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Abstract

Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas
may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane
oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but
also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments
were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25uC.
After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are
not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong
temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes
were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum
plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all
methane transported through diffusion between 5 and 15uC. Still, even though methane consumption increased with
increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic
activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with
increasing temperature. Whereas 98% of the produced methane is retained at 5uC, this drops to approximately 50% at 25uC.
This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat
bogs.
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Introduction

After remaining stable for almost a decade, methane concen-

trations in the atmosphere have started to rise again since 2007

[1]. Increasing emissions from the warming high northern latitude

wetlands are probably responsible for this observed rise in

methane [2]. This is important since methane is a potent

greenhouse gas, having a potential impact at least 25 times that

of CO2 [3]. Since the industrial revolution atmospheric methane

concentrations increased as a consequence of changes in land use,

agriculture and industrial activity [4]. Natural sources for

atmospheric methane include wetlands and peatlands in the in

the tropics and at mid-to high latitudes.

Peat bogs play an important role in the global carbon cycle. On

the one hand they are the largest terrestrial carbon sink, on the

other hand they are an important natural source of atmospheric

methane, a potent greenhouse gas [5,6]. Methane emissions from

peat bogs, however, are strongly reduced by aerobic methane

oxidizing bacteria (methanotrophs) [7,8]. Future climatic change

projections indicate that mid to high latitudes, especially Western

Siberia with the largest peat bogs globally may become

increasingly wetter and warmer [9]. It is therefore necessary to

understand the influence of these environmental factors on

methane cycling in peat bogs.

Methane oxidizing activity by methanotrophs strongly depends

on temperature and local relative water level. A temperature

increase from 10 to 20uC roughly resulted in a doubling in

methane oxidation activity in Sphagnum-associated methanotrophs

and also higher water levels resulted in higher methane oxidation

rates [8]. On the other hand, methanogenic activity in peat bogs

displays a strong correlation with water level and temperature

[10,11], suggesting that warming and increasing rainfall could lead

to increased rates of methane generation. Here we study the

balance of methane production and methane oxidation relative to

in-situ water level, and investigate whether increased methane

production as a consequence of increasing temperatures might be

balanced by enhanced methanotrophic activity.

Our study was performed at Moorhouse Nature reserve (North

Pennines, UK), an acidic ombrotrophic blanket bog incised with

numerous gullies [12]. On the blanket, Sphagnum mosses (S.

capillifolium) grow above the water level, while in waterlogged areas

Sphagnum (S. cuspidatum) grows at or below the water level

(nomenclature after Smith [13]). In order to establish the influence
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of water level on methane oxidation rates at the field site, Sphagnum

mosses from different relative water levels were analysed for their

potential methane oxidation rates. Also, methane production rates

were determined for the top peat layers, by incubation in serum

flask bottles. Subsequently, the influence of temperature on

methane production and oxidation were evaluated by incubation

of intact Sphagnum peat cores at various temperatures. After two

months, methane fluxes from these peat cores were measured,

with and without the presence of the methane-oxidizing Sphagnum

layer.

Results and Discussion

Highest potential methane oxidation rates were observed in

pool-derived S. cuspidatum, which experiences relatively high water

level, the pool-site (Fig. 1). This is in accordance with previous

studies [8,14,15]. The highest methane potential methane

oxidation rates were observed for the lower parts of Sphagnum

plants from pools, although these values were not significantly

different from the top part (P.0.05). Hummock Sphagnum, which

grows above the water level, exhibited no methane oxidation

(Fig. 1). Both peat horizons demonstrated methane oxidizing

capacity (Fig. 1). Although pool-derived peat is situated well below

the water level where oxygen is virtually absent, methanotrophs

apparently quickly become active when oxygen is provided. The

top part of the hummock-derived peat is situated just around the

water level, providing a good position for methanotrophic bacteria

along the methane gradient. Methane production rates were

higher in pool-derived peat compared to hummock-peat (Fig. 1).

Waterlogged areas are also the local hotspots for methane

emissions in peat bogs [14]. In hummock-peat, organic matter

degradation of Sphagnum largely takes place in the aerobic top layer

(acrotelm), leaving less organic matter for anaerobic degradation

processes [11]. The observed methane oxidation potential of

hummock peat is more than sufficient to oxidize all produced

methane. This balance is more critical in pool settings, suggesting

that these pool settings are more susceptible to environmental

change.

Temperature is known to enhance bacterial methane oxidation

as well as archaeal methane production [8,10,11]. The net effect of

both these processes remains, however, unclear. To unravel the

temperature effect on methane and carbon cycling, intact peat

cores containing actively growing Sphagnum were incubated at 5,

10, 15, 20, and 25uC, where Sphagnum growth rates as well as

methane fluxes were measured. Net methane fluxes showed a

significant (P,0.05) and strong (Q1010–20uC = 5.2) temperature-

dependence, with higher methane fluxes at higher temperatures

(Fig. 2A). This suggests that the temperature-induced increase in

methane production was higher than the increase in methane

consumption. After removal of Sphagnum, methane fluxes were

significantly (P,0.05) higher and increased with temperature

(Q1010–20uC = 3.3) This indicates that the methanotrophs associ-

ated with Sphagnum plants play an important role in reducing the

net methane flux from peat. Methane consumption was recon-

structed by calculating the difference in the methane flux before

and after the removal of Sphagnum. Methane consumption was

significantly (P,0.05) different and increased with temperature

(Q1010–20uC = 2.6), reaching maximum values around 20uC
(Fig. 2B). This suggests that this is the optimum temperature for

methanotrophs residing in peat bogs. Even though these

measurement were only done for a limited number of replicates,

they show a clear trend and are in line with previous results

[8,10,11].

The efficiency of the Sphagnum-methanotroph consortium to act

as a filter preventing the escape of methane appeared to be 90–

100% in the lower temperature range (Fig. 2C). Methanotrophs

appear to consume almost all methane transported through

diffusion under these conditions. Methane retention showed a

strong temperature-dependence beyond 15uC, dropping to only

about 50% at 25uC (Fig. 2C). Even though methane consumption

increased with increasing temperature, the higher fluxes from the

methane-producing microbes could not be balanced by methano-

trophic activity. Reduced solubility of methane with increasing

temperature may be also in part responsible for the observed

relationship. Growth rates of Sphagnum did significantly differ with

Figure 1. Potential methane oxidation rates (grey bars) and production rates (white bars). Sphagnum plants and peat from a pool-site
and a hummock-site were analysed. Sphagnum plants were divided in three parts. Rates are expressed in mg.g dw21.day21 and are means of triplicate
incubations 6 s.d. Letters indicate statistically significant groups of data (P,0.05).
doi:10.1371/journal.pone.0039614.g001
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temperature (P,0.05), with highest growth rates observed at the

highest temperature (Fig. 3). Increasing CO2 assimilation in

conjunction with increasing temperature potentially results in

enhanced carbon storage.

Our results indicate that the Sphagnum-methanotroph consor-

tium plays an important role in reducing methane emissions in

peat bogs, potentially preventing the release of methane via

diffusive transport up to 98%. Climate change projections indicate

that mid- to high latitudes, where peat bogs are primarily situated,

will become warmer as well as wetter [9]. Even though wetter

conditions would increase methane oxidation rates, it would also

enhance methane production rates, with most probably ultimately

higher methane emissions. The effect of increasing methane

emissions by increased wetness could be counteracted by

enhanced carbon storage through peat bog growth [16]. Also

higher temperatures could result in enhanced carbon storage,

when Sphagnum growth rates increase with increasing tempera-

tures. Nonetheless, methane fluxes increased with increasing

temperature. Even though methane consumption increased with

increasing temperature, methanotrophs appeared to be not able to

fully compensate for the increased methane production, over the

given time period. Methane retention dropped from approxi-

mately 98% at 5uC to only about 50% at 25uC. This may partially

explain the recently observed rise in wetland methane emissions

from mid- to high latitudes [1]. It is not expected that the northern

peat bogs will experience a temperature increase of 25uC on

average. However, the range of temperatures used for this study

covers the range of temperatures expected during the period in

which methane cycling plays an important role, the summer. The

purpose of this study is to mechanistically understand the balance

in methane production and oxidation with respect to temperature,

and this study gives an indication into which direction the balance

will tend to shift. A long-term consequence of global warming at

mid- to high latitudes may also be a shift in the plant community

towards vascular plants [17]. This would also result in higher

methane emissions, as the oxidizing layer of the Sphagnum-

methanotroph consortium will be lost in favour of vascular plants

which act as conduits for the escape of methane. Hence, when

mid- to high latitudes become increasingly warmer as well as

wetter, peat bogs will most probably become a larger source for

atmospheric methane, and therefore may act as a positive

feedback to global rising temperatures.

Materials and Methods

Site Description
This study was performed in Moorhouse Nature Reserve, North

Pennines, UK (54u419389’N, 2u229409’W). This setting has been

described in detail elsewhere [12]. In short, Moorhouse is an acidic

(pH 3.0 to 4.2) blanket bog, intersected by gullies. The vegetation

on the blanket is typical for hummock peat, containing Calluna

Figure 2. Methane cycling at different temperatures. A) Diffusive
methane flux, with and without Sphagnum, B) methane consumption,
the difference in methane flux before and after removal of Sphagnum,
C) methane retention. Fluxes are measured on small peat cores after
two months of incubation and values are expressed in mg.cm22.day21.
Methane retention is expressed in % of the initial flux measured without
Sphagnum. Values represent means of triplicate incubations 6 s.d.
Letters indicate statistically significant groups of data (P,0.05).
Diffusive methane flux data with and without Sphagnum were not
compared to each other.
doi:10.1371/journal.pone.0039614.g002

Figure 3. Growth rates of Sphagnum at different temperatures.
Growth rates are measured after two months of incubation. Values are
expressed in cm and represent means of four replicates 6 s.d. Letters
indicate statistically significant groups of data (P,0.05).
doi:10.1371/journal.pone.0039614.g003
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vulgaris, Eriophorum vaginatum, Eriophorum angustifolium, Pleurozium

schreberi and Sphagnum capillifolium. In waterlogged areas, e.g. pools

or gullies, vegetation was dominated by Sphagnum cuspidatum, E.

angustifolium and E. vaginatum. The mean monthly temperature is

approximately 10uC and average rainfall is high at 1900 mm per

year.

Our research was performed using material collected from a

pool site and a hummock site. The pool site is characterized by a

wide gully with limited lateral flow and dominated by S. cuspidatum,

with the top of the decomposing peat approximately 15 cm below

the water table. The hummock site is dominated by S. capillifolium

on blanket peat at approximately 10 m distance from the pool site,

with water levels approximately 5 cm below the top of the

capitula, as the conditions during sampling were relatively wet.

Potential Methane Oxidation and Production Rates
S. cuspidatum and peat were sampled from the pool-site and S.

capillifolium and peat were sampled from the hummock-site, after

which the Sphagnum mosses were washed with demineralized water

and sectioned into top, middle and lower parts, approximately

3 cm each. From both sites, peat was also sampled using a small

spade, retrieving the top 15 cm. Prior to incubation, the peat was

mixed. All samples (approximately 0.5 g dry weight) were

incubated in triplicate in 120 ml serum vials and mixed with

40 ml demineralized water and capped with a gas-tight stopper.

Incubations continued between 4 and 14 days.

For determining methane production potential vials were

flushed with nitrogen and incubations were performed at room

temperature (20uC) without shaking or stirring. To measure

potential methane oxidation rates, 1 ml methane was added to

each vial and kept under continuous shaking. Methane concen-

trations in the serum flasks were analysed daily at the CEH in

Lancaster using a PerkinElmer (PerkinElmer, USA) Autosystem

Gas Chromatograph (GC) fitted with a flame ionisation detector

operating at 130uC. The GC contained a stainless steel Porapak Q

50–80 mesh column (length 2 m, outer diameter 3.17 mm),

maintained at 100uC with a helium carrier gas flowing at

60 ml min21. A calibration line was constructed by injection of

a series of standards with different known concentrations. Potential

methane oxidation and production were subsequently calculated

using the initial linear rates. Reported rates are the average of

three incubations. A student t-test was performed to analyse the

differences at different depths.

Mesocosm Experiments
Peat cores (length 50 cm, diameter 7 cm) were recovered from

the pool-site. Perspex tubes were pushed into the peat until the

core top was 5 cm above the water level, recovering about 30 cm

of peat. The core was subsequently dug out by hand and capped at

the bottom with a rubber stopper. The S. cuspidatum on top was

sampled separately and added to the top water layer. The air

temperature at the site was 12.5uC at the time of sampling, and the

bog water had a temperature of 11.5uC.

The cores were incubated at 5, 10, 15, 20, and 25uC in

incubators (RumedTM) (5, 10 and 20uC) and in climate rooms (15

and 25uC) at the AWI, Bremerhaven for two months. During the

incubation water levels were kept at the top of the capitula of the

Sphagnum, by adding bog water originating from the field site. The

cores were transparent but the bottom 30 cm containing peat were

covered with aluminium foil. For all experiments light level was

set, at 65 mmol m22 s21, with a 24 h light-dark cycle similar to

summer conditions (16 h light, 8 h dark). The Sphagnum was

harvested after two months, when the photosynthetic capitulum

(top 3 cm) was newly grown in all set-ups. Growth rates were

calculated from the increment in height of the tops of the capitula

since the start of the experiment. This was measured for four cores

per experiment.

At the end of the mesocosm experiments methane fluxes were

measured by closing the Perspex tubes with airtight caps equipped

with rubber septa and obtaining headspace gas samples at several

time intervals using a syringe and needle. After removal of the

living Sphagnum layer, methane flux measurements were repeated.

Methane concentrations were measured with a Thermo Finnigan

Trace GC fitted with a flame ionisation detector operating at

300uC. The GC was equipped with a Restek PC 6031 packed

column (length 2 m, 2 mm internal diameter), maintained at

100uC, using helium as the carrier gas flowing at 7 ml min21.

Methane fluxes were calculated from the average of the four

measurements, and standard deviations were calculated for the

replicates.

Statistical Analyses
Pairwise comparisons were made for methane oxidation rates,

methane fluxes with and without Sphagnum, methane consumption,

methane retention, and Sphagnum growth at different temperature

using ANOVA. Groups that showed significant differences were

assigned different letters. Correlations between incubation tem-

peratures and methane fluxes with and without Sphagnum, methane

consumption, methane retention, and Sphagnum growth were also

tested by ANOVA. Statistical analyses were performed in SPSS

18.0.
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