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Abstract

Conservation planners often wish to predict how species distributions will change in response to environmental changes.
Species distribution models (SDMs) are the primary tool for making such predictions. Many methods are widely used;
however, they all make simplifying assumptions, and predictions can therefore be subject to high uncertainty. With global
change well underway, field records of observed range shifts are increasingly being used for testing SDM transferability. We
used an unprecedented distribution dataset documenting recent range changes of British vascular plants, birds, and
butterflies to test whether correlative SDMs based on climate change provide useful approximations of potential
distribution shifts. We modelled past species distributions from climate using nine single techniques and a consensus
approach, and projected the geographical extent of these models to a more recent time period based on climate change;
we then compared model predictions with recent observed distributions in order to estimate the temporal transferability
and prediction accuracy of our models. We also evaluated the relative effect of methodological and taxonomic variation on
the performance of SDMs. Models showed good transferability in time when assessed using widespread metrics of accuracy.
However, models had low accuracy to predict where occupancy status changed between time periods, especially for
declining species. Model performance varied greatly among species within major taxa, but there was also considerable
variation among modelling frameworks. Past climatic associations of British species distributions retain a high explanatory
power when transferred to recent time – due to their accuracy to predict large areas retained by species – but fail to capture
relevant predictors of change. We strongly emphasize the need for caution when using SDMs to predict shifts in species
distributions: high explanatory power on temporally-independent records – as assessed using widespread metrics – need
not indicate a model’s ability to predict the future.
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Introduction

Many species have responded to recent environmental change

by shifting their distributions [1–3]. Predicting how distributions

will change in the face of future environmental change is key to

developing effective strategies for the conservation of biodiversity,

ecosystems and the services they support [4,5].

Correlative species distribution models (SDMs) are the main

tools for predicting impacts of environmental change on species

distributions [6–8]. SDMs typically correlate currently-observed

species occurrence and environmental explanatory variables that

reflect hypothesised constraints on species persistence, such as

climate and land use [8]. By updating environmental predictors to

match future environmental change scenarios and/or environ-

ments in different regions, these statistical models can be used to

predict shifts in species distributions in time and/or space –

assuming they are transferable to environmental domains that

differ from those used to build the models [9].

SDMs have gained huge popularity owing to their potential for

generating predictions of distribution shifts from any set of species

occurrence records together with readily-available environmental

measurements and future scenarios, as well as their ease of

implementation. As a result, pressing conservation concerns at the

national and continental scale have so far primarily relied on these

data and methods [4,10–14]. However, it is now widely

acknowledged that predictions from SDMs are subject to

uncertainties stemming from several limitations and over-simplistic

assumptions [6–8,15]. For example, these approaches do not

directly model factors such as biotic interactions and dispersal

limitations, which instead may be accounted for indirectly through

spurious correlations with abiotic environmental variables [16,17];

when transferred in time and/or space, the failure to model

changes in species interactions (e.g., release from competitors) and
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evolutionary processes (e.g., local adaptation) can lead to mis-

leading projections of shifts in species distributions [18,19].

Whilst these correlative models overlook several fundamental

ecological and evolutionary processes, they may still generate

useful approximations of potential distribution shifts at the

appropriate spatial scale in the instances where they successfully

capture relevant predictor variables [6]. Unfortunately, assessing

whether they do is notoriously difficult since their main aim is to

predict events that are yet to occur [20]; most studies thus measure

the transferability of their models using a subset or re-sampled set

of the distribution records used to build the models, a limited

approach that can greatly inflate estimates of predictive accuracy

[20]. For this reason, an emerging approach for estimating the

true transferability of SDMs has been to validate model

predictions against independent field records documenting shifts

in species distributions to novel time periods [20–26] and regions

[27–31]. However, published accounts of such independent model

validation have generally lacked methodological or taxonomic

breadth. To obtain an exhaustive picture, transferability must be

assessed along both methodological and taxonomic axes of

variation. First, models built using the same data but different

statistical frameworks generate different predictions [32–34], with

discrepancies being magnified when transferring them in time

[20,24,25]. Second, the accuracy of model predictions has also

been found to vary greatly among taxa [25,35–37], with some

species lending themselves to more accurate prediction than

others.

We test the temporal transferability of climate-based SDMs by

drawing on an exceptionally-detailed dataset including distribution

records for three of the best-studied sets of species in the world –

the vascular plants, non-migratory butterflies and breeding birds of

Great Britain – in two time periods, reflecting observed changes

over a 20–40 year interval. For each species, we model distribution

records as a function of climate in the first time period (calibration

data) using ten of the most commonly-used species distribution

modelling frameworks. We then project the calibrated model to

the second time period, based on observed climate change, and

compare projections with observed records (independent valida-

tion data) to derive reliable estimates of the prediction accuracy of

the models built.

Using this approach, we assess whether simple correlative

SDMs based solely on climate predictors – the environmental

predictors for which we have the best understanding of likely

future changes – can in some cases provide useful approximations

of potential distribution shifts; and begin to describe the

circumstances under which they may do so. Specifically, we ask

three questions: (1) Are climate-based SDMs transferable in time?

(2) Can they capture drivers of expansion and contraction of

species geographic ranges? (3) What is the relative effect of

methodological and taxonomic variation on prediction accuracy?

Materials and Methods

Species Distribution Data
We used distribution data for all vascular plants [38,39], non-

migratory butterflies [40,41] and breeding birds [42,43] of Great

Britain at a 10 km grid square resolution. All species we modelled

have distributions that extend beyond Great Britain across

Europe; the effect on temporal transferability of calibrating models

using local versus continental species distribution data remains an

open question [44]. However, as well as offering unusually-

detailed and high-quality distribution data, Great Britain is an

island with its own separate history of environmental change;

environmental drivers of distribution size and change in British

populations are thus likely to differ somewhat from those of

continental populations of the same species. For this reason, we

only used records at the British extent to predict distribution

change across Great Britain. For each group, we used occurrence

records from two time periods (t1 and t2), corresponding to the

periods of intensive recording effort leading to the publication of

national distribution atlases (see Table 1). To avoid problems

related to building models with small sample sizes [45], we ran all

analyses excluding species with fewer than 20, 30, 40, or 50

occurrence records across the study area in either time period;

since there were no qualitative differences in the results among

these filters, we present the most inclusive set of results (i.e.,

excluding only species with fewer than 20 records). This filter led

to the exclusion of most recently-introduced vascular plants

(neophytes), which are known to have been under-recorded in t1
as a rule [38,39] and which therefore do not lend themselves to

reliable modelling. However, 185 neophytes were left in the final

species set for greater statistical power; their removal did not affect

the results qualitatively (0.002 and 0.003 increases in validation

AUC overall and for plants alone, respectively; detailed results not

presented). Although the absence of species from each 10 km grid

square could not be definitively recorded during sampling, most

grid squares surveyed in each period (i.e., 92–100% of Great

Britain’s 10 km grid squares) were meticulously sampled, with

high levels of duplicate recording and under-recorded areas being

targeted by extra recording schemes. Thus, we assumed that each

surveyed grid square in which a species was not recorded (i.e.,

non-detection) represented an absence. We acknowledge that

sampling extent and intensity did vary among surveys and

taxonomic groups; we later discuss the potential implications of

this heterogeneity on results. The final dataset comprised

presence-absence distribution data for 1587 vascular plant, 53

butterfly and 183 bird species in Great Britain (2808 10 km grid

squares).

Environmental Data
Monthly values of temperature, precipitation and cloud cover

for each year between 1930 and 1999 were obtained from the

CRU ts2.1 [46] and the CRU 61–90 [47]; these were used to

calculate mean values for nine climate variables – separately for

each t1 and t2 period – that reflect hypothesised physiological

constraints on species survival and growth. We conducted

Spearman’s rank correlations between all pairs of climate variables

and dropped three variables that were highly correlated with

others (Spearman’s r.0.85) to reduce the risk of overfitting during

model calibration. The final six climate variables included in the

models were mean temperature of the coldest month (MTCO,

uC), mean temperature of the warmest month (MTWA, uC), ratio

of actual to potential evapotranspiration (APET, standard

moisture index), potential sunshine (PSUN, minutes), total annual

precipitation (TPRE, mm), and the difference between total winter

precipitation and total summer precipitation (PREvar, mm).

We also considered including additional environmental pre-

dictors of ecological relevance to our models. First, although

changes in land use have been identified as fundamental drivers of

change for many British species [48–52], we were unable to

account for them in our models – like most other published

accounts of temporal transferability of SDMs [20,21,24,25] – due

to the lack of data documenting habitat use in the earlier t1 period;

detailed digitised maps of land use for the whole of Britain are not

available until the UK Land Cover Map in 1990 [53].

Second, topography and geology variables can also be

fundamental determinants of current and potential distributions

of species, so their inclusion in SDMs aimed at predicting

Temporal Transferability of SDMs
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distribution changes under environmental change should be

considered [54]. However, their use in this context can be

problematic if the species do not respond directly to these variables

but rather to factors that are correlated with them [55]. In those

cases, topography and geology variables themselves have no

predictive power in new environmental domains; their inclusion is

likely to increase the calibration accuracy of models at the expense

of their transferability through time. To test for this effect, we built

all SDMs using two alternative sets of predictors: (a) climate

predictors only; (b) climate predictors plus two topography

(median and standard deviation of elevation, m) and five geology

(percentage cover of five substrate classes in each 10 km grid

square: igneous and metamorphic; peat; sedimentary acid;

sedimentary basic; and superficial) predictors. We then compared

the performance between models built using each set of predictors

(Table S1). Models including geology and topography predictors

as well as climate had a higher accuracy than models with climate

only according to most performance measures calculated, in-

cluding both calibration and validation AUC; however, they had

a lower mean correct classification rate for squares having changed

occupancy status between time periods (CCRchanged, our measure

of the accuracy of models to capture relevant predictors of change;

see Materials and Methods subsection ‘‘Can climate-based SDMs

capture drivers of expansion and contraction of species geographic

ranges?’’). For this reason, we decided to leave both topography

and geology variables out from our final models.

Species Distribution Models
We modelled distribution data for each species in period t1 as

a function of climate for the corresponding period using nine

different modelling frameworks. Seven were presence-absence

modelling techniques implemented in the BIOMOD package for

R [56]. These included one classification method (classification

tree analysis, CTA), three regression methods (generalised linear

models, GLMs; generalised additive models, GAMs; and multi-

variate adaptive regression splines, MARS), and three machine-

learning methods (artificial neural networks, ANNs; generalised

boosted models, GBMs; and random forests, RFs). In addition, we

also modelled occurrence records using two presence-only

modelling techniques. These were maximum entropy (MaxEnt),

implemented as a stand-alone application [57], and a rectilinear

envelope analogous to BIOCLIM (surface range envelope, SRE),

also implemented in the BIOMOD package for R [56]. Besides

providing a useful comparison, presence-only techniques provide

a test of whether it is reasonable to use non-detections as

hypothesised absences or whether models should be built only

using occurrences when recorded absences are missing. The nine

modelling techniques employed are all commonly used to predict

changes in species distributions [4,12,13] and have been found to

generate contrasting predictions of change when modelling

comparable data [21,32,58]. Although it is common knowledge

that some of the modelling techniques we used (e.g., CTA, SRE)

generally perform less well than others [32,33], we believe that

their transferability in time is not as well-established; therefore, we

decided to include them in our analysis to test the hypothesis that

simpler statistical models may have higher transferability in time

than more complex ones. We chose different modelling param-

eters to optimise each statistical technique (see Supporting

Information, Appendix S1). We used the nine species-climate

associations identified in period t1 to generate predictions of each

species’ geographic distribution in (a) period t1 (interpolation to the

same climate used to build the models) and (b) period t2
(extrapolation to the climate experienced in the more recent

period), based on observed climate for the corresponding periods.

It is important to note that some of the techniques used differ in

their method of projecting identified climatic requirements to

geographical space: all presence-absence techniques generate

predictions of probability of occurrence; MaxEnt generates various

types of output, but for an intuitive comparison with presence-

absence techniques we used its logistic output, an estimation of

probability of occurrence; SRE returns a binary classification

whereby each location falling within the range of climates

identified by the presence locations becomes a presence, otherwise

it becomes an absence. In addition to predictions from these nine

single models, we calculated the mean probability of occurrence

from all seven presence-absence modelling techniques (abbreviat-

ed Mn(PA)) as a simple but efficient consensus method for

combining the output of different single-models [58]; this

approach can reduce model-based uncertainty in predictions from

SDMs [59]. To check that the results were not biased by the

direction of modelling, we also carried out all analyses using the

inverse approach, producing hindcasts in period t1 from models

built in period t2.

Are Climate-based SDMs Transferable in Time?
To quantify the transferability of SDMs in time, we measured

the agreement between forecasts in period t2– as generated by

each of the nine single-models built in period t1 plus the consensus

method – and observed presence-absence for the corresponding

period using three alternative measures of prediction accuracy

[60]: (i) area under curve (AUC) of the receiver operating

characteristic (ROC) function, (ii) sensitivity (i.e., proportion of

correctly-predicted presences), and (iii) specificity (i.e., proportion

of correctly-predicted absences). AUC is one of the most

frequently-used measures of SDM performance as it removes the

need to select a threshold to split continuous probabilities of

occurrence into binary-transformed values, a process that is often

viewed as subjective and misleading [61]. Swets [62] provided the

following guidelines for interpreting AUC scores: 0.5# AUC

,0.6 = fail; 0.6# AUC ,0.7 = poor; 0.7# AUC ,0.8 = fair;

0.8# AUC ,0.9 = good; 0.9# AUC = excellent; despite known

limitations [63,64], these are still widely-used, so we were

Table 1. Dates and sources of the distribution records used.

Group t1 (calibration) t2 (validation)

Dates Source Dates Source

Vascular Plants 1930–1969 Perring and Walters (1962) +
later records

1987–1999 Preston et al. (2002)

Butterflies 1970–1982 Heath et al. (1984) 1995–1999 Asher et al. (2001)

Breeding Birds 1968–1972 Sharrock (1976) 1988–1991 Gibbons et al. (1993)

doi:10.1371/journal.pone.0040212.t001
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interested in the conclusions reached based on them. To

complement AUC scores, we calculated specificity and sensitivity

for each model. This requires selecting an appropriate probability

threshold to turn continuous probabilities of occurrence into

binary presence-absence predictions. For each model, we calcu-

lated the sum of sensitivity and specificity on calibration data for

100 threshold values (in 0.01 increments), and selected the

threshold that maximized this sum; this threshold has previously

been found to perform well in comparisons with others [63].

Predicted probabilities of occurrence at time t2 above the selected

threshold were converted to presences and those below to

absences.

Can Climate-based SDMs Capture Drivers of Expansion
and Contraction of Species Geographic Ranges?

Quantifying the temporal transferability of SDMs by com-

paring the agreement between model predictions and observa-

tions for the predicted period using common metrics is not

a sufficient test of whether models have actually captured

relevant predictors of change. A single range-wide measure of

prediction accuracy conflates accurately predicting species

expansions and contractions to new areas with accurately

predicting large parts of the distribution that have remained

unchanged in time. Thus, to assess how well SDMs capture

drivers of change in species distributions, we measured the

agreement between observations and model predictions of each

species’ (a) geographic range size in period t2, (b) overall change

in geographic range size between time periods, and (c) grid

square-level changes in occupancy status between time periods.

By performing direct comparisons of observed records in each

time period to derive measures of observed range change, we

assumed the distribution data could be taken at face value, with

no need to correct for sampling bias. While this is probably

reasonable for British birds – for which similar analyses have

already been carried out [21] – we acknowledge that sampling

biases have been documented for British butterflies and plants,

and various approaches have been applied for minimising those

[49,65]; we later discuss the potential implications of bias on

our results.

We measured the agreement between observed and predicted

range size in t2 and between observed and predicted overall

change in range size across time periods using Spearman’s r
statistic. To calculate the agreement between observed and

predicted grid square-level changes in occupancy status, we

divided binary forecasts into (a) grid squares that had either

remained occupied or remained unoccupied between time

periods and (b) grid squares that had changed occupancy status

(from occupied to unoccupied or vice versa) between time

periods. We then measured the correct classification rate (CCR;

i.e., the sum of true positives and true negatives divided by the

total number of locations) of grid squares in each of these two

subsets for each modelling technique, to capture how well our

models predict stable versus dynamic portions of each species’

distribution. To visualise model accuracy for expanding versus

contracting species, we fitted generalised additive models (GAMs;

using a cubic spline smoother with 4 degrees of freedom) of CCR

of stable (CCRstable) and changed (CCRchanged) grid squares as

a function of observed proportional range change between time

periods (i.e., (overall range change/range size in t1) x 100). These

GAMs were fitted only to species experiencing a proportional

change between 2100% and +100% (i.e., 85% of all species),

due to the large influence of the few species whose ranges more

than doubled.

What is the Relative Effect of Methodological and
Taxonomic Variation on Prediction Accuracy?

We investigated the factors influencing the prediction accuracy

of SDMs through linear mixed-effects (LME) models using the

lme4 package in R [66]. We used five measures of accuracy

(validation AUC, sensitivity, specificity, CCRstable, and

CCRchanged) in turn as the response and modelled each as

a function of the following random effects: modelling framework

(n = 10), major taxonomic group (i.e., plants, butterflies or birds;

n = 3) and species (n = 1823). For each model, we calculated the

ratio between the variance explained by each random effect and

null variance, in order to quantify the amount of variation in

prediction accuracy attributable to each random effect.

Results

Due to similarities between model forecasts and hindcasts, we

direct our attention to the analysis of forecasts, referring to

hindcasts only when qualitatively different; the results of hindcasts

are reported in full in the Supporting Information. The species

distribution models (SDMs) built using data in t1 had an AUC

= 0.8560.12 (mean6s.d.), indicating good fit on calibration data

overall according to the Swets criterion [62].

Are Climate-based SDMs Transferable in Time?
The overall transferability of SDMs in time was fair (mean

AUC6s.d. = 0.7660.12; sensitivity = 0.6360.26; specificity

= 0.7460.19), but varied among modelling frameworks. The

consensus method Mn(PA) produced the highest validation AUC

values (Figure 1), generating good to excellent forecasts (AUC

$0.80) for 60% of the 1823 species modelled. Among single-

models, three presence-absence techniques – generalised boosted

models (GBMs), generalised additive models (GAMs), generalised

linear models (GLMs) – and one presence-only technique –

maximum entropy (MaxEnt) – had the highest prediction

accuracies, although their relative rank varied between forecasts

and hindcasts (Figure 1 and Figure S1). When assessed using

sensitivity and specificity (Figure 2), GBMs and GAMs had the

best balance between the correct prediction of presences and

absences; in contrast, random forests (RFs) were highly biased

towards the correct prediction of absences and surface range

envelopes (SREs) were highly biased the other way. These

differences were reflected in the proportion of species for which

each technique was most accurate according to alternative metrics:

SREs generated the most accurate forecasts for 36% of all species

when assessed by sensitivity whilst RFs generated the most

accurate forecasts for 69% of all species when assessed by

specificity (Table 2). Despite these differences, every SDM

framework used performed best for some species modelled

(Table 2 and Table S2), indicating that any one of them might

be the most useful in at least some cases. Temporal transferability

also varied among taxonomic groups (Figure 1 and Figure 2); it

was highest for butterflies, with 66% of butterfly models predicting

recent distributions with good to excellent accuracy against 43%

and 41% for plants and birds, respectively. Hindcasts showed

slightly different results, with bird distributions in t1 being

predicted almost as well as those of butterflies and considerably

better than those of plants (Figure S1 and Figure S2).

Can Climate-based SDMs Capture Drivers of Expansion
and Contraction of Species Geographic Ranges?

Predicted and observed range sizes in t2 were highly correlated

for each modelling framework and taxonomic group (Table 3);

overall, SDMs tended to overpredict range size, with a median

Temporal Transferability of SDMs
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percentage overprediction of 7.44%. Among modelling frame-

works, RFs showed the highest correlation; contrary to the overall

trend, RFs tended to systematically under-predict range size

(median percentage underprediction of 25.02%), again highlight-

ing their high specificity but low sensitivity. Among taxonomic

groups, butterflies showed the highest correlation.

Spearman’s r of predicted versus observed total change in range

size between time periods were low overall, although higher for

hindcasts (Table S3) than forecasts (Table 3). Species ranges were

predicted to increase by a median 7.44% more than was observed;

this difference was greater for species with contracting rather than

expanding ranges (median overprediction 11.62% and 5.67%,

respectively). Differences among taxa and frameworks were

influenced by the direction of modelling (compare Table 3 and

Table S3).

The correct classification rate of grid squares that remained

occupied or remained unoccupied (CCRstable) was fairly high

(mean6s.d. = 0.7560.15), and did not covary with species’

observed proportional change in range size (Figure 3B). In

contrast, the CCR of grid squares whose occupancy status

changed between time periods (CCRchanged) was very low overall

(0.5160.14; guessing randomly would be expected to produce

a mean of 0.5), with range expansions being slightly better

predicted than range contractions (0.5560.15 and 0.4860.12,

respectively; Figure 3C). RFs showed an unusual trend compared

to other frameworks: they had by far the highest CCRstable

(0.8860.10; Figure 3B) and were the only framework to provide

more accurate predictions for contracting than expanding species

(Figure 3C). When hindcasting, the discrepancy between

CCRstable and CCRchanged was even larger; however, there was

no clear difference between the prediction accuracy of expanding

and contracting species (Fig. S3).

What is the Relative Effect of Methodological and
Taxonomic Variation on Prediction Accuracy?

Most variation in the prediction accuracy of SDMs – as

measured by AUC, sensitivity, CCRstable, CCRchanged – was

among species within a higher taxon, whilst the choice of

modelling framework was as important a factor in explaining

variation in specificity (Table 4 and Table S4). The effect of major

taxonomic group on the accuracy of forecasts was relatively small.

Discussion

When assessed using widespread measures of performance such

as the AUC, sensitivity and specificity, climate-based species

distribution models (SDMs) show good transferability in time for

many species and techniques. Our estimates of temporal trans-

ferability across all taxa and methods are comparable with those

reported previously [20,24–26]. However, predictions of changes

in occupancy status between time periods as a function of climate

change were little or no better than random for most species,

regardless of the modelling framework used; models were

particularly poor at predicting species range contractions, a wor-

rying prospect in the context of forecasting environmental change

impacts on species of conservation concern. There are many

widely-acknowledged obstacles to the accurate prediction of shifts

in species distributions in time [6,8]: these include the lack of

species-environment equilibrium [67]; dispersal limitations [68];

the failure to account for biotic interactions, phenotypic plasticity,

Figure 1. Accuracy of model forecasts. The accuracy of forecasts generated by each modelling framework was measured by mean AUC and
reported for each major taxonomic group. Error bars represent 61 standard error of the mean. The dashed line indicates the rule-of-thumb for good
predictions (AUC=0.8). Abbreviations: ANN = artificial neural networks, CTA = classification tree analysis, GAM = generalised additive models, GBM
= generalised boosted models, GLM = generalised linear models, MARS = Multivariate adaptive regression splines, MaxEnt = maximum entropy
models, Mn(PA) = prediction mean from all presence-absence modelling frameworks, RF = random forests, SRE = surface range envelopes.
doi:10.1371/journal.pone.0040212.g001

Temporal Transferability of SDMs
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and evolutionary changes [6,69]; and the incidence of novel

environments outside the range of conditions used to calibrate the

models [9]. Together with these, three key factors appear likely to

underlie the combination of reasonable explanatory power on

independent data – as indicated by widespread metrics – but low

predictive accuracy between time periods – as shown by the failure

to predict changes in occupancy – of our models.

First, the two sets of distribution records we used for each

species cannot be considered to be truly independent from each

other as they were collected over the same geographical area

within relatively short time intervals (i.e., 20 to 40 years). Overall,

species range size was highly correlated between time periods

(Spearman’s r= 0.93, p,0.001), with an average 87% of grid

squares maintaining the same occupancy status; similarly, all

climatic variables were also highly correlated between time periods

(r.0.85, p,0.001 for all variables). As a result, models providing

a good fit to early distribution records can be expected to return

a reasonable fit to more recent records (and vice versa), regardless

of whether relevant predictors of range shift have actually been

captured. Previous studies have warned against taking strong

model performance on calibration data to indicate high predictive

accuracy to a different time period [20,24–26]; our results indicate

that strong model performance in a different time period, as

measured by widespread metrics, may not indicate high predictive

accuracy either.

Second, our models’ lack of power to predict observed changes

in occupancy suggests that they are missing information on

fundamental variables that drove those changes. Whilst climate

change has undoubtedly had a significant effect, another major

driver of change in species distributions in Britain over the second

half of the 20th century is thought to be habitat change, both

degradation and fragmentation [70]. Lack of suitable habitat has

constrained the ability of some British species to respond to

changes in climate [49,51,52]; thus, models based exclusively on

climate can generate misleading predictions of change [49,51,52].

Although data on land use exist for recent years (corresponding to

Figure 2. Mean sensitivity versus mean specificity of model
forecasts. Mean sensitivity and specificity of forecasts generated by
each modelling framework for (A) butterflies, (B) plants, (C) birds. Error
bars represent61 standard error of the mean. The dotted line indicates
the condition where mean sensitivity = mean specificity.
doi:10.1371/journal.pone.0040212.g002

Table 2. Number of species for which each modelling
framework generated the most accurate forecasts.

Number (and proportion) of best-predicted species

AUC Sensitivity Specificity CCRstable CCRchanged

Mn(PA) 393 (0.216) 79 (0.043) 203 (0.111) 117 (0.064) 84 (0.046)

RF 25 (0.014) 27 (0.015) 1254 (0.688) 1090 (0.600) 234 (0.128)

GBM 234 (0.128) 168 (0.092) 39 (0.021) 77 (0.042) 117 (0.064)

MaxEnt 311 (0.171) 159 (0.087) 92 (0.050) 46 (0.025) 174 (0.095)

GAM 397 (0.218) 131 (0.072) 53 (0.029) 99 (0.054) 98 (0.054)

GLM 138 (0.076) 125 (0.069) 30 (0.016) 46 (0.025) 119 (0.065)

ANN 256 (0.140) 316 (0.173) 102 (0.056) 125 (0.069) 210 (0.115)

MARS 61 (0.033) 113 (0.062) 36 (0.020) 55 (0.030) 103 (0.057)

CTA 6 (0.003) 226 (0.124) 63 (0.035) 105 (0.058) 179 (0.098)

SRE 3 (0.002) 654 (0.359) 6 (0.003) 101 (0.055) 717 (0.393)

Prediction accuracy was measured for each species by AUC, sensitivity, and
specificity of the entire range in t2, as well as the correct classification rate of
grid squares that have remained occupied or unoccupied (CCRstable) and the
correct classification rate of grid squares that have changed occupancy status
between time periods (CCRchanged). Values represent the total number (and
proportion of the total sample) of species for which each technique performed
best. Proportions may exceed 100% of the sample as several species were
equally well-predicted by more than one technique.
doi:10.1371/journal.pone.0040212.t002
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time t2 of our distribution datasets [53]), we were unable to include

variables describing habitat change in our models because data

documenting land use in the earlier t1 period was not available; an

issue which applies to most tests of temporal transferability of

SDMs (but see [26]). However, climate and habitat variables affect

species distributions at different spatial scales [6,71], and climate is

considered to be the main constraint at the scale of our study

[71,72]. Furthermore, the distribution of many habitat variables,

such as forest and grassland cover, are themselves directly affected

by climate [72]. Thus, the absence of habitat predictors from our

models is unlikely to be solely responsible for their low predictive

accuracy. Despite this, we acknowledge that grid square-level

climatic averages ignore the high degree of environmental

heterogeneity within each grid square; so long as patches of

suitable environment remain within a grid square, species may

persist even if that square’s climatic average says otherwise.

Similarly, if suitable habitat disappears from a grid square, the

species may be lost from it even if the average climate remains

suitable. Consequently, the lack of habitat variables in our models

may underlie their worse prediction of range contractions than of

expansions. Although recent climate warming can be expected to

increase the distributions of many species in Britain [49,51,52],

some have in fact declined as a result of habitat change (e.g., non-

migratory butterflies reaching their northern limits in Britain

[49,52]); predictions of shifts for these species based solely on

climate are thus likely to be random, if not worse.

Finally, by assuming the non-detection of a species to indicate

absence from a given grid cell, we introduced an extra level of

error into our models. This error depends on the probability of

false absence given imperfect detection (i.e., the probability that

a species was present but remained undetected in a given grid cell

[73]): the higher this probability, the higher the risk of incorrectly

quantifying species-climate relationships [73]. The incidence of

false absences is likely to vary among the three groups of species

we modelled. A sustained effort to exhaustively target under-

recorded areas plus a high level of duplicate recording for each

10 km grid square during both British breeding bird surveys imply

a fairly low probability of false absence [43]. On the other hand,

distribution records for British butterflies and plants are known to

be biased – with significant differences in coverage and sampling

effort between time periods [49,65] – and are likely to suffer from

a higher incidence of false absences, especially in t1. Although

differences in the precision of distribution records may have

contributed to the variation in prediction accuracy among the

three groups, the low correlation we found between predicted and

observed range changes for birds suggests that the low predictive

power of our models cannot primarily be attributed to data

quality.

The incidence of false absences is also likely to vary among

surveys, with under-recording in t1 compared to t2 surveys having

been documented for British butterflies and plants [49,65]. Under-

recording in t1 leads to overestimation of range expansions [74].

On the other hand, any inferred range contractions are likely to be

robust. We would expect our models to have a high accuracy to

predict false range expansions, given that these do not require

models to predict change in time but simply to interpolate existing

distributions based on detections in t1; conversely, range contrac-

tions can only be predicted by models capturing fundamental

predictors of change. Due to the low accuracy of our models to

predict range expansions and their even lower accuracy to predict

range contractions, we conclude that differences in sampling effort

between time periods cannot alone explain the low predictive

power of our models; however, they may be responsible for some

of the differences between forecasts and hindcasts.

Our analysis generated two key sets of results in the context of

improving SDMs as predictive tools. First, differences among

species were the most important determinant of variability in the

temporal transferability of SDMs, as also reported recently for

vascular plants in California [25]. These findings mirror those of

earlier studies of variation in model performance based on

distribution records from a single time period [75,76], and suggest

that a priority now is to identify the ecological context of species

whose changes in distribution can be predicted accurately using

existing techniques and widely-available environmental data.

Differences in prediction accuracy among species are likely to be

determined by a complex of ecological factors, including their

intrinsic biology [25,35–37], their history of dispersal [23,77] and

the identity and behaviour of their interacting species [69,78,79].

Encouragingly, there is some reason to believe that SDMs may be

particularly useful for species of commercial importance (e.g.,

plantation trees [80]) – for which the above ecological factors are

well-known and/or controlled – and, thus, species for which we

Table 3. Correlation coefficients of observed versus predicted range size and range change for model forecasts.

Butterflies Plants Birds

Range size Range change Range size Range change Range size Range change

Mn(PA) 0.76*** 20.10 0.68*** 20.01 0.72*** 0.36***

RF 0.96*** 0.43** 0.85*** 20.02 0.95*** 0.38***

GBM 0.87*** 20.23 0.63*** 20.04 0.75*** 0.45***

MaxEnt 0.82*** 20.23 0.52*** 0.01 0.72*** 0.41***

GAM 0.84*** 20.11 0.58*** 20.03 0.80*** 0.38***

GLM 0.80*** 20.11 0.60*** 20.02 0.80*** 0.36***

ANN 0.65*** 20.19 0.45*** 20.03 0.44*** 0.35***

MARS 0.72*** 20.39 0.62*** 20.04 0.81*** 0.43***

CTA 0.87*** 0.02 0.58*** 20.07** 0.76*** 0.40***

SRE 0.90*** 0.13 0.89*** 0.21*** 0.90*** 0.35***

Reported values are the Spearman’s r coefficients of observed versus predicted range size in t2 (range size column) and observed versus predicted change in range size
between time periods (range change column) for each modelling framework and major taxonomic group modelled. Stars indicate the significance level of correlations:
* = p,0.05; ** = p,0.01; *** = p,0.001.
doi:10.1371/journal.pone.0040212.t003
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are likely to require predictions of change very soon. In addition to

identifying the sources of variation in prediction accuracy among

models of different species, spatial analyses of per-site prediction

successes and failures – aimed at identifying those locations in

which models have high predictive accuracy across species – will

also be important for a comprehensive understanding of the

context in which SDMs may be useful.

Second, we identified some modelling frameworks to be more

accurate than others overall, although none outperformed all

others across all aspects. Whilst the consensus method we used

provided the best predictions under AUC assessment – seemingly

confirming its potential for reducing model-based uncertainty in

SDM predictions [58,59] – its accuracy to predict changes in

occupancy was lower than most single models. As a result, we

advocate great care when selecting the ensemble of models from

which to derive consensus predictions; as previously discussed by

Araújo et al. [21], models should be chosen based on aspects of

their individual performance pertinent to the research question

being addressed, and not on the assumption that more models are

better. Furthermore, our results suggest that the presence-only

modelling framework maximum entropy (MaxEnt) can be used to

generate predictions of change of similar accuracy to those

generated by the best-performing presence-absence frameworks –

generalised boosted models (GBMs), generalised additive models

(GAMs), and generalised linear models (GLMs).

Figure 3. Accuracy of forecasted changes in species occupancy. Accuracy of predicted changes in occupancy between t1 and t2 as a function
of species’ observed proportional range change between t1 and t2: (A) histogram of the frequency of species’ proportional range change values; (B)
correct classification rate across stable grid squares (i.e., those that have remained either occupied or unoccupied between time periods; CCRstable) as
a function of observed proportional range change, overall and for each modelling technique; (C) correct classification rate across changed grid
squares (i.e., those that have changed occupancy status between time periods; CCRchanged) as a function of observed proportional range change,
overall and for each modelling technique. Functions were fitted using generalised additive models (GAM; using a cubic spline smoother with 4
degrees of freedom). This analysis was limited to species experiencing a proportional change between 2100% and +100% (i.e., 85% of all species),
due to the very high influence of the few species whose range more than doubled. The dashed line in panels (B) and (C) represents the value of CCR
expected from a random guess (i.e., CCR = 0.5).
doi:10.1371/journal.pone.0040212.g003
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In conclusion, some of the modelling tools already in place seem

able to make use of presence-only or presence-absence distribution

data and climate predictors to generate SDMs that are transfer-

able in time for many species, when assessed using widespread

measures of performance. However, a more in-depth assessment

indicates they are inadequate at predicting changes in occupancy

between time periods for most species, stressing the need to

account for additional drivers and mechanisms of change. Despite

their issues, SDMs still represent the most plausible framework for

generating urgent predictions of the fate of biodiversity during

a period of rapid environmental change. Observed shifts in species

distributions provide invaluable opportunities for testing their

predictions. Nevertheless, we strongly emphasize the need for

caution: assessment of performance should not focus on the ability

of models to predict large areas retained by species through time

but rather on their success to capture relevant drivers of change.

Supporting Information

Figure S1 Accuracy of model hindcasts. The accuracy of

hindcasts generated by each modelling framework was measured

by mean AUC and reported for each major taxonomic group.

Error bars represent 61 standard error of the mean. The dashed

line indicates the rule-of-thumb for good predictions (AUC = 0.8).

Abbreviations: ANN = artificial neural networks, CTA =

classification tree analysis, GAM = generalised additive models,

GBM = generalised boosted models, GLM = generalised linear

models, MARS = Multivariate adaptive regression splines,

MaxEnt = maximum entropy models, Mn(PA) = prediction

mean from all presence-absence modelling frameworks, RF =

random forests, SRE = surface range envelopes.

(EPS)

Figure S2 Mean sensitivity versus mean specificity of
model hindcasts. Mean sensitivity and specificity of hindcasts

generated by each modelling framework for (A) butterflies, (B)

plants, (C) birds. Error bars represent 61 standard error of the

mean. The dotted line indicates the condition where mean

sensitivity = mean specificity.

(EPS)

Figure S3 Accuracy of hindcasted changes in species
occupancy. Accuracy of predicted changes in occupancy

between t2 and t1 as a function of species’ observed proportional

range change between t2 and t1: (A) histogram of the frequency of

species’ proportional range change values; (B) correct classification

rate across stable grid squares (i.e., those that have remained either

occupied or unoccupied between time periods; CCRstable) as

a function of observed proportional range change, overall and for

each modelling technique; (C) correct classification rate across

changed grid squares (i.e., those that have changed occupancy

status between time periods; CCRchanged) as a function of observed

proportional range change, overall and for each modelling

technique. Functions were fitted using generalised additive models

(GAM; using a cubic spline smoother with 4 degrees of freedom).

This analysis was limited to species experiencing a proportional

change between 2100% and +100% (i.e., 85% of all species), due

to the very high influence of the few species whose range more

than doubled. The dashed line in panels (B) and (C) represents the

value of CCR expected from a random guess (i.e., CCR = 0.5).

(EPS)
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37. Hanspach J, Kühn I, Pompe S, Klotz S (2010) Predictive performance of plant

species distribution models depends on species traits. Perspectives in Plant

Ecology, Evolution and Systematics 12: 219–225. Available: http://linkinghub.
elsevier.com/retrieve/pii/S1433831910000247. Accessed 23 July 2010.

38. Perring F, Walters S (1962) Atlas of the British Flora. London, UK: T. Nelson &

Sons. p.

39. Preston C, Pearman D, Dines TD (2002) New Atlas of the British and Irish
Flora. Oxford, UK: Oxford University Press. p.

40. Heath J, Pollard J, Thomas J (1984) Atlas of butterflies in Britain and Ireland.

Harmondsworth, UK: Viking Books. p.

41. Asher J, Warren M, Fox R, Harding P, Jeffcoate G, et al. (2001) The millennium

atlas of butterflies in Britain and Ireland. Oxford, UK: Oxford University Press.
p.

42. Sharrock J (1976) The atlas of breeding birds of Britain and Ireland.

Berkhamsted, UK: Poyser. p.

43. Gibbons D, Reid J, Chapman R (1993) The New Atlas of Breeding Birds in
Britain and Ireland: 1988–1991. London, UK: Poyser. p.

44. Vaughan IP, Ormerod SJ (2003) Improving the quality of distribution models for

conservation by addressing shortcomings in the field collection of training data.

Conservation Biology 17: 1601–1611.

45. Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, et al. (2008) Effects of
sample size on the performance of species distribution models. Diversity and

Distributions 14: 763–773.

46. Mitchell TD, Jones PD (2005) An improved method of constructing a database
of monthly climate observations and associated high-resolution grids. In-

ternational Journal of Climatology 25: 693–712. Available: http://doi.wiley.

com/10.1002/joc.1181. Accessed 20 June 2011.

47. New M, Hulme M, Jones P (1999) Representing Twentieth-Century Space –
Time Climate Variability. Part I?: Development of a 1961-90 Mean Monthly

Terrestrial Climatology. Journal of Climate 12: 829–856.

48. Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature
399: 213.

49. Warren M, Hill J, Thomas J, Asher J, Fox R, et al. (2001) Rapid responses of

British butterflies to opposing forces of climate and habitat change. Nature 414:

65–69.

50. Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, et al. (2002) Responses of
butterflies to twentieth century climate warming: implications for future ranges.

Proceedings Biological Sciences/The Royal Society 269: 2163–2171. Available:
http://www.ncbi.nlm.nih.gov/pubmed/12396492.

51. Thomas JA, Telfer MG, Roy DB, Preston CD, Greenwood JJD, et al. (2004)

Comparative losses of British butterflies, birds, and plants and the global

extinction crisis. Science 303: 1879–1881. Available: http://www.ncbi.nlm.nih.
gov/pubmed/15031508. Accessed 21 January 2011.

52. Menéndez R, Megı́as AG, Hill JK, Braschler B, Willis SG, et al. (2006) Species

richness changes lag behind climate change. Proceedings Biological Sciences/
The Royal Society 273: 1465–1470. Available: http://www.ncbi.nlm.nih.gov/

pubmed/16777739.

53. Fuller R, Smith G, Sanderson J, Hill R, Thomson A (2002) The UK Land Cover

Map 2000: Construction of a parcel–based vector map from satellite images.
Cartographic Journal 39: 15–25.

54. Austin MP, Van Niel KP (2011) Impact of landscape predictors on climate

change modelling of species distributions: a case study with Eucalyptus fastigata
in southern New South Wales, Australia. Journal of Biogeography 38: 9–19.

Available: http://doi.wiley.com/10.1111/j.1365-2699.2010.02415.x. Accessed

7 December 2010.

Temporal Transferability of SDMs

PLoS ONE | www.plosone.org 10 July 2012 | Volume 7 | Issue 7 | e40212



55. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in

ecology. Ecological Modelling 135: 147–186.

56. Thuiller W, Lafourcade B, Engler R, Araujo MB (2009) BIOMOD - a platform

for ensemble forecasting of species distributions. Ecography 32: 369–373.

Available: http://blackwell-synergy.com/doi/abs/10.1111/j.1600-0587.2008.

05742.x.

57. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of

species geographic distributions. Ecological Modelling 190: 231–259.

58. Marmion M, Parviainen M, Luoto M, Heikkinen RK (2009) Evaluation of

consensus methods in predictive species distribution modelling. Diversity and

Distributions 15: 59–69. doi:10.1111/j.1472–4642.2008.00491.x.
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