally marginally higher.

Table 3 summarises the generalisation performance in
terms of the mean and standard deviation of the absolute
percentage error at various return periods (simulated
compared to observed flood frequency curve). The site-
similarity generalisation including the target site gives
average errors two to four times those for calibration;
performance is slightly worse when the target site is
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Table 4. Overall performance in terms of the mean and standard deviation (SD) across catchments of the absolute percentage errors in the
estimated flood at a given return period. The performance using directly calibrated parameters is also given, for comparison.

Mean and SD of Return Period (vears)
absolute % errors 1.0 2.0 2.33 5.0 10.0 20.0

Calibration Mean 9 6 6 4 5 7

SD 7 5 4 4 5 7
Site-similarity(target included) Mean 17 16 16 16 17 18

SD 22 21 21 20 20 19
Site-similarity(target excluded) Mean 23 23 23 23 23 24

SD 36 36 35 34 34 33
excluded. These results compare well with those reported Conclusions

by Lamb et al. (2000), based on regression using a subset
of the catchments and data used in this study. The mean
errors when the target site is included are lower than those
in the previous work, and those where the target site is
excluded are similar or lower, particularly for higher return
periods. The standard deviations reported here are larger
than those in the previous work, particularly when the target
site is excluded, but this is due to the very bad performance
for catchment 38003 (discussed above), which is one of the
additional catchments used in this study. When the results
for this catchment are excluded from the analysis, the mean
absolute errors are reduced by about 1% and their standard
deviations to around 15% at each return period, when the
target is included; this is an improvement over the
performance in the previous work. When the target site is
excluded, the corresponding figures are a reduction in mean
absolute error of around 3% (consistently better than in the
previous work), with standard deviations reduced to around
21% at each return period (still worse than in the previous
work, particularly at lower return periods).

An alternative way of assessing overall performance is to
look at the percentage of catchments where the errors fall
within certain ranges. For example, if errors of less than
15% are good, then about 45% of catchments have errors
(at return periods of between 2 and 50 years) below this
threshold (33% when the target site is excluded), which
compares with about 80% when calibrated parameters are
used. If errors of over 30% are bad, then 23% of catchments
have an error larger than this for at least one return period
(30% when the target site is excluded), which compares
with just 2% for calibrated parameters.

Plots of generalisation errors at different return periods
against catchment properties show no obvious relationships,
suggesting that no particular types of catchment perform
consistently well (or badly) under site-similarity
generalisation using the PDM.

This paper investigates a new approach to spatial
generalisation of rainfall-runoff model parameters — site-
similarity with pooling groups — for use in flood frequency
estimation at ungauged sites. The pooling group comprises
the ten calibrated catchments closest, in catchment property
space, to the target site, where the catchment properties used
to define the space differ for each parameter of the model.
Accounting for the calibration uncertainty reduces the
uncertainty attributed to generalised parameter values.
Following a wide-ranging comparison of various options,
the specific weighting scheme selected was to create
parameter estimates for the target site by linear distance-
weighting in conjunction with uncertainty-weighting.

The method devised shows great promise for flood
frequency estimation at ungauged sites, because it performs
relatively well for a wide range of catchments across Great
Britain. It could be particularly useful at sites where some
data are available, as these can be incorporated in the method
by allowing the target site to be included in its own pooling
group, with appropriate weighting (different to that
discussed in this paper). A potential disadvantage of site-
similarity is that application of the method is more complex
than the more standard regression, as it requires the
definition of a different pooling group for each parameter
and the calculation of weights, rather than simply putting
into an equation the values of catchment properties for the
ungauged site. However, it is easy to expand the set of
calibrated catchments on which the method is based; this
could be important in improving the performance of the
method for more unusual catchments, as is demonstrated
by the poor performance for a Scottish catchment dominated
by a large loch (and so with a very low FARL value), due to
the lack of sufficiently similar catchments with which to
form a pooling group.

In terms of flood frequency estimation, the site-similarity
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method developed here generally performed better than
using a regression based on a subset of the data. However,
that previous work used standard regression whereas the
weighting scheme developed here to incorporate calibration
uncertainty could also be applied within a weighted
regression. Future work will compare the performance of
the present site-similarity method with weighted regression
based on the same data set.

Calibration uncertainty is important in the methodology
applied here, both in adjusting the variation shown by the
empirical residuals, so as to represent the true generalisation
uncertainty, and in adapting the weights of catchments in
the pooling group, so that those with less confidence in
calibration contribute less to the generalisation. The
calibration uncertainty was estimated through a variation
on jack-knifing. Other techniques could be applied, such as
bootstrapping, or calibration uncertainty could be related
directly to length of record. Merz and Bloschl (2005) found
that kriging-with-uncertainty, directly related to record
length, performed better than kriging alone when
regionalising statistics of flood frequency curves for
ungauged sites. In future work, it is planned to assess the
effect of alternative methods for estimating calibration
uncertainty. In addition, techniques are being developed to
incorporate uncertainty bounds on the generalised flood
frequency curves.
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