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Climate sensitivity is commonly taken to refer to the equilibrium change in the annual
mean global surface temperature following a doubling of the atmospheric carbon dioxide
concentration[1]. Evaluating this variable remains of significant scientific interest but its
global nature makes it largely irrelevant to many areas of climate science, such as impact
assessments, and also to policy in terms of vulnerability assessments and adaptation
planning[2, 6]. Here we focus on local changes and on the way observational data can
be analysed to inform us about how local climate has changed since the middle of the
19th century. Taking the perspective of climate as a constantly changing distribution
we evaluate the relative changes between different quantiles of such distributions
and between different geographic locations for the same quantiles. We show how the
observational data can provide guidance on the sensitivity of local climate at the specific
thresholds relevant to particular impact or policy endeavors. This also quantifies the level
of detail needed from climate models if they are to be used as tools to assess climate
change impact. The mathematical basis is presented for two methods of extracting these
local sensitivities from the data. The two methods are compared using first surrogate
data, to clarify the methods and their sensitivities, and then observational surface
temperature timeseries from across Europe.
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1. Introduction

That increases in atmospheric greenhouse gases will lead to global warming
and climate disruption at a level which poses a threat to society is clear. The
amount of warming to expect on a global scale during the 21st century under
any particular concentration scenario is, however, uncertain. It depends partly on
climate sensitivity which is defined as the equilibrium change in the annual mean
global surface temperature following a sustained doubling of the atmospheric
carbon dioxide concentration [1]. For any given change in global mean temperature
a wide variety of changes are possible at local scales. Yet it is at local scales
that the impacts of climate change will be felt directly and at which adaptation
planning decisions must be made [2]. Many planners and environmental disciplines
are aware that an assumption of stationarity is ill-founded and therefore basing
decisions on climatic distributions over the last century is likely to be sub-optimal
for the climate of today and even more so for the climate of the future [3].
The question for planners is how to obtain better information to support their
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assessments and decisions. The simulations of complicated global climate models
can suffer from serious questions of robustness and reliability[5, 8, 7] and are
known to inadequately represent behaviour which will have impact on local scales,
and are therefore a questionable basis for decision making[5, 6, 2]. Our aim herein
is to present an alternative; a method for analysing local climatic timeseries
data to evaluate which quantiles of the local climatic distribution demonstrate
the greatest sensitivity to the global changes experienced over the last 60 years.
This local sensitivity automatically incorporates the effects of wider regional and
global changes while allowing for the local geographic factors which affect the
local climate. When combined with more generic climatic trends expected for the
future, where such trends can be identified and understood, this local sensitivity
provides a basis for prioritising adpatation projects and making judgements over
the relative risks of different options.

As conventionally defined, climate sensitivity is the global change with respect
to a fixed forcing, doubling atmospheric CO2. The local sensitivities presented
herein are also changes with respect to a fixed forcing; in our case the change in
climate between the 1950s and the last decade. For a mathematical audience a
definition based on the derivative with applied forcing would be more appropriate.
A definition based on the derivative is easilly extracted from the analysis below
but is not useful for the analysis of timeseries of real climatic data. For reasons
similar to those which led to widespread use of the term definition of "climate
sensitivity", the practicalities of climate data analysis require the evaluation to
be performed on fixed, not small, changes.

We consider local climate as a distribution of some particular variable
or combination of variables. Local climate change is then a change in this
distribution. This change may or may not be representable by a change in the
mean and/or a few higher moments of the distribution. Given the nonlinear
nature of the system we might expect that it would not. A further difficulty
is that variations in the distribution can occur on a wide range of timescales. The
mathematical challenge is therefore to make best use of the data to quantify the
changes, to identify when the change can not be well quantified and to identify
the robust aspects of the results. This paper addresses these challenges.

Section two describes the mathematical foundation of the local sensitivity
concept and two methods for extracting it from timeseries data. In section three
the methods are illustrated using surrogate climate data designed to illustrate
the concepts and the challenges of extracting a clear signal given natural climatic
variations. Section four illustrates its application to real data while the conclusions
present opportunities for further development and application of the technique.
Further illustrations of the consequences of this technique with observed data are
presented in Stainforth et al 2012 [9]. The relationship to, and representation of,
the local sensitivity in terms of return times is covered in the appendix.

2. Method: a sensitivity parameter

Our starting point is that we have a daily observation of some variable, say mean
or maximum or minimum temperature, T at different geographical locations and
over an extended interval of time. There are trends over various timescales that
will affect the observed T in a different manner at these different geographic
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Fig. 1: Temperature Tq is observed with likelihood q. If the temperature cdf is
not changing with time, (g is constant) then temperature T ∗ is from the same
distribution as temperature Tq and is observed with likelihood q + dq. This is the
path dg= 0. If the temperature cdf is changing with time, due to forcing g(t), then
temperature T ∗ is observed at time t2 with the same likelihood q as temperature
Tq was observed at t1. This is the path dq= 0.

locations. We are interested in developing a technique which isolates the effect of
any slow, monotonic trend operating across a long, multidecadal interval. We will
assume that this monotonic trend can be associated with an underlying climate
forcing which has parameter g. In what follows we will not need to specify the
detailed nature of the relationship between change in g and in trends in the
climate as seen in the changing statistical properties of T , just that there is such
a relationship. An underlying assumption is then that the effect of changing g on
the distribution of observations of T is on a much longer timescale than that over
which individual samples of T distributions are obtained. For each location we can
aggregate daily seasonal temperature observations over some multi-year interval
τ , centred on time t, to obtain a cumulative density function (cdf). Let us assume
that the cdf C(T, g(t)) can be treated as a continuous function of temperature
and of time dependent forcing g. Then at a given time t when there is a level of
climate forcing g(t), the cdf value q is the likelihood of the quantile Tq of a given
temperature observation T ≤ Tq:

C(Tq, g(t)) = q (2.1)

Tq = C̃(q, g(t)) (2.2)
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where C̃ is the quantile function obtained by inverting the cdf w.r.t. temperature.
We can write the variation, to leading order:

dq=

[
∂C

∂Tq

]
g

dTq +

[
∂C

∂g

]
Tq

dg (2.3)

and

dTq =

[
∂C̃

∂q

]
g

dq +

[
∂C̃

∂g

]
q

dg (2.4)

At some later time we observe a temperature T ∗ so that dTq = T ∗ − Tq. We can in
principle ask for the contribution to the observation T∗ in the absence of forcing,
that is dg= 0, directly from the change in the quantile function and from (2.4)
this is:

dTq(dg= 0) =

[
∂C̃

∂q

]
g

dq (2.5)

We can also ask for the contribution to the observation T∗ solely due to forcing,
that is at dq= 0, from the quantile function and from (2.4) this is:

dTq(dq= 0) =

[
∂C̃

∂g

]
q

dg (2.6)

This is illustrated in Figure 1. A sufficiently accurate approximation for the
quantile function at two times t1 and t2 would directly give an estimate of the
discrete change ∆Tq over an interval [t1, t2]. As dTq→∆Tq we approximate[

∂C̃

∂g

]
q

dg→∆C̃(q, g(t2), g(t1))' C̃(q, g(t2))− C̃(q, g(t1)) (2.7)

This direct estimate of the change ∆Tq due to climate forcing requires full
knowledge of the quantile function, that is, the inverse of the cdf. In practice,
given that there is a fundamental upper limit on the number of observations in a
given season, this can be problematic, particularly in the tails of the distribution
for non-Gaussian processes. We can instead obtain an expression where only a
direct estimate of the cdf is needed. Setting dq= 0 in (2.3) we obtain

dTq(dq= 0) =− 1

P

[
∂C

∂g

]
Tq

dg (2.8)

where P (Tq, g(t)) is the probability density function (pdf). Now let us compare
two different realizations of the cdf obtained at different times t1 and t2 over which
there is the discrete change ∆Tq. Then, as dTq→∆Tq we approximate



5

Fig. 2: Pseudo annual temperature data with (i) no time variation (ii) constant
shift at all temperatures (iii) mean and variance increase with time and (iv) mean,
variance, skew and kurtosis increase with time. Panels show from top to bottom:
’yearly’ (100 sample) pdfs with temperature as ordinate and time as abscissa and
a solid white line indicating the mean; ’yearly’ (100 sample) cdfs, same axes, solid
white lines indicating the 0.25, 0.5 and 0.75 quantiles; the vertical dashed white
lines indicate four ’years’ for which four individual cdfs are plotted in mid panels
with temperature as abscissa.

[
∂C

∂g

]
Tq

dg→∆C(Tq, g(t2), g(t1))'C(Tq, g(t2))− C(Tq, g(t1)) (2.9)

then

∆Tq(dq= 0)'−∆C

P
(2.10)

This expression suggests pragmatic strategies for estimating a sensitivity
parameter S = ∆Tq(dq= 0). This parameter is a function of the observed variable,
here temperature T , and of the geographical location at which T is observed. It
parameterizes which parts of the distribution that are changing most rapidly with
forcing g. We can immediately see that the pdf acts as an amplification factor for
sensitivity. A given change in cdf will be most impactful where the pdf is small,
that is, in the tails of the distribution rather than at the mean.
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3. Illustration with model data

We first illustrate the method, and how it can be used to optimise against
observational statistical uncertainty by constructing a test time-series of
’temperature observations’ as follows. We have daily observations over a ’season’
which is typically no longer than 3 months, over a period of typically 50-100 years.
For each ’year’ of the test time-series we then select a sample of 100 independent,
identically distributed random numbers that are Gamma distributed, with pdf:

P (x, t) =
1

b(t)a(t)Γ(a(t))
xa(t)−1e

− x
b(t) (3.1)

For each ’year’ t, that is, each 100 element sample, we specify the shift and scale
parameters a(t) and b(t). These determine the mean (ab) the variance, (ab2), the
skewness (2/

√
b) and the excess Kurtosis (6/b). To model a distribution with

slowly changing forcing g(t) we will consider a linear change in a and/or b from
one ’year’ to the next.

Figure 2 shows 100 ’years’ of this pseudo- temperature data. The column
(i) is for 100 samples (’years’) with the same constant a= a0 = 3 and b= b0 = 5,
representing a time series with no underlying change in forcing g(t). The column
(ii) is the same samples but with each shifted such that x→ x+ 5× t/100; this
is a uniform shift across the entire distribution. The column (iii) has b constant
and a(t) = a0[1 + 1/2(t/100)] so that the mean and variance both increase with
increasing years t and column (iv) has a constant and b(t) = b0[1 + 1/2(t/100)]
so that the first four moments all increase with increasing years t. The top panel
shows the ’yearly’ pdfs with the mean indicated by a white line, the second from
top panel shows the ’yearly’ cdfs, with 0.25, 0.5 and 0.75 quantiles indicated by
white lines. The four vertical dashed lines, at t= [20, 40, 60, 80] indicate the years
for which cdfs are plotted in the third panel from the top. The pseudo-temperature
series has an approximately linear trend in these quantiles.

Clearly there is considerable statistical variation in the pdfs, and to a lesser
extent, the cdfs, as a consequence of small yearly sample size. To increase the
sample size we need to aggregate observations over several consecutive years. Our
expression (2.10) allows us to optimize this separately for the pdf and the cdf.
A procedure for this is shown in Figure 3. The top two rows of panels show the
same time-series as Figure 2, but now the pdfs and cdfs are of aggregates over 3
(Figure 3(a)) and 9 (Figure 3(b)) years respectively, the abscissa now indicates
the central year of each aggregate. The set of four individual cdfs now show trends
which are particularly clear in the 9 year aggregate cdfs; in our simple model for
a temperature time-series we can see that a roughly linear positive trend in the
mean and variance of a pdf with non zero skew leads to the largest change in
the positive upper quadrant of the cdf, rather than at the mean. If the skew and
kurtosis also have a positive trend the largest change in the cdf moves further to
large positive values.

The bottom two rows of panels of Figures 3(a) and (b) refer to the indirect
estimation of the sensitivity from expression (2.10) above. To estimate the pdf,
we have aggregated over the entire set of samples, that is, the full dataset. The
difference ∆C is taken between the cdfs estimated from samples centred on t= 80
and t= 20. These samples for each of the pair of cdfs are over (Figure 3(a)) τ = 3
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Fig. 3(a): Pseudo annual temperature data, (i)-(iv) and top 3 rows are as the
previous figure except that the pdfs and cdfs are τ = 3 ’year’ aggregates (300
samples). Lower 2 panels show: sensitivity with temperature as abscissa (red line),
and values exceeding a threshold (black line); pdf from aggregate over the entire
dataset (blue line) and −∆C (orange line) and +∆C from the 3 year aggregates.
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Fig. 3(b): Pseudo annual temperature data, as per previous figure except with
τ = 9 year aggregates.

Fig. 4(a): Indirect estimate of sensitivity for 10 realizations of pseudo annual
temperature data with 3 year aggregates used to estimate the cdf. The model
data parameters (i)-(iv) are as in previous figures.
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Fig. 4(b): Indirect estimate of sensitivity for 10 realizations of pseudo annual
temperature data with 9 year aggregates used to estimate the cdf. The model
data parameters (i)-(iv) are as in previous figures.

Fig. 5(a): Direct estimate of sensitivity for 10 realizations of pseudo annual
temperature data with 3 year aggregates used to estimate the cdf. The model
data parameters (i)-(iv) are as in previous figures.

Fig. 5(b): Direct estimate of sensitivity for 10 realizations of pseudo annual
temperature data with 9 year aggregates used to estimate the cdf. The model
data parameters (i)-(iv) are as in previous figures.
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and (Figure 3(b)) τ = 9 ’years’ respectively. These are plotted in the bottom
panel, with uncertainties, indicated by shading, estimated as

√
(m) where m is

the number of samples per pdf histogram bin.
In the panel above, the ratio S =−∆C/P obtained from these is plotted (red

line) for all values. Clearly, when either −∆C or P is small, this ratio is dominated
by statistical uncertainty and we have overplotted (black line) values where the
magnitude of both ∆C and P exceed a threshold value of 0.01. For arbitrarily
good statistics, these plots should show the following, from left to right: column
(i) ∆C→ 0, so S→ 0, (ii) S constant (iii), and to a greater extent (iv) S is largest
for values of x greater than the mean as the +ve skew and Kurtosis both increase
with t.

Increasing the sample interval τ over which the cdfs used to obtain ∆C are
estimated improves statistics. This procedure is valid provided that this interval
τ is much shorter than that over which g(t) is changing. Importantly in real
data, this procedure effectively removes trends on timescales shorter than τ . We
demonstrate this using the pseudo-temperature data in Figures 4 (a) and (b) for
τ = 3 and τ = 9 ’years’ respectively. In these plots we calculate the sensitivity S for
10 successive realizations of the pseudo-temperature data, that is, we increment
t1 and t2 by one year for each curve that is plotted, keeping the interval t2 − t1
fixed. For arbitrarily large sample size these curves should collapse on top of each
other. This suggests an operational measure for the reliability of the sensitivity;
one can consider a given value of sensitivity to be reliable provided that value
is exceeded in all (here 10) realizations. A further check on the robustness of
the trend in time is to construct a surrogate dataset, (see also [4]) that is, to
recalculate the sensitivity having randomly shuffled the time order in which the
samples are observed; this quantifies the observed sensitivity that could occur
randomly with these finite sample statistics.

We finally compare this method with direct estimation of the sensitivity using
expression (2.6). This is shown in Figures 5 (a) and (b) which are in the same
format as figures 4 (a) and (b) but where we have numerically inverted the cdf to
obtain the quantile function. We plot the difference in quantile function with all
values are plotted as a red line, and values for 0.05<C < 0.95 plotted as a black
line. We can see that the indirect method and direct methods correspond within
errors; the discretization or ’stepping’ in Figure 5 is a direct consequence of the
process of numerical inversion of the cdf.

4. Application: eObs temperature data

We now illustrate this methodology with daily temperature measurements from
the E-OBS gridded dataset [10] [1950-2011 v5.0]. We will look at four locations
at longitude and latitude (i)[4.75 52.25] Leiden Holland (ii) [-4.75 51.75] west
Wales (iii) [-4.75 42.75] Leon, north Spain (iv) [11.25 43.75] Florence, Italy. We
will repeat the above procedure using data from these four locations, focussing on
summer aggregating daily temperatures over 3 month intervals within each year
of observation, June, July and August, giving a sample of 92 observations per
year.
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Fig. 6: Eobs annual temperature data at four locations (i) - (iv). Panels show from
top to bottom: yearly summer (92 sample) pdfs with temperature as ordinate and
time as abscissa and a solid white line indicating the mean; ’yearly’ (92 sample)
cdfs, same axes, solid white lines indicating the 0.25, 0.5 and 0.75 quantiles; the
vertical dashed white lines indicate four years for which four individual cdfs are
plotted in mid panels with temperature as abscissa.
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Fig. 7(a): E-Obs temperature data, for four locations (i)-(iv) in the same format
as Figure 3 with τ = 3 year aggregates.

Figure 6 shows the pdfs and cdfs for these yearly samples in the same format
as Figure 2. Figures 7(a) and (b) are in the same format as figures 3 (a) and (b)
showing the data with sample τ = 3 and 9 years respectively; here ∆C is estimated
using samples centred on years 1955 and 2005 and as above, the pdf is estimated
from the entire dataset.

Distinct behaviour can be seen at these four locations. Holland (i) shows a clear
skew towards higher temperatures and which peaks at the largest temperatures.
West Wales (ii) shows no significant sensitivity. North Spain shows similar
sensitivity across the distribution and Florence is sensitive across the distribution,
but maximally and uniformly above the 0.5 quantile.

Figures 8 (a) and (b) show the sensitivity estimated for 10 successive intervals
in the same manner as above; that is, ∆C is estimated using samples centred
on years t1 = 1955− 1965 and t2 = 1995− 2005 with the same t2 − t1 for all the
curves. Here there is both variability due to the finite size of the sample as seen in
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Fig. 7(b): E-Obs temperature data, as per previous figure except with τ = 9 year
aggregates.

Fig. 8(a): Indirect estimate of sensitivity for 10 realizations of eObs temperature
data with 3 year aggregates used to estimate the cdf. The locations (i)-(iv) are as
in previous figures.
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Fig. 8(b): Indirect estimate of sensitivity for 10 realizations of eObs temperature
data with 9 year aggregates used to estimate the cdf. The locations (i)-(iv) are as
in previous figures.

Fig. 9(a): Direct estimate of sensitivity for 10 realizations of eObs temperature
data with 3 year aggregates used to estimate the cdf. The locations (i)-(iv) are as
in previous figures.

Fig. 9(b): Direct estimate of sensitivity for 10 realizations of eObs temperature
data with 9 year aggregates used to estimate the cdf. The locations (i)-(iv) are as
in previous figures.
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the model data above, and in addition systematic trends due to departures from
our simple assumption (2.10).

Finally, we have recalculated the curves of Figure 8 (a) and (b) using the direct
estimate of sensitivity (2.6) and these are shown in Figures 9 (a) and (b). Again,
within uncertainties, these track the behaviour seen in Figure 8 (a) and (b).

5. Conclusions

We have presented a method which provides an improved way of understanding
the observed consequences of a globally changing climate at specific locations
and for specific thresholds. It provides a methodology for informing user specific
decisions which are often vulnerable to specific thresholds. It avoids the use
of complicated models and all the epistemic uncertainties which that can
involve. There are further interesting mathematical challenges in applying it to
different types of distributions such as those representing precipitation, multi-
variable distributions and functions of multiple variables. There are also, of
course, opportunities to apply the method to thresholds experienced in real-
world situations. These could be as diverse as building design, infrastructure
vulnerability, strategic planning for heat waves, changing risks of crop failure and
impacts on food prices etc. These opportunities are intrinsically multi-disciplinary
in nature and provide an exciting and rich vein of new research opportunities to
support science based policy and decision making.

Appendix: Return times

The above formalism is directly related to the return time of events. In time period
∆t we observe N events which in ascending size order are x1..xk..xN and have a
mean time between observations of δt= ∆t/N . Then within period ∆t there are
N − k + 1 events of size x≥ xk. The return period or return time R for an event
’at least as big as x= xk’ is then (see also [11]):

R(x) =
∆t

(N − k + 1)
' ∆t

(N − k)
(A.1)

for (N − k) large. In this large (N − k) limit, the cdf C(x= xk) = k/N so that:

R(x) =
δt

(1− C(x))
(A.2)

Note that the return time is only sharply defined for sufficiently large (N − k) if
the underlying statistics were Gaussian, then the % error is ∼ 1/

√
(N − k)/100 .

Practically, it fails at the largest events k→N .
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Now consider the slowly driven system with cdf C(x, g(t)), there will be a
corresponding return time R(x, g(t)). The changes with x and g are:

∂R(x, g)

∂g
=

R

(1− C(x, g))

∂C(x, g)

∂g
(A.3)

∂R(x, g)

∂x
=

R

(1− C(x, g))

∂C(x, g)

∂x
(A.4)

If we define the change in return time due to change in g the same manner as ∆C
above, so that

∆R=
∂R

∂g
dg'R(x, g(t2))−R(x, g(t1)) (A.5)

then using (A.2)

∆R=
R

(1− C)
∆C (A.6)

Since from above the sensitivity dx(dq= 0) =−(1/P )(∂C/∂g) =−∆C/P we can
express sensitivity in terms of the change in the return time due to change in g:

dx(dq= 0) =
(C − 1)

P

∆R

R
(A.7)

Finally, we can check that ∆R is indeed the change in return time due solely to
change in forcing. The return time is Tx =R(x, g) with variation:

dTx =

[
∂R

∂x

]
g

dx+

[
∂R

∂g

]
x

dg (A.8)

and we have

dq=

[
∂C

∂x

]
g

dx+

[
∂C

∂g

]
x

dg (A.9)

Now the change in return time due to change in forcing g only is that at dq= 0.
From (A.3) we can see that dq= 0 is dTx = 0; the total variation in return time
is zero. However, the change in return time due to change in forcing alone is, at
dTx = 0

∆R=

[
∂R

∂g

]
x

dg=−
[
∂R

∂x

]
g

dx (A.10)

which using (A.3) is just

∂R

∂x
dx=

R

(1− C)

∂C(x, g)

∂x
dx (A.11)

which at at dq= 0 is just

∆R=− R

(1− C)

∂C(x, g)

∂g
dg=

R

(1− C)
∆C (A.12)

as above.
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