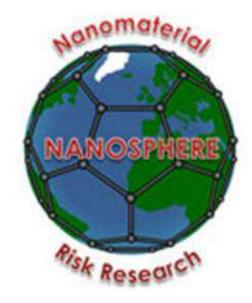


Effects of selected

silver nanoparticles on freshwater microbial communities

Marianne Matzke^{1,4}, Julian Gallego², Martin Hassellöv², Kerstin Jurkschat³, Thomas Backhaus⁴ Centre for Ecology and Hydrology (CEH), Maclean Building, Crowmarsh Gifford, United Kingdom ² Department of Chemistry, University of Gothenburg, Sweden ³Department of Materials, Oxford University, Begbroke Science Park, United Kingdom ⁴ Department of Biological and Environmental Sciences, University of Gothenburg, Sweden e-mail: martzk@ceh.ac.uk


INTRODUCTION

Silver nanoparticles (AgNPs) are one of the particles types with the highest production volume.

Widespread use of AgNPs will lead to environmental release and their beneficial/wanted microbiocidal effect might become problematic in the natural aquatic environment, especially algae & bacteria might be put at risk. **AIM** - to answer the following questions...

Effects on microbial freshwater communities at environmentally relevant concentrations?

□ Are there any nano-specific effects?

METHODS

SWIFT periphyton assay (Porsbring et al., 2007)

Colonisation of glass discs by natural communities of algae and bacteria for 7-10 days in a stream.

Toxicant exposure in the lab for 96 hours under controlled semi-static conditions (light:dark 16:8 hours, ambient temperature).

 Predicted concentrations of AgNPs in surface water range from 0.1 to 1 nmol/L (Gottschalk et al. 2009, 2010, Mueller & Nowack 2008).

- Are their differences in the sensitivity of biofilm algae and bacteria?
- Toxicant induced changes in the community structure?

RESULTS

Bacteria reacted more sensitive than algae.

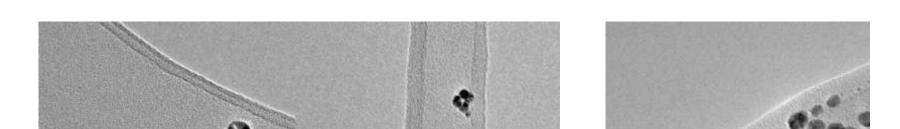
Algal part (Fig. 1):
AgNO₃ effects > 150 nM, AgNP TP (20 nm)
>300 nM and AgNP NM-300K: > 1300 nM.

Bacterial part (Fig. 2): AgNP NM-300K (20 nm) > 0.5 nM, AgNP TP (20 nm) > 22 nM, AgNO₃ between 53 nM–100 nM.

□ Comparing AgNO₃ with AgNPs: AgNO₃ more toxic for the algae, AgNPs more toxic for the bacteria.

□ Agglomeration/size:

particle background in the natural river water too high to differentiate between natural & ENPs.

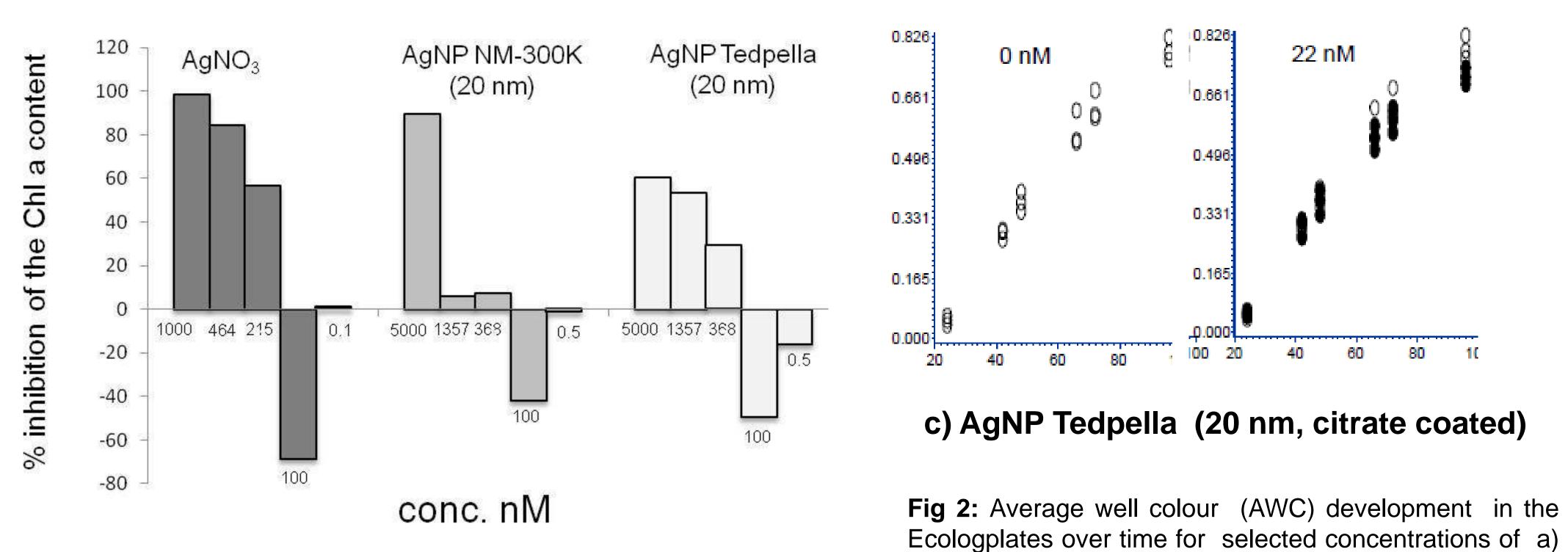

Structural analysis of the algal & the bacterial part of the community:

Catabolic profiling & physiological activity of the bacteria using the Ecolog approach = ability to metabolise different carbon sources.

HPLC pigment profiling: Chl a content as a biomass indicator & changes in pigment patterns indicating changes in species composition and interferences with specific physiological processes.

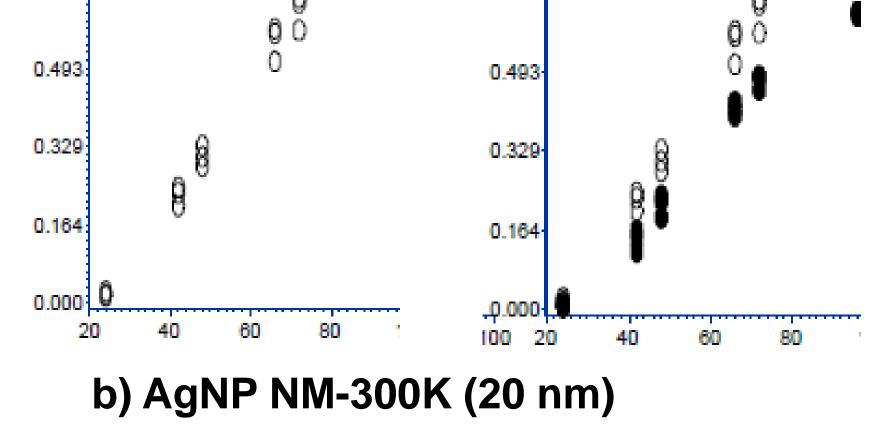
 Analytical verification of the exposures with ICP-MS/ultrafiltration (total & dissolved silver)
& NTA (agglomeration, NP behaviour, size).

Testing of two different spherical AgNPs in reference to AgNO₃



□ Total silver:

variation between nominal and real Ag conc. NM-300K accumulation over test time (4 days).


Dissolved silver:

AgNO₃: decreasing conc. – due to precipitation? River water slows down the particle dissolution, but **NM-300K** higher dissolution than **AgNP TP**.

Fig. 1: % Inhibition of the Chlorophyll a (Chl a) content for 5 different concentrations of AgNO₃ and AgNPs

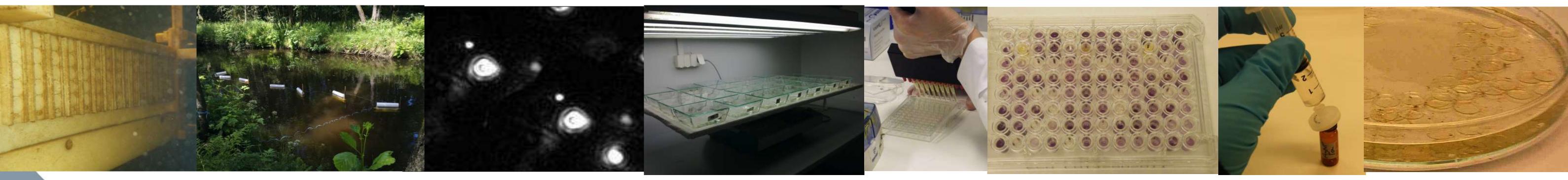
Field site

20 mm

Tedpella 20 nm, citrate coated, aqueous susp. (AgNP TP)

NM-300K, 20 nm, aqueous susp. & stabilizers (Tween 20) (AgNP NM-300K)

CONCLUSIONS & OUTLOOK


✓ Bacteria more sensitive than algae with effects for the NM-300K in the range of environmental realistic concentrations.

 Analytics crucial for a correct interpretation of the ecotoxicological results
 – otherwise underestimation of theAgNPs effects and hazards; data patterns highly complex.

✓ Indications for nanospecific effects: higher toxicity of the AgNPs than the AgNO₃ for the bacteria.

✓ Further analysis & link of ecotox & analytics data necessary.

AgNO₃ b) AgNPs NM-300K c) AgNPs TP; x-axis: time in hours, y-axis: OD of the colour development at 595 nm

Sampling of natural biofilm

NanoSight

Faculty of Science

Climate room for exposure

Ecolog plates (bacterial part of the community)

Filtering pigmentPeriphyton onsamples for HPLCglass discs

References

Gottschalk, F. et al., 2009. Modeled environmental concentrations of engineered nanomaterials (TiO(2), ZnO, Ag, CNT, Fullerenes) for different regions. Environmental science & technology, 43(24) Gottschalk, F. et al., 2010. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environmental toxicology and chemistry, 29(5) Mueller, N.C. & Nowack, B., 2008. Exposure modeling of engineered nanoparticles in the environment. Environmental science & technology, 42(12), pp.4447-53.

Acknowledgements

Funded by Nanosphere (FORMAS, The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning) and Nanofate (EU Commission, FP7)