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Abstract

Flow and nitrate dynamics were simulated in two catchments, the River Aire in northern England and the River Ythan in north-east Scotland.
In the case of the Aire, a diffuse pollution model was coupled with a river quality model (CASCADE-QUESTOR); in the study of the Ythan,
an integrated model (SWAT) was used. In each study, model performance was evaluated for differing levels of spatial representation in input
data sets (rainfall, soils and land use). In respect of nitrate concentrations, the performance of the models was compared with that of a

regression model based on proportions of land cover. The overall objective was to assess the merits of spatially distributed input data sets. In

both catchments, specific measures of quantitative performance showed that models using the most detailed available input data contributed,
at best, only a marginal improvement over simpler implementations. Hence, the level of complexity used in input data sets has to be determined,
not only on multiple criteria of quantitative performance but also on qualitative assessments, reflecting the specific context of the model

application and the current and likely future needs of end-users.
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Introduction

Assessing the performance of a particular model is
fundamental to benchmarking, as developed, e.g. in the EC
5th Framework Programme Benchmark Models for the
Water Framework Directive (BMW) project (Kaméri ef al.,
2006; www.environment.fi/syke/bmw). Initially, on the basis
of its suitability for evaluating management strategies, a
model capable of satisfying an application by an end-user
has to be identified. The performance assessment in BMW
requires the output variables considered relevant to be
specified at the outset of the modelling study, together with
an objective measure or measures of their goodness-of-fit,
derived by comparing observed and simulated data.
Goodness-of-fit statistics for calibration, sensitivity
analysis and comparison of model performance for diffuse
pollution models have been introduced previously (Hutchins
et al., 2006). Perrin et al. (2006a) details various options
for defining quantitative measures for model evaluation and
comparison in rainfall-runoff and water quality domains;

they stress the need to define an appropriate benchmark to
standardise assessments. For benchmarking purposes,
goodness-of-fit statistics are potentially powerful in
identifying the level of complexity which is appropriate.
However, an increase in model complexity generally
increases the number of parameters, unconstrained in their
values, which have to be calibrated. This, including all
available process knowledge, may lead to over-
parameterisation (Addiscott ef al., 1995). In optimising free
parameters, a good performance, obtained for undesirable
reasons (Kirchner ef al., 1996), may mask deficiencies in
the structure of the model and limit the power of the model
evaluation tests. Using a range of criteria, Perrin et al. (2003)
assess the trade-off between improved model performance
and increased complexity as increasing reliance on model
calibration. In catchment-scale applications, models
developed at plot or field scale may become over-
parameterised as the feasibility of measuring parameters
declines (Addiscott ef al., 1995; Wheater and Beck, 1995).
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Striving to balance input data quality with model complexity
is likely to pinpoint optimal model structures for predictive
purposes. (Van Rompaey and Govers, 2002).

In this study, simple regression-based methods have been
implemented in an initial benchmark simulation of water
quality status. Subsequently, two cases for which modelling
studies using different process model codes already reported
(Hutchins et al., 2006; Dilks et al., 2004), have been
developed further by considering that benchmark levels of
performance can be defined by the simplest implementation
of'a process model code considered (by modelling specialists
and end-users) suitable to answer the agreed management
question. Results from more complex applications of the
same code can then be evaluated against the benchmark.
With recent GIS-based modelling approaches, the spatial
scale at which models may be assumed accurate must be
determined, with consequent implications for appropriate
resolution of input data (Wagenet and Hutson, 1996). Here,
therefore, specific consideration is given to the effect on
model performance of increased spatial detail in input data;
various model implementations can be evaluated against the
initial benchmark provided by the regression model. Model
performance is sensitive to the calibration process. When
increasing the spatial detail in input data, any change in the
sensitivity of performance to this process can be illustrated.

Background to case studies

MODELLING OBJECTIVES

Before beginning modelling applications, the objectives
must be specified and associated performance criteria
determined. Here, N concentration, in the form of nitrate as
opposed to ammonium or total-N (i.e. nitrate-N), is to be
simulated at a catchment outlet as a basis for evaluating the
impact of N on water bodies downstream. In this paper
nitrate-N is simply referred to as N, as opposed to
ammonium or total-N for example. The modelling
approaches chosen allow exploration of management
options for bringing about changes in the N regime.

Data availability constrained the analysis to national data
sets and those collected from routine monitoring. The time
step chosen (1 day) for the simulation depends on the data,
the dynamics of the modelled system, and the residence
times in the water bodies downstream. For model evaluation,
a measure of efficiency adapted for benchmark purposes as
proposed by Seibert (2001), was applied to flow and N
concentration. This benchmark criterion (E, ) (Seibert,
2001) is a generalised form of the R? measure of efficiency
(Nash and Sutcliffe, 1970) (Eqn.1):
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where, # represents the number of paired observed (O,) and
simulated (S)) data in the time series (at a time-step i) and B,
the benchmark series. The criterion allows the fit of modelled
time-series to be evaluated in the context of either a
measured standard (e.g. the mean of observations), a
simulation of this standard, or a benchmark time-series. In
the former two cases, all the elements in series B, take the
same value, the standard. Simple regression models can
provide simulation of a standard, such as an estimate of the
mean observed N concentration. A benchmark time-series
can be provided by a simple implementation of a process
model. More complex implementations of the process
model, for example using more detailed spatial
representation of input data, can then be tested against this
benchmark. A positive efficiency coefficient (0 <E,  <1)
indicates that the model output fits the observations better
than the benchmark model, while a negative efficiency
coefficient (E,_ , < 0) indicates that the model application
is performing less well than the benchmark.

Error indices in the flow duration curve are additional
quantitative performance indicators. The index of
cumulative frequency error (Refsgaard and Knudsen, 1996)
calculates errors between observed and simulated data at
each percentile value from 1 to 99, where a maximum value
of 1 is a perfect fit. The mean absolute percentage error
(MAPE) across each percentile value was also calculated.
Similar indices were derived for N.

STUDY CATCHMENTS

The catchments studied were the 865 km? Aire at
Lemonroyd (UK National Grid Reference (NGR) SE
381282) (Hutchins et al. 2006) and the 540 km? Ythan at
Ellon (UK NGR NJ 947303) (Dilks et al. 2004) (Fig. 1).
Flow and N data are available at both locations. A rural
sub-catchment of the Aire at Kildwick (282 km?) (UK NGR
SE 013457) was also monitored and used in calibrating the
Aire Model.

Almost 50% of the Aire catchment at Lemonroyd is non-
agricultural, with urban/suburban land-cover accounting for
21% (occurring almost exclusively downstream and to the
south east of Kildwick), and 29% was woodland and upland
moor (Fig. 2a). The agricultural area is 80% grassland and
20% arable. The annual rainfall averages 998 mm and ranges
from less than 650 mm in the urban centres of Leeds-
Bradford in the lowland south-east, to over 1250 mm in the
hills of the Yorkshire Dales to the north-west. The low
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Fig. 2(a). Map showing land use in the Aire catchment and the location of
gauging stations at Lemonroyd and in a sub-catchment at Kildwick. Land
use percentages used for regression modelling: arable = 4%, upland and
semi natural grass (upland) = 32%, urban and suburban (urban) = 24%,
Given the near absence of point source inputs, at Kildwick, the CASCADE
model alone was applied. At Lemonroyd a linked model (CASCADE-
QUESTOR) was applied.

Fig. 1. A map of Great Britain showing location of the two study
catchments and the location of the 43 additional catchments used
to formulate the landcover-based multiple regression model of
mean N concentration

permeability of most of the catchment soils means they are
prone to seasonal waterlogging but more freely-draining
soils are prevalent in the southern part of the catchment near
Bradford.

Land use in the Ythan catchment is predominantly
agricultural (95%), 64% is cropped arable land and the rest
is grazed and mown grassland. Urban areas are less than
1% with the main population centre, Ellon, located at the
outlet of the modelled area. The remaining 4% of the
catchment is woodland and moorland (Fig. 2b). Soils, a
mixture of humus iron-podzols, brown forest soils and non-
calcareous gleys, are generally free-draining although less
so towards the east of the region. Mean annual rainfall and
water yield (at Ellon) are 815 mm and 450 mm, respectively.
Annual rainfall over the region varies by less than 7% (Dunn
et al., 1998). Flow is dominated by slow sub-surface
response, with baseflow making up 75 to 80% of the total
annual discharge.
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Fig. 2(b). Map showing land use in the Ythan catchment and
location of the gauging station at Ellon. Land use percentages used
for regression modelling: arable = 64%, upland and semi natural
grass (upland) = 7%, urban and suburban (urban) = 1%.

Modelling approaches

REGRESSION MODEL FOR N CONCENTRATION

Davies and Neal (2004) have shown that mean N
concentration at a given location can be simulated using
information on the proportions of constituent land cover
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classes within the catchment. Therefore, a model was set
up, based on data throughout England and Wales, against
which data from the case study catchments could be tested.

Land cover composition was estimated on a catchment
basis using the CEH Land Cover Map 2000 (LCM2000)
(Fuller et al., 2002). Classes in LCM2000 were aggregated
as described by Davies and Neal (2004) into three land cover
classes, arable (A), urban (U) and upland (UP); these were
the only classes that showed a relationship between their
percentage cover in a catchment and N concentration.

For calibration, N concentrations from rivers were taken
from the EA Harmonised Monitoring Network (HMN)
dataset, choosing sites throughout England and Wales so
that differences in geology, rainfall, terrain and size were
included in a comprehensive spatial distribution. Catchment
sizes ranged from 157 km? to 9950 km?. For the period of
calibration chosen, 1988—1992, more than 40 readings were
available for each site. In the calibration, 43 sites were used
and nested catchments were generally avoided to reduce
possible interdependencies (Fig. 1). Sites were chosen near
flow gauging stations to allow flow weighted concentrations
to be estimated if required. Given the uncertainties
associated with determining accurate proportions of specific
land uses, particularly in the smaller catchments, land-cover
figures in the three aggregated classes were rounded to the
nearest whole percent. Nevertheless, model predictions are
very sensitive to small changes in the land-cover proportions.
The land- cover proportions in the catchments used for the
calibration range from 3—76% for A, 3—61% for UP and 1—
54% for U. The calibrated multiple regression (R =0.919,
p<0.001) is:
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Fig. 3. Calibration of the landcover regression model showing model
performance for the Aire (Lemonroyd) and Ythan catchments
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IN(N) = [In(A) x (0.269 + 0.066) |+ [In(U ) x (0.299+ 0.044) |-
[IN(UP) x (0.314 + 0.080) ]+ [0.947 + 0.373] (2)

where nitrate concentration (N) is in mg N I-' and +/—
indicates twice the standard error.

Data from the Kildwick and Lemonroyd catchments of
the Aire were excluded from the calibration and included in
a dataset for model validation. The regression model for
England and Wales was also applied in the Ythan catchment
to determine average N concentrations in the River Ythan.
Land cover proportions were estimated using the LCS88
land-cover data set (MLURI, 1993). The fit of the model
calibration and the performance of the model for the Aire
and the Ythan are shown (Fig. 3).

AIRE CATCHMENT: THE CASCADE-QUESTOR
PROCESS MODEL

A linked modelling approach was chosen. The CASCADE
(Catchment Scale Delivery) model, (Cooper and Naden,
1998), was used to quantify delivery to watercourses of
diffuse water flows and associated pollutants (in this case
N). The outputs from CASCADE, as daily time-series and
flow from component sub-catchments, were input to
QUESTOR (Boorman, 2003), which represented the river
channel and combines the inputs from diffuse sources
(CASCADE) with the effects of point source inputs and
abstractions. In this linked approach, model performance is
influenced by processes of parameter optimisation. For
CASCADE, data are available to constrain parameterisation
of profile-scale soil hydrology. However, six additional
parameters, representing catchment-scale hydrological
response, have to be optimised against daily flow
observations. Here, the near absence of point source inputs
above Kildwick led to the CASCADE model alone being
optimised against data from the gauge at Kildwick and the
resultant parameters were then applied to the rest of the
catchment (Fig. 2a). Point source inputs are considerable
downstream of Kildwick so CASCADE-QUESTOR was
applied. In the QUESTOR model, two parameters,
controlling the process of nitrification and denitrification,
were optimised against data at Lemonroyd. Hutchins ez al.
(2006) detail the two models and their calibration, including
issues specific to the Aire catchment regarding the nature
of the linkage. Also, for the case study, a qualitative
judgement was made of the most sensitive parameters which
must be calibrated. (Table 1).

The CASCADE model was applied using either lumped
or distributed input data (representing each of rainfall, soil
type and land-use). A previous implementation of the model
to the Aire catchment used the distributed data (Hutchins et
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Table 1. Parameters identified as being particularly sensitive in the context of the specific case-study applications

CASCADE-QUESTOR SWAT

® percolation from upper soil store: magnitude and
shape parameters

® [ateral flow from upper soil store: magnitude
and shape parameters

@ in-river denitrification parameter

®s0il parameters relating to available water capacity,
hydraulic conductivity and depth

egroundwater delay, affecting the timing of groundwater
inputs to the river- groundwater nitrate concentration

®lag coefficient representing fraction of total surface

® in-river nitrification parameter runoff entering a reach on any one time-step

al.,2006). A DTM was used to define 151 sub-catchments
(Hydrological Response Units: HRUs) (Cooper and Naden,
1998), for each of which rainfall, soils and land-use
information were defined. For rainfall input, one of six
available daily time-series was selected and used in the
model along with the percentage abundance of soil types,
as classified by the HOST system (Boorman et al., 1995),
and land-use classes (derived from a land cover map of Great
Britain (Fuller ef al., 1994) and agricultural census statistics).
Only those categories of soil and land use comprising more
than 1% of the total catchment area were considered. Soil
classification defined soil hydrological parameterisation,
whereas land-use classification drove monthly N inputs.

In addition to the distributed rainfall, soils and land-use
data, a lumped representation of each was defined and used
throughout in each component HRU. For rainfall, a
catchment average time-series was calculated from a 1 km?
grid of data calculated from daily Met Office raingauges
using the triangle method (Jones, 1983). Soil parameters
were derived from statistics of the National Soil Resources
Institute SEISMIC database (Hallett et al., 1993)
summarising soils in HOST class 24, the dominant soil type
in the catchment. For land use, N accumulation rates for the
catchment were calculated monthly using area-weightings
of the land-use-specific values presented by Hutchins ef al.
(2000).

As Table 2 shows, eight implementations of the
CASCADE model were now available, each driven by
different combinations of input data complexity. The process
of parameter optimisation was the same as that described
by Hutchins et al. (2006). Results from these model
applications were compared with observations from
Kildwick.

For modelling at Lemonroyd, the linked CASCADE-
QUESTOR model was used. The CASCADE calibration
ensured total flows at Lemonroyd were not overestimated
and contributions from predominantly urban HRUs were
omitted. The rationale behind these modifications, which
are necessary in catchments with significant urbanisation,

is described in detail in Hutchins et al. (2006). To test the
effect of input data complexity on model performance, two
implementations of the linked model were set up:

(i) CASCADE-QUESTOR Aire Model A which used
HRU-based data generated from CASCADE Aire
Model 1 (least complex);

(i) CASCADE-QUESTOR Aire Model B which used
HRU-based data from CASCADE Aire Model 8 (most
complex).

YTHAN CATCHMENT: THE SWAT PROCESS MODEL
SWAT (Arnold et al, 1998) was applied in the Ythan
catchment as described in Dilks ef al. (2004). A DEM was
used to divide the catchment, above Ellon (the tidal limit),
into 32 sub-catchments, which were parameterised using a
series of response units (RU). The RUs, unique combinations
of soil and land-use data, were characterised in terms of
soil properties and land management, reflecting differences
in processes such as soil and crop evapotranspiration and
surface runoff. The RUs were defined using distributed
coverages of input data comprising of 37 soil series and 12
land-use classes. Land-use information was derived from a
combination of the LCS88 spatial land cover (MLURI,
1993) and parish census data. Soil and land-use categories
making up more than 5% of a sub-catchment, by area, were
included in the RU generation, resulting in the formation of
695 RUs, which were used in the SWAT applications.

In total, 12 model applications, where the RUs were
parameterised using varying degrees of spatially
representative input data, were defined for the Ythan
catchment. The applications comprised all possible
combinations of two rainfall, three soil, and two land-use
coverages, representing distributed and lumped inputs. For
rainfall, measurements from eight precipitation stations
within and around the Ythan catchment were used to
generate an area-weighted average precipitation for the
catchment. Two distributed soil data sets were used, soil
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series and HOST class, comprising 37 and 17 categories,
respectively. The HOST classification provided an
intermediate level of soil spatial detail. The dominant soil
series, determined by area, was used as the lumped coverage.
The distributed land use contained 12 general classes and
the dominant class was used for the lumped
implementations. Table 2 describes the model
implementations driven by different combinations of input
data complexity. These model implementations cover a wide
range of possible spatial representations.

With the exception of a few changes to nitrogen
parameters, Ythan Model 12 (most complex) is the same as
the previous application of SWAT in the Ythan (Dilks et al.,
2004)

For each application the parameters were calibrated
manually, adjusted one at a time within specified ranges. In
general, they were treated as lumped basin-wide variables
during calibration because there was insufficient information
about the parameters at the RU level. Discharge calibration
focused on curve numbers (SWAT estimates runoff volume
using the modified SCS curve number method (Soil
Conservation Society, 1972)), influencing the split between
surface and groundwater contributions to discharge; an
evaporation compensation factor, affecting the depth profile
from which the soil’s evaporative demand can be met; soil
available water capacity, influencing soil water storage; lag
times for surface runoff and groundwater contributions,
affecting the timing of water inputs to the channel; and
groundwater recession, affecting the shape of the baseflow
recession curve. Given the focus on N concentration rather
than N load in this current application compared to that of
Dilks et al. (2004), slight modifications were made to some
nitrogen parameters to improve predictions of model N
concentrations. Groundwater nitrate concentration was set
at 6.6 mg I"' N. Denitrification was increased by reducing
the soil water content at which SWAT initiates the
denitrification process compared to the application of Dilks
et al. (2004). This change increased sensitivity to soil
wetness rather than the rate at which denitrification occurred.
Increasing denitrification reduces the large peaks in N
concentration predicted in autumn and winter. Specific to
the case study, a qualitative judgement was made of the most
sensitive parameters that require calibration. These are listed
in Table 1.

Results

The effect of input data complexity on benchmark efficiency
in the modelled catchments is illustrated in Table 2. In
evaluating the performance of a model with respect to mean
daily flow, mean observed flow from the same period was

used as a benchmark but, for periodic N measurements, a
benchmark was derived using the simulated mean
concentration as estimated using the land-cover regression
model. At Kildwick and Lemonroyd, in the Aire catchment,
the regression estimated means of 1.63 and 3.33 mg N [
were somewhat lower than the mean long-term observations
of 2.31 and 5.43 mg N 17!, respectively. Likewise, in the
Ythan the mean N concentration estimated was 4.28 mg
N 17!, as opposed to the observed mean of 6.54 mg I
Consequently, the N benchmarks defined using simulated
means are considerably less demanding than those that
would result from applying observed means. This difference
is considered in ‘choice of model benchmark’, below,
together with a discussion concerning possible reasons for
the underestimations. Model performance was also
evaluated with respect to the time-series generated by the
least complex applications (Aire Model 1 and Ythan Model
1). Results from this assessment generally failed to yield
further insights and as such have not been included in Table
2. Where use of this second benchmark suggested any
differences in model performance, these have been
highlighted in the text. It is argued that if the ultimate
purposes of the modelling approach are: (i) to give estimates
of N dynamics in basins that are not part of chemical
monitoring programmes and (ii) to predict the impact of
future management scenarios on N losses, then, for these
case-studies, use of a simulated benchmark represents a
fairer test of model performance than a benchmark defined
by the mean of long-term observations.

AIRE AT KILDWICK

The results from CASCADE implementations (Table 2)
show that in terms of flow, inclusion of a distributed
coverage of rainfall yields greatest improvements in
performance. The nature of the soils data used appears to
have little impact. Mechanistically, CASCADE simulated
flow is insensitive to land-use, as reflected by the E__
(flow) model performance statistics (Hutchins ez al., 2006).
The performance of the flow model appears robust during a
period of validation (Feb—Dec 1987, a short period
constrained by data availability). During validation the
benchmark efficiency of Aire Model 1 improved slightly
(0.71) with respect to the calibration period, whereas there
is only slight deterioration in the case of Aire Model 8 (0.72).
Figure 4 shows the comparison between observed and
simulated flows and N on a time-series basis. Only Aire
Models | and 8 are displayed. Of the two models, Aire
Model 8 gives better fit at high flows but overestimates at
low and moderate flows.

For N, although the benefits of distributed rainfall are
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again seen in terms of E, _ (N) values, it appears that
increasing the spatial accuracy of other input data sources
is detrimental to model performance. Indeed, apart from Aire
Model 3, the statistics suggest that the initial benchmark
(the simple regression model) performs better. There are
large overestimates of N in autumn (Fig. 4). This
overestimation is far greater for Aire Model | than Aire
Model 8 and is least severe for Aire Model 3. These models
simulated mean N concentrations of 3.84, 2.47 and 2.83
mg I! respectively, all considerably higher than the mean
of observations. The performance in terms of N could be
improved by incorporating in-stream processes such as
denitrification, as represented by QUESTOR. Therefore, at
this stage, the statistics of N performance have limited
meaning in terms of evaluating model suitability.

AIRE AT LEMONROYD

CASCADE was linked to QUESTOR to simulate flow and
N in the Lemonroyd catchment. When including the net
effect of point source inputs and discharges, the errors in 5-
year total flow (1988-92) were +6% and +10% for Aire
Models A and B, respectively. When partitioning the total
modelled flows into sources, the importance of point sources
(c. 25%) and shallow sub-surface flows (c. 60%) are
depicted by both models.

Time series of observed and simulated flow and N
concentration are shown in Fig. 5. In terms of N, point
sources contribute 46% to total modelled inputs to the river
system. Following calibration of nitrification and
denitrification rates, there is a net retention of modelled N.
Optimised values are comfortably within the range of the
calibrated values specified by Eatherall et al. (1998) working

on a more detailed reach-by-reach calibration of the nearby
River Wharfe. Delivery of N is estimated as being 85% and
83% for Aire Models A and B respectively. Figure 5
illustrates the ability of the model to capture seasonal
variability in N concentration.

Plots of observed and simulated flow duration curves and
N cumulative frequency curves are shown in Fig. 6 (a) and
(b) respectively. Quantitatively, in terms of cumulative
frequency error index, performance is identical although
Aire Model B performs better at low flows and worse at
high flows. The models overestimate the very highest flows.
During 1992 there was consistent underestimation of N by
both models (Fig. 5), which may be important in accounting
for the overall underestimation of percentile values.

YTHAN AT ELLON

Model performance statistics indicate that flow simulations
were acceptable for all 12 Ythan Model applications. The
statistics were in line with those achieved by Perrin ef al.
(2006b) when applying the GR4J rainfall-runoff model
(Perrin ef al.,2003) in the same catchment (calibration: 0.80;
validation: 0.60). In the present application, the greatest
increases in model performance were achieved using
distributed rainfall. Incorporating more detailed land-use
information also resulted in slight improvements. The effect
of including a spatial representation of soils data was less
clear. Model performance increased when using HOST
compared to the lumped coverage but no additional
improvement was obtained by increasing the detail further
and using a soil series input coverage. Performance statistics
calculated using Ythan Model 1 as the benchmark displayed
an identical pattern to those using the mean observed value.
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Fig. 4(a). Observed and simulated flow and nitrate-N concentration at Kildwick for the calibration period (1988-92).
Simulations generated by CASCADE. (The right hand y-axis is logarithmic)
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Positive values of these E, _ , statistics indicated that Ythan
Models 2 to 12 performed better than Ythan Model 1. The
performance of the flow models appeared robust during a
validation period (1993—1999) with only slight deterioration
in the E,_  statistics, that varied between 0.46 (Ythan
Model 1) and 0.71 (Ythan Model 12).
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In terms of N, performance statistics indicate that
increasing model complexity, either through use of
distributed soils (HOST) information or by including spatial
variability of land use, improved model performance, whilst
including spatially distributed rainfall made little difference.
Given that the modelling objective was to simulate N at the
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catchment outlet, Ythan Model 6 (lumped rainfall, HOST
soil, distributed land use), which achieved the highest
performance, was considered the best of the 12 SWAT
applications. Average daily N simulations from Ythan
Models 5 to 12 were the closest to observed mean values,
with mean simulations notably higher for Ythan Models 1
to 4, which used the lumped soil input coverage.

Figure 7 presents timeseries of observed and simulated

flow and N for Ythan Models 1 (least complex) and 12 (most
complex). Both models represented the observed flow
successfully although some mismatches are apparent at both
the highest and lowest flows, a result also highlighted by
the flow duration curves presented in Fig. 8. The flow
performance statistic for Ythan Model 1 was heavily
impacted by a small number of over-estimated events. The
N time series, on the other hand, exhibited a generally poor
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fit to observed data (Figs. 7 and 8). Notably higher peaks of
N concentration were simulated by Ythan Model 1 compared
to Ythan Model 12 for a number of periods. Other periods,
where the simulated data series of Ythan Models 1 and 12
exhibited conflicting peaks and troughs, were also seen. The
simulation of large N peaks, considerably greater than
observed data, by Ythan Model 1 is clear, as is the dominance
of groundwater N contributions. The combination of
clustering of model simulations around the observed mean
(Figs. 7 and 8) and a poor benchmark results in falsely high
E, ... (N) statistics in the Ythan.

Discussion

Two process-based models have been applied in two UK
catchments, CASCADE-QUESTOR in the Aire and SWAT
in the Ythan. Several implementations of each model,
covering a wide range of possible spatial representations of
rainfall, soil and land-use data, have been examined to assess
the effect of input data complexity on model performance.
Results indicate that model performance may be improved
by increasing the spatial representation of some but not all
of'the tested input coverages; different coverages influenced
different model outputs.

PERFORMANCE ASSESSMENT: MODELLING FLOW

The partitioning of flow, as estimated by the model
implementations at Lemonroyd and Ellon, is consistent with
conceptual models of soil hydrological response represented
in the HOST classification (Boorman et al., 1995). The Aire
is dominated by soils from HOST class 24, soils exhibiting
gleyed horizons close to the surface underlain by strata of
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low-permeability, prone to seasonal waterlogging, reflecting
the importance of shallow sub-surface flows (approx. 30%)
in the region. The Ythan, on the other hand, is characterised
by freely draining soils developed on loamy drifts underlain
by either porous or hard coherent rocks at depths of greater
than one metre, classified as HOST classes 6 and 17,
respectively (Boorman et al., 1995). These soils reflect the
importance of the slow hydrograph response in this
baseflow-dominated catchment.

Difficulties were encountered in both case-studies when
modelling the extremes of the flow distribution. In the Aire,
CASCADE-QUESTOR overestimated the highest flows,
whereas in the Ythan the lowest flows are underestimated
by SWAT. Particular difficulties simulating low flows in the
Ythan during the second half of 1989, a year with low
precipitation, suggest that the model, as it is currently set
up, may not reproduce observed flows well under unusually
dry conditions. Representing the extremes of distributions
is a common difficulty in model applications. The differing
problems encountered by these two case-studies may reflect
the different choice of model or the contrasting nature of
soil hydrology in the regions. Additionally, in the Aire case-
study, flows in the middle of the distribution were slightly
over-estimated, even by Aire Model B (most complex). A
more detailed representation of the spatial variability in
rainfall may help alleviate this problem.

PERFORMANCE ASSESSMENT: MODELLING
NITRATE CONCENTRATION

Diffuse sources of N predominate in the Aire Kildwick
catchment and the Ythan catchment where agriculture is
the dominant land use. Typically, observed data from such
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agricultural catchments will broadly reflect seasonal patterns
of N accumulation, with the greatest N concentrations
occurring in autumn, when peaks result from the leaching
of N from crop residues following harvest. Such patterns
were seen in observations from Ellon (Ythan) but not from
Kildwick (Aire). Conversely, modelled time series for
Kildwick indicated the occurrence of autumn maxima
whereas the SWAT output for the Ythan failed to capture
this seasonality. As a result of the differences between
observed and simulated data, the visual and statistical fits
derived from CASCADE at Kildwick were poor. However,
there was scope to improve N performance by including in-
stream processes represented in QUESTOR (nitrification
and denitrification). Aire Model 3 produced the best E_
(N) value and in terms of flow was as good as the most
complex implementation (Aire Model 8). Ythan simulations,
on the other hand, consistently varied around 6.6 mg I/,
with periods of peaks and troughs associated with rainfall
events. Differences in the responses to these rainfall events
reflect changes in the relative proportions of water from
different sources within the catchment. The modelled time
series shows stable concentrations at baseflow conditions.
This reflects the dominance of groundwater in the Ythan
region and the simple representation of groundwater
processes by the SWAT model, which assumes a constant
groundwater N concentration. In-stream processes have not
been included in the current SWAT applications due to
problems associated with their calibration. However, their
inclusion could potentially improve N simulations in the
Ythan. Similar problems calibrating in-stream processes
have also been experienced by other users (Arnold and
Fohrer, 2005).

The Aire Lemonroyd catchment contains many point
sources in addition to diffuse sources of N. Here, the highest
concentrations were observed during summer low flows
when the relative contribution of high-concentration point
sources is at its greatest. The lowest concentrations were
observed during winter and early spring when diffuse
sources dominate volumetrically and the autumn flushes of
N mobilised from crop residues have started to subside.
Visually, these seasonal trends were captured adequately
by the linked CASCADE-QUESTOR model as illustrated
in the time series plot (Fig. 5) and values of E,_  (N).

The CASCADE-QUESTOR implementations, Aire
Models A and B, produced similar E, _, (N) values (approx.
0.5). For the SWAT Ythan models, Ythan Model 6 achieved
the best performance for N prediction although a drop in
flow performance was seen in comparison to Ythan Model
12 (most complex).

IMPACT OF MODEL INPUT DATA COMPLEXTTY
For the two applications, certain similarities were seen when
assessing the impact of spatial input data complexity on
model performance. Using a distributed rainfall coverage
clearly improved flow simulation, even in the Ythan where
spatial variability of annual mean precipitation across the
catchment is small. The benefit of increasing land-use
information was minimal in both catchments. The use of
distributed N accumulations in the Aire catchment yielded,
in general, better performance at low flows, when high
concentrations of N are likely to be particularly significant
ecologically. Similar improvements were not seen in the
Ythan where at low flow groundwater is the main source of N.
Increasing the spatial representation of soils benefited the
Ythan application but provided minimal utility in the Aire
in terms of either flow or N prediction. In the Ythan the
change from lumped to distributed, using the HOST
classification, exerted a notable change in simulated mean
annual N concentration and on qualitative performance
criteria. Little was gained by further increasing the
distribution using soil series. Under the lumped soil coverage
(Ythan Models | to 4) considerable peaks in N
concentration, not seen in observed data, were associated
with both the spring and autumn seasons (see Fig. 7). These
differences in the extremes of simulated N concentration,
apparent for the various Ythan implementations, are thought
to be associated with differences in the level of
denitrification represented in the model applications. The
denitrification process within SWAT is triggered once the
soil water content exceeds a specified multiple of field
capacity. The impact of this is that less denitrification will
be modelled in the more freely-draining soils compared to
the less freely-draining soils which spend a greater
proportion of time above the threshold soil moisture level.
The lumped soil coverage (Ythan Models 1 to 4) was
represented by the dominant soil series in the Ythan
catchment. This soil is more freely draining than several
other soils in the region; consequently the total amount of
denitrification simulated in the catchment is likely to be less
than when a distributed soil coverage is used. A better
representation of the lumped soil may be an average soil
with parameter values calculated as an area-weighted
average of the soil series or soil HOST class values. The
use of catchment-specific soil parameterisation was not
tested in the Aire application. The Ythan results suggest there
would be little benefit to be gained with their inclusion.
Cotter et al. (2003), also working with SWAT, suggest there
is unlikely to be significant benefit in using increasingly
detailed soils data at spatial resolutions finer than 1 km?.
The performance of Aire Models A (least complex) and B
(most complex) appeared very similar in terms of N. In this
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respect, the influence of point source discharges, abstractions
and in-stream processes dominates over the effects of the
strikingly different levels of input data complexity used, as
corroborated by Deflandre ef al. (2006). Although in terms
of E ., (flow), Aire Model A outperformed Aire Model B,
the latter model performed better at low flows (see Fig. 6a)
as reflected in the MAPE flow statistics (Table 2).
Consequently, the high N concentrations occurring at these
low flows were better simulated (Fig. 6b). The models under-
estimated throughout much of the final year (1992). Decadal
monitoring data from the Aire at Lemonroyd suggest an
increase in mean N concentration of approximately
0.3 mg I per annum, between 1985 and 1995. The reasons
are not obvious, and their exploration is outside the scope
of this paper.

Overall, the study determined that unless the ultimate
purpose of the model application was to inform specific
spatially-targeted mitigation options, there was little benefit
to model performance by distributing all three (rainfall, soil,
land-use) input coverages. Importantly, however, for the
modelling approaches chosen in both case studies, any
improvement in model performance gained through the use
of distributed rather than lumped inputs is not offset by the
consequences of over-parameterisation as there is no
increase in the number of parameters requiring optimisation.
Nevertheless, equifinality, or non-uniqueness of best-fit,
where an optimal performance statistic may be obtained with
more than one set of calibrated parameter values, reflects
over-parameterisation. This remains an issue to be
considered when evaluating the utility of the modelling
approaches in these case studies.

Separate and ultimately more fundamental issues that arise
from the performance assessment are the reasons as to why,
in both case-studies, the improvements gained from
increasing the spatial resolution of input data are only
marginal. This may reflect inadequacies in the model
structures (shortcomings in process representation)
manifested as an inability to take advantage of the greater
accuracy of the input data. On the other hand, parish-level
agricultural census data used to specify the land-use
distribution may be spatially insufficiently precise to support
modelling at the HRU/RU resolutions adopted. Furthermore,
catchments act as filters, dampening the effects of inputs in
time and space and lessening the effect of improved inputs.
The influence of input resolution may also be impaired by
the pragmatic decision to use a model time-step of 1 day
which may be close to the hydrological response times of
the catchments.
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CHOICE OF MODEL BENCHMARK

Quantitative measures of performance suggest that both in
terms of time-series N concentration responses (E,_ ) and
of quantitative measures of the simulated N distribution (e.g.
MAPE), the Aire simulations were more satisfactory than
the Ythan when using lumped representations of inputs. For
fully distributed inputs there is little difference in
performance between the two case studies. Moreover, the
values of E,_ . (N) are heavily influenced by the standard
used (from the regression model). In both the Aire and the
Ythan, the regression model underestimated mean N
concentration. If, instead, the observed mean N
concentration was used, an appreciable reduction in the
values of E,__, (N) would have occurred; to values of 0.08
and 0.05 respectively for Aire Models A and B and to
negative values in the case of all the Ythan models.
Therefore, performance benchmarking reveals evidence that
the model applications have predictive power only when
evaluation is made against a simulated rather than an
observed mean N concentration. Variability in the
performance of a land-cover-based regression model for N
concentration may be due to a variety of causes. The density
of grazing livestock, or the N input from atmospheric
sources, are examples of variables (i) to which the regression
model is insensitive, so affecting its performance, and (ii)
that, if not included in process models, compromise their
ability to generate good simulations. Hence, use of the
regression model inthe E,_ | (N) statistic, as illustrated here,
serves to provide an initial benchmark of the level of
performance that might be expected of a more complex
process model.

Conclusions

Two case studies have been undertaken on different
catchments, assessing the effect of data complexity on model
performance using contrasting model codes. Despite the
differences, and the restrictions imposed by assessing just
two studies, some general conclusions arise for consideration
when undertaking such catchment-scale modelling of flow
and N concentration. Aggregations of each of the two sets
of model results reveal similar features. Both case studies
indicate the level of benefit to be gained in using distributed
input data. The importance of distributed rainfall data,
especially for flow simulation, is notable as is the adequacy
in the use of the HOST classification rather than series-
specific information when deriving soil parameters. The two
modelling studies also showed that the sensitivity of
individual parameters representing diffuse pollution
processes may be greatly diminished by consequences of
in-river processes and mixing of sources, especially point
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discharges, prevalent in catchments of significant size.

The minimum amount of input data required by a model
is determined by the nature of the application.
Implementations of models using this minimum input
requirement can be considered as providing benchmark
simulations. The use of input data to a level above and
beyond the minimum may or may not yield significant
performance benefits. Specific applications are not
prescribed here and, hence, benchmark performance is not
fixed but results generated by two models have been assessed
to illustrate the likely benefits of additional data, and how
these benefits may differ in their nature between model codes
and catchments.

As a general recommendation, judgement on an
appropriate level of input data complexity for a given model
application should be based on a combination of multiple
quantitative performance criteria and qualitative assessment.
Any benefits gained, or not, from using distributed input
data, may reflect both on the quality of the input data itself
and on the quality of the model representation. It is important
that these issues are considered in a model application. The
robustness of model performance during validation periods
should also be considered. Whether or not a specific model
implementation is deemed ‘good enough’ should be
informed partly through value judgements as well as by a
range of quantitative criteria. All too often model
applications are justified purely on the basis of a single
performance criterion; value judgments should be set in the
context of the application itself and broader management
requirements of end-users.
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