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Abstract

Plant species richness and productivity often show a positive relationship, but the underlying mechanisms are not fully
understood, especially at the plant species level. We examined how growing plants in species mixture influences
intraspecific rates of short-term carbon (C-) translocation, and determined whether such short-term responses are reflected
in biomass yields. We grew monocultures and mixtures of six common C3 grassland plant species in outdoor mesocosms,
applied a 13C-CO2 pulse in situ to trace assimilated C through plants, into the soil, and back to the atmosphere, and
quantified species-specific biomass. Pulse derived 13C enrichment was highest in the legumes Lotus corniculatus and
Trifolium repens, and relocation (i.e. transport from the leaves to other plant parts) of the recently assimilated 13C was most
rapid in T. repens grown in 6-species mixtures. The grass Anthoxanthum odoratum also showed high levels of 13C enrichment
in 6-species mixtures, while 13C enrichment was low in Lolium perenne, Plantago lanceolata and Achillea millefolium. Rates of
C loss through respiration were highest in monocultures of T. repens and relatively low in species mixtures, while the
proportion of 13C in the respired CO2 was similar in monocultures and mixtures. The grass A. odoratum and legume T. repens
were most promoted in 6-species mixtures, and together with L. corniculatus, caused the net biomass increase in 6-species
mixtures. These plant species also had highest rates of 13C-label translocation, and for A. odoratum and T. repens this effect
was greatest in plant individuals grown in species mixtures. Our study reveals that short-term plant C translocation can be
accelerated in plant individuals of legume and C3 grass species when grown in mixtures, and that this is strongly positively
related to overyielding. These results demonstrate a mechanistic coupling between changes in intraspecific plant carbon
physiology and increased community level productivity in grassland systems.
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Introduction

Primary production often increases with plant species richness,

as demonstrated in a number of biodiversity experiments [1], [2].

Despite numerous studies on this topic, we still lack an

understanding of the mechanisms that explain this positive plant

biomass response to increased plant diversity. Several mechanisms

have been proposed, involving both abiotic and biotic factors. For

example, plant species grown in mixture can complement each

other in their uptake of soil nutrients in time and/or space [3], [4],

[5], and the chemical forms of soil nutrients that they access [6],

[7], [8], and also dilution of plant species specific pathogens in

species mixtures can contribute to positive diversity-productivity

relationships [9]. It is generally recognised that legumes provide an

additional nitrogen (N) input to soil by N2-fixation from the

atmosphere. This provides legumes with a complementary N

source as compared to non-legumes, and the subsequent

decomposition of the N-rich roots enables higher productivity of

non-legume species present within the plant community [10], [11],

[12]. This in turn may benefit legume species through community

level complementarity feedbacks to nutrient use efficiency, but the

mechanisms involved remain poorly resolved.

It has been proposed that, when in mixtures, plants use soil

nutrients more efficiently, thereby producing more biomass per

unit of nutrient in their tissues, as shown for N by Fargione et al.

[12] and by van Ruijven and Berendse [13]. Increased biomass

production in mixtures has also been attributed to larger size or

density of the component plant species [14]. For instance,

Marquard et al. [14] found that plant species richness correlated

positively with plant biomass due to increased density of the plants

in plant species mixtures, and that variation in plant community

biomass at different levels of species richness was related to the size

of individual plants. Recently, it was also shown that grass species

show plasticity in their morphological traits and nutrient and light

acquisition in response to plant species richness and presence of

legumes [15]. In that study grass species were found to become

taller, with longer leaves and larger specific leaf area, and accessed

other sources of N with increasing species richness and presence of

legumes. Legume species have also been found to be plastic in

their morphological and physiological traits including N-fixation in

response to plant community diversity, albeit in a species-specific

way [16]. Apart from altered morphology and N acquisition, the

rate of carbon (C) assimilation and transfer (referred to as

translocation or relocation in this paper) can be plastic in plant
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species, as demonstrated in grass species in response to the

presence or absence of shrubs [17], or for legumes in response to

functional groups of soil biota [18]. Moreover, intraspecific

diversity can be important for the strength of interactions between

species, which illustrates that intraspecific variances deserve

attention in the context of species diversity-ecosystem functioning

relations [19]. However, whether and how individuals of different

plant species change their C translocation traits in response to

growing together in species mixtures, and how such intraspecific

responses affect their contribution to overall plant production in

species mixtures, has not yet been tested.

The overall aim of this study was to examine how growing in a

mixture influences intraspecific rates of short-term C translocation

in six temperate grassland plant species, and determine whether

such short-term responses are reflected in overall biomass yields.

Specifically, we hypothesised that plant species with the highest

short-term C-translocation rates also yield most biomass, and that

this effect is enhanced when plants are grown in mixtures. This

would mean that individuals in plant species mixtures are larger C

sinks than in monoculture, and this can only be true if the newly

assimilated C is translocated from the leaves to other plant parts

that support plant biomass production over longer timescales (days

to weeks before the C investment to belowground plant parts is

notable in aboveground yields), rather than being respired back to

the atmosphere. To test our hypothesis we designed a field-based

grassland mesocosm experiment using two grass, two forb and two

legume species, and grew them all in monocultures and in 6-

species mixtures starting from seedlings, so that individuals of each

species could be investigated in both community settings at the

same planting density. We used an in situ 13C-CO2 pulse chase

approach [20] to trace recent assimilated C in plants and soil

respiration, in order to compare intraspecific rates of C

translocation, and measured plant biomass yields at the end of

the experiment, to investigate species specific biomass, in species

mixtures and monocultures.

Results

Vegetation Relative Yield
In mixed plant communities, all plant species, apart from L.

perenne, performed better than in monoculture, as indicated by

their positive relative yield (RY) (Fig. 1A); together, this resulted in

a relative yield total (RYT) of 2.160.2 (Confidence Interval CI 1.5

to 2.7, N = 4). Individual plant species differed in their RY (K-W

H = 20.9, P,0.001, N = 4), with A. odoratum and T. repens attaining

the highest RY (Fig. 1A). However, plant species with a high RY

did not necessarily contribute most to biomass production in

mixtures, as RY reflects a biomass ratio and does not account for

absolute biomass production. The absolute biomass contribution

of the different plant species to overyielding of the 6-species

mixtures was quantified as their net effect. We found that the net

effect differed between species (F5,15 = 31.8, P,0.0001, N = 4),

with A. odoratum, T. repens and L. corniculatus each contributing

approximately one third (10 g per mesocosm) to the higher yield

(Fig. 1B). Monoculture yield of L. corniculatus was higher than that

of the 6-species mixtures, hence there was no transgressive

overyielding. However, both A. odoratum and T. repens had much

lower monoculture yields than the 6-species mixture, with their

monoculture yield comparable to that of P. lanceolata and A.

millefolium (Fig. 1C).

13C Enrichment in Vegetation and Soil
All species grown in monoculture and in the 6-species mixture

were enriched in 13C at levels significantly above reference

‘background’ levels, as indicated by 13C atom % excess values

(Fig. 2A–F; Fig. S1 A–F). The plant species with highest levels of

enrichment were the legumes T. repens and L. corniculatus (Fig. 2A,

B). For all species, 13C enrichment declined significantly over time

(P,0.05), which was independent of species richness for L.

corniculatus, P. lanceolata, A. millefolium and A. odoratum. In contrast,

for T. repens there was a significant interaction with species richness

(time 6 species richness interaction F3,9 = 4.69, P = 0.03, N = 4),

with a faster decline in 13C enrichment occurring in the species

mixture than in monoculture (Fig. 2A). For A. odoratum, 13C

enrichment exhibited higher levels of enrichment in the 6-species

mixture than in monoculture (F1,3 = 7.90, P = 0.067) (Fig. 2D).

The %C in the vegetation was on average 41.260.2% (CI 40.8 to

41.5) across species and was not affected by whether species were

grown in monoculture or 6-species mixture.

We found no statistically significant 13C enrichment in roots

(average d13C ranged from 225.260.7 % (CI 226.6 to 223.9) to

224.160. 9 % (CI 226.0 to 222.2) across sampling times), which

was likely due to the dilution of the signal in mixed root samples

with roots of varying age. We detected 13C enrichment of soil

(Friedman Anova x2 = 15.99, P,0.05, N = 4) and enrichment

levels were higher immediately and one day after the pulse

labelling than at two and eight days after the pulse. Soil 13C

enrichment levels were low (average d13C ranged from 225.860.1

% (CI 226.0 to 225.5) at 24 h after the pulse to 226.1360.08 %
(CI 226.3 to 226.0) at 48 hours after the pulse) and were

unaffected by plant treatments.

13CO2 and Total CO2 Ecosystem Respiration
The rate of 13C loss through ecosystem respiration, in terms of

enrichment of the atmosphere with 13C, declined strongly over

time (F4,72 = 90.04, P,0.0001, N = 24), and showed an interaction

with plant treatments (time 6 species richness interaction

F24,72 = 2.03, P = 0.01, N = 4) (Fig. 3). This interactive effect was

due to different rates of 13C respiration loss between the first two

sampling points (2 h and 24 h after the pulse). Post-hoc tests

revealed that monocultures of L. corniculatus, T. repens and L. perenne

and 6-species mixtures had higher rates of 13C loss through

respiration in terms of atmosphere enrichment with 13C than

monocultures of A. odoratum at two hours after the pulse, while at

subsequent sampling times the rate of 13C loss converged across all

treatments. Total rates of ecosystem CO2 respiration differed

significantly between the plant communities, being greatest in

monocultures of T. repens compared to all other plant communities

(Table 1). These differences were even more pronounced when

expressed on a per unit aboveground dry weight biomass of the

plant communities, with T. repens monocultures losing C through

respiration at almost four times higher rates than 6-species

mixtures.

Soil Nitrogen and pH
The availability of inorganic N at harvest was strongly affected

by the plant treatments (F6,18 = 28.88, P,0.0001, N = 4; Fig. 4A).

The highest concentration of inorganic N was found in soil of T.

repens monocultures, intermediate values were found in soil of A.

odoratum, L. perenne and L. corniculatus monocultures, and the lowest

values in 6-species mixtures and monocultures of P. lanceolata and

A. millefolium (Fig. 4A). Rates of potential N mineralisation were

also strongly dependent on plant species treatments (F6,18 = 11.78,

P,0.0001, N = 4; Fig. 4B). The highest rate of potential soil N

mineralisation was found in monocultures of T. repens, the 6-

species mixtures and monocultures of L. corniculatus and L. perenne,

and lowest in soil taken from monocultures of A. odoratum and A.

millefolium (Fig. 4B).
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Figure 1. Plant species specific performance in species mixture and total biomass of monocultures and species mixtures. Relative
yield (A), net effect (B) and average shoot biomass (C) per mesocosm (38638 cm) of each of the six species grown in monoculture
and 6-species mixtures. Bars are means 61 SE (N = 4); the horizontal dotted line in panel A indicates 1/6th of the yield. Species names are
Tr = Trifolium repens, Lc = Lotus corniculatus, Pl = Plantago lanceolata, Ao = Anthoxanthum odoratum, Am = Achillea millefolium, Lp = Lolium perenne.
doi:10.1371/journal.pone.0045926.g001
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Soil pH differed significantly between plant species monocul-

tures and 6-species mixtures (F6,18 = 18.28, P,0.0001, N = 4).

Soils from the legumes T. repens and L. corniculatus had the lowest

pH (5.6660.06; T. repens CI 5.55 to 5.86 and for L. corniculatus CI

5.39 to 5.85), the grass A. odoratum the highest (6.5760.14, CI 6.11

to 7.02), and 6-species mixtures had intermediate (5.8860.03, CI

5.77 to 5.86) soil pH values.

Vegetation C/N Ratio and NUE
The average shoot C/N ratio (measured in the top 2 cm of

plant shoots) of non-legume species was significantly lower when

plants were grown in the 6-species mixture compared to when

grown in monoculture (F1,23 = 6.6, P,0.05; in mixture CI 18.63 to

25.37 and in monoculture CI 24.75 to 31.75). In contrast, the C/

N ratio of the legume species did not differ between monocultures

or 6-species mixtures (F1,11 = 0.5, P.0.05; in mixture CI 10.14 to

12.44 and in monoculture CI 9.07 to 15.63), and was on average

much lower than in the non-legume species (Fig. 5). We also found

that the amount of aboveground biomass produced per unit of N

in that plant material (i.e. their nutrient use efficiency NUE)

differed significantly between assembled plant communities

(Table 2). The NUE was lowest in monocultures of T. repens,

intermediate in six species mixtures and monocultures of L.

corniculatus and highest in monocultures of A. odoratum, A. millefolium

and P. lanceolata.

Discussion

In this study, we examined how intraspecific variation in short-

term C translocation in grassland plant species is affected by being

grown in mixed communities, and how this contributes to

overyielding. We found that all plant species, with the exception

of L. perenne, yielded more when grown in a six species mixture, but

T. repens and A. odoratum benefitted most, with RY values of over

0.5. For these two plant species we also found that the 13C tracer

enrichment in leaves and its translocation over time, was higher in

plant individuals grown in 6-species mixture as opposed to when

Figure 2. Enrichment of shoot tissue with 13C in individuals grown in monoculture (mono) or 6-species mixture (mix) at 2 h, 24 h,
48 h and 8 days after the 13C pulse. Species names are (A) Tr = Trifolium repens, (B) Lc = Lotus corniculatus, (C) Pl = Plantago lanceolata, (D)
Ao = Anthoxanthum odoratum, (E) Am = Achillea millefolium, (F) Lp = Lolium perenne.
doi:10.1371/journal.pone.0045926.g002
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grown in monoculture. In particular, we found that the grass A.

odoratum had higher levels of 13C enrichment following the

application of the 13C pulse, while the legume T. repens showed a

faster translocation of recently assimilated 13C; both these findings

indicate faster C uptake and translocation in 6-species mixtures

than in monocultures. Moreover, the release of recently assimi-

lated 13C through respiration in terms of enrichment of the

atmosphere with 13C from respiration was generally similar in

monocultures and the 6-species mixture, while total standing

biomass was higher in 6-species mixtures, suggesting higher C

retention of assimilated C per unit biomass in species mixture.

This idea is supported by the overall high rates of total CO2

respiration from T. repens monocultures which had low above-

ground biomass and the low rates of total CO2 respiration loss

from 6-species mixtures relative to their plant biomass.

The species with the greatest short-term 13C enrichment (A.

odoratum) and 13C translocation from its leaves (T. repens) when

grown in mixture relative to monoculture also benefited most from

growing in species mixtures (high RY), and together contributed

2/3 of the absolute biomass increase in species mixtures (net

effect). The other legume species used, L. corniculatus, also

contributed significantly to the net effect on yield and had a high

RY, indicating that it also benefited from growing in mixtures.

However, we did not detect any effect of being grown in a mixture

on leaf 13C enrichment or 13C translocation rates in L. corniculatus.

This indicates that other mechanisms are at play for this species,

with a larger investment in stems (with low N content) rather than

in leaves being one potential reason [16].

In grassland biodiversity experiments, the commonly observed

increase of plant community biomass with species richness is

usually strongly and positively related to the presence of legumes

[11], [12], [21]. In these studies, the role of individual plants and

species could not be addressed given their set-up with treatments

using broad functional groups rather than individual species. In

our experiment, legumes clearly played an important role in

influencing non-legume species, with non-legume species having

significantly lower shoot C/N ratios, i.e. containing relatively more

N, when grown in 6-species mixtures than when grown in

Figure 3. Enrichment of respired CO2 with 13C in monocultures and 6-species mixture (6sp) at 2 h, 24 h, 48 h, 8 and 30 days after
the 13C pulse. Data points are means 61 SE (N = 4). Communities with different symbols are significantly different at sampling time 2 h after the
pulse. For species monoculture names see Fig. 1.
doi:10.1371/journal.pone.0045926.g003

Table 1. Rates of total ecosystem CO2 respiration per m2 and per aboveground biomass per m2 basis across the plant species
monocultures and six species mixture.

Plant community mean mg CO2-C/h/m2 295% CI +95% CI mean mg CO2-C/h/m2/g dw 295% CI +95% CI

Tr 61.7 50.4 73.0 2.3 1.8 2.7

Lc 39.7 28.4 51.1 0.5 0.3 0.6

Lp 33.2 22.0 44.6 2.3 1.5 3.1

Am 25.5 14.1 36.8 1.6 0.9 2.3

Pl 24.3 13.1 35.7 1.5 0.8 2.1

Ao 20.6 9.2 32.0 1.3 0.6 2.0

6 sp 33.4 22.2 44.8 0.6 0.4 0.8

Means (in mg CO2-C/h/m2 and in mg CO2-C/h/m2/g aboveground dry weight) 695% CI. Tr = Trifolium repens, Lc = Lotus corniculatus, Lp = Lolium perenne, Am = Achilea
millefolium, Pl = Plantago lanceolata, Ao = Anthoxanthum odoratum, 6sp = mixture of the six species.
doi:10.1371/journal.pone.0045926.t001

Plant Species-Specific Promotion in Mixtures

PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e45926



monoculture. We found larger plant biomass and higher leaf N

concentrations in the 6-species mixtures; hence, our results support

earlier findings that plants use a larger total soil N pool when in

mixtures with legume species than when alone in monoculture

[12,15]. As a consequence, our results appear to be in contrast to

other findings of higher N use efficiency, as indicated by lower C/

N ratio of plant tissues and lower NUE at plant community level in

species mixtures [12], [13]. The faster rate of C translocation in

the grass species A. odoratum when grown in the species mixture

with legumes may be explained by the higher N availability in soil

and consequent improved total plant C assimilation and translo-

cation activity.

Additional N input from N-fixers and resource use comple-

mentarity have been proposed as mechanisms underlying species

richness-plant productivity relationships [1], [10], [11]. In our

experiment, both legume species, L. corniculatus and T. repens,

appeared to be very active in assimilating C, as indicated by high

levels of 13C enrichment, which is known to promote atmospheric

Figure 4. Soil mineral nitrogen status. Total plant available inorganic N (A) and potential N mineralisation rate in mg per g soil dry
weight per day (B) of soil from monocultures and 6-species mixtures (6 sp). Bars are means 61 SE (N = 4), for monoculture names see Fig.
1.
doi:10.1371/journal.pone.0045926.g004
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N fixation by legumes because N-fixing bacteria are fuelled by

photosyntates [22]. Moreover, C translocation in T. repens,

measured as change in 13C enrichment in its leaves over time,

was greater in the mixture, suggesting enhanced C allocation to

roots, although our 13C signal in roots was not strong enough to

quantify this. It is unlikely that the faster 13C translocation was lost

to respiration as the T. repens monocultures respired CO2 at much

faster rate than plant species mixtures. Given that aboveground

biomass in 6-species mixture was basically composed of 1/3rd of

each T. repens, A. odoratum and L. corniculatus, as determined at final

harvest, one could expect respiratory loss on a per unit

aboveground biomass basis in the species mixture being the sum

of 1/3rd of the C respiration loss rates per unit aboveground

biomass of T. repens, A. odoratum and L. corniculatus. However, in

species mixture the measured C respiration loss rate per unit

aboveground biomass was less than half the expected loss rate,

suggesting enhanced carbon use efficiency in plant species

mixtures. In addition to larger N input, the mesocosms with 6-

species mixture lost less N through leaching compared to

monocultures [23]. Previous studies have reported complemen-

tarity between legumes and C4 grasses [12], and between legumes

and tall herbs [24], whereas our results suggest complementarity

between legumes and C3 grasses. The explanation of the

observation that in the different studies legumes were comple-

mentary to different plant groups (i.e. to C4 grasses, or to tall

herbs, or to C3 grasses) may be different overruling underlying

mechanisms. For example in mixtures where legumes and C4

grasses are combined complementarity in peak growing season

may be the overruling factor in overyielding, which may be less at

play when legumes and C3 grasses are combined [4], [12].

The reason why the legume species had faster C translocation

and benefited from growing in mixtures is not clear, but may be

related to soil pH, which was lowest in the legume monocultures

and may have suppressed N fixation rates [25]. Also the lower soil

mineral N availability in species mixtures as compared to in

monocultures of T. repens may have promoted N fixation rates, and

with it associated high rates of C allocation to roots in T. repens

grown in plant species mixtures [26]. The faster rate of

translocation of C in T. repens in species mixtures indeed suggests

a potential change in C sink strength of plant roots in species

mixtures. Apart from root inhabiting rhizobia also arbuscular

mycorrhizal fungi (AMF) may have facilitated faster 13C translo-

cation in T. repens leaves to belowground in species mixtures as

mycorrhiza can stimulate the C sink strength and rates of N

fixation in legume roots [22]. In our plant communities, we found

that plant species richness and A. odoratum presence related

positively to the abundance of AMF in soil [27]. If A. odoratum

stimulates C sink strength in roots of T. repens through a common

AMF network, and if AMF promote N uptake in A. odoratum, this

might explain why A. odoratum and T. repens performed especially

well in species mixtures i.e. by indirect, soil biota mediated,

reciprocal benefit. In an earlier experiment, using the same in situ

labelling approach, we found that AMF are a strong C sink and

show significant 13C enrichment 24 h after labelling, which

indicates that they act at timescales that correspond with the rate

of decrease of the 13C tracer in plant shoots [28].

The higher leaf C/N ratios measured in monocultures

compared with the 6-species mixture, indicate that N limitation

of non-legume species in monocultures was an important factor in

their lower yielding. The overall low yield of L. perenne, P. lanceolata

and A. millefolium in monoculture and mixture may be due to the

combination of factors, such as low soil nutrient availability, soil

Figure 5. Average leaf C/N ration of non-legume and legume plant species grown in monoculture (white bars) and 6-species
mixture (grey bars). Bars are means 61 SE (N = 16 for Non-legume and N = 8 for Legume).
doi:10.1371/journal.pone.0045926.g005

Table 2. Nitrogen use efficiency at the community level (in
aboveground biomass) across the plant species monocultures
and six species mixture.

Plant community NUE mean 295% CI +95% CI

Tr 25.0 23.4 26.7

Lc 49.7 41.8 57.7

Lp 85.8 37.1 134.6

Am 84.4 66.8 101.9

Pl 91.7 67.6 115.7

Ao 95.1 80.4 109.7

6 sp 42.6 38.7 46.6

NUE means (g dry weight/mg N) 695% CI. Tr = Trifolium repens, Lc = Lotus
corniculatus, Lp = Lolium perenne, Am = Achilea millefolium, Pl = Plantago
lanceolata, Ao = Anthoxanthum odoratum, 6 sp = mixture of the six species.
doi:10.1371/journal.pone.0045926.t002
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pathogens and competition, so that C loss to pathogens and

herbivores was not compensated for [29], [30].

By tracing C from the atmosphere into individual plant species

within plant species grown in monoculture and 6-species mixture,

we found that short-term plant C translocation is accelerated in

plant individuals of legume and C3 grass species when plants are

grown in mixtures, potentially through interaction with soil biota.

Moreover this short-term response was strongly positive related to

overyielding in species mixtures measured at longer-term. These

results show a mechanistic coupling between intraspecific plant

carbon cycling and community level productivity.

Materials and Methods

Experimental Design
Plant communities were established in outdoor mesocosms in

August 2006. The mesocosms (38 6 38 cm, 30 cm deep)

comprised high-density polypropylene pots with a 10-cm bottom

layer of limestone chippings, filled with 20 cm of soil and placed

on a polypropylene saucer [23]. Soil was taken from a permanent

grassland with a history of fertiliser application, at the University

of Newcastle-upon-Tyne Farm, Nafferton, Northumberland, UK

(54u19 N, 0u239 W). The soil was collected from the top 20 cm

layer after stripping off the vegetation. Prior to filling mesocosms,

all stones and visible roots were removed by hand and the soil was

mixed [23]. The soil was a free-draining alluvial sandy loam soil

(3% clay, 42% loam, 55% sand), as determined using a particle

size analyzer (Mastersizer 2000, Malvern Instruments Ltd,

Malvern, UK). At the start of the experiment, total available

inorganic N (KCl extract) was 16.560.4 mg kg21 soil dry weight,

organic matter content 4.360.1% as determined by loss on

ignition at 550uC, and soil was pH 5.860.1 [21].

The experiment was set up at the Lancaster University

Hazelrigg Field Station (54u19 N, 2u469 W; mean annual

temperature 9uC and mean annual precipitation 1050 mm) in a

complete random block design. The experiment comprised four

blocks, each containing one monoculture of each of the six plant

species and a mixture of the six species all grown together, totalling

7 communities 6 4 reps = 28 mesocosms. Plants were planted in

mesocosms at a constant total plant density of 36 individuals per

mesocosm, with 6 individuals per species planted in the mixtures

so that individuals of each species were neighboured by individuals

of other species. Plants were planted in six rows with in each row

six individuals, one of each plant species in the case of plant species

mixtures. Our species pool consisted of common British grassland

plants: two grasses Lolium perenne L. (Lp) and Anthoxanthum odoratum

L. (Ao), two forbs Plantago lanceolata L. (Pl) and Achillea millefolium L.

(Am), and two legume species Trifolium repens L. (Tr) and Lotus

corniculatus L. (Lc) [31], [32]. All plants were grown from seed by

germinating surface-sterilized seeds (using diluted sodium hypo-

chlorite) in Petri dishes with filter paper soaked in de-mineralised

water at room temperature. Germinated seeds were transferred to

plug trays with autoclaved sterilized soil and grown in a glasshouse

for eight weeks. Seedlings were subsequently acclimatised outside

for one week and then planted in the mesocosms. After one year in

August 2007, above-ground vegetation was clipped to 2 cm above

the soil surface, and plant communities were left to re-grow. In

order to maintain the original species composition, mesocosms

were weeded of unwanted species. Mesocosms received no

fertiliser throughout the experiment and were watered during

summer months as required.

13CO2 Pulse Labelling
To investigate the fate of recently plant assimilated C, a 13CO2

pulse-chase assay was performed according to the method of Ostle

et al. [20], [33], and as used by De Deyn et al. [28]. The

vegetation was subjected to a 13C-CO2 pulse-chase treatment in

July 2008, followed by sampling of individual plant species. In

brief, in each mesocosm vegetation was exposed to an air stream to

which 13C labelled CO2 (99 atom % 13C enriched) was added and

passed through a 19 l transparent acrylic chamber (30 cm

diameter, 35 cm height) at flow rates of 3 l per minute at a

concentration of 500 ppm CO2. The pulse labelling system

simultaneously provided 14 chambers with 13C enriched CO2.

Therefore we pulsed 14 of the 28 mesocosms across the four blocks

(i.e. half of all the mesocosms in each block) during 30 minutes,

then moved the pulse chambers to the other half of the mesocosms

in each block for 30 minutes. We repeated this cycle five times so

that each mesocosm was exposed to an equal 13CO2 pulse for 2.5

hours between 11 am and 4 pm on 16th July 2008. Average air

temperature during pulsing was 15uC, soil temperature 16uC and

PAR was 6706130 mmol m22 s21.

Plant, Soil and Respired CO2 Sampling
Plant and soil matter was sampled immediately before 13CO2

labelling and at 2, 24 and 48 hours, and 8 days after labelling. At

each sampling, shoot material from each of the six plant species

was sampled across all mesocosms. Vegetation was sampled by

snipping 2 cm long leaf tips from undamaged plants or a leaflet of

3 sub-leaves for T. repens. Samples of each plant species from each

mesocosm were put in individual eppendorf tubes and were

immediately frozen at 220uC. Soil samples were collected for

root, inorganic and mineralisable N measurements from the

rhizosphere by taking a single core (3.4 cm diameter, 10 cm deep).

Soil cores and vegetation samples were taken from a different

quarter of the labelled area within each mesocosm at each

sampling. All plant species sampled were present in all quarters of

the labelled area, with the labelled area being the central area of

diameter 30 cm (i.e. chamber diameter) within the square pot

area. Release of recent assimilated 13C through ecosystem CO2

respiration (soil, root and shoot) was assessed by covering the

vegetation with dark chambers and head space samples were

collected immediately after covering and after 30 minutes and 1

hour through a septum (Suba Seal) fitted in the chamber wall prior

to covering the vegetation with the chamber. Samples were stored

in 12 ml exetainers (labco Ltd UK) at sampling temperature.

Total above-ground vegetation was harvested from each

mesocosm at the end of August 2008 by clipping all shoot

material above the soil surface. Vegetation was dried at 70uC for

48 h and weighed per species and per mesocosm. Relative yield

(RY) of each species was calculated within each block as the

species biomass in mixture divided by the species biomass in

monoculture (for species i: RYi = Yi/Mi), and relative yield total

(RYT) by summing the RY of all species in the mixed plant

community whereby RYT .1 was qualified as overyielding [10],

[34]. The net effect or net yield (net Y) of each species quantifies

the biomass contribution of each plant species to the extra biomass

in the species mixture as compared to the average monoculture

biomass. We calculated the net Y within each block as the

observed yield (YO) in the species mixture minus the expected yield

(YE), with the expected yield being the monoculture yield of the

species divided by the number of species in the mixture (net

Yi = YOi2YEi = YOi2(Mi/6)) [35].
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Stable Isotope Analyses and Plant C and N Concentration
Enrichment of 13C in plant tissues (leaf and root) and soil was

determined using freeze-dried (Gilchrist, Germany) and finely

ground sample material (,50 mm). Sample was weighed into tin

cups, and analysed for total C, 13C/12C isotopic ratio, % C and %

N using a Flash EA 1112 Series elemental analyser (Thermo

Electron Corporation, Bremen, Germany) coupled with a

Deltaplus Advantage isotope ratio mass spectrometer (IRMS,

Thermo Finnigan, Bremen, Germany). Enrichment of 13C is

expressed as 13C atom % excess according to Boutton [36] with

atom % excess = atom % enriched sample – atom % background

sample (i.e. before labelling), in which atom % = [Rsample/(Rsample

+1)] 6 100 and Rsample = 13C/12C ratio measured by IRMS.
13C/12C isotopic ratios of respiration samples were also deter-

mined using a Gas-bench II connected to a Deltaplus Advantage

isotope ratio mass spectrometer (both Thermo Finnigan, Bremen,

Germany) and CO2 concentrations determined by Gas Chroma-

tography (Agilent, Autosystem xl).

Soil Nitrogen, Potential Nitrogen Mineralisation Rate and
pH

Total plant available inorganic N concentrations (NH4
+ +

NO3
2) and rates of potential N mineralisation were determined on

soil samples collected immediately after harvesting all the

vegetation. Total available inorganic N was determined in KCl

extracts of subsamples of 10 g of fresh sieved soil using standard

colorimetric autoanalyser procedures [37] on a continuous flow

autoanalyser (Bran and Luebbe, Northampton, UK). To evaluate

potential rates of N mineralisation, inorganic N (NH4
+ + NO3

2)

was also determined after incubation of 10 g subsamples of fresh

soil at 20uC for 14 days and the potential mineralisation rate was

calculated as inorganic N concentration after incubation, minus

that at the start, divided by the number of days of incubation. Soil

pH was determined on water extracts using a 12.5 gram fresh

sieved soil subsample in 50 ml of demineralised water and a pH

meter.

Data Analysis
We tested for the effects of plant species identity on biomass

yield in the 6-species mixtures using Generalised Linear Mixed

Model (GL Mixed Model), with block as a random factor and

species identity as fixed factor. We used Repeated Measures

Analysis of Variance (ANOVA) to test the effect of plant species

richness on 13C enrichment, on CO2 respiration rate and on %C

in vegetation for each species, with block as a random factor and

species richness (1 or 6) as fixed, and sampling time as a repeat

factor. In a similar way, we tested the effect of plant composition

(monoculture identity and 6-species mixture) on 13C respiration

loss using Repeated Measures ANOVA with plant treatment as a

fixed factor, block as a random factor, and sampling time as a

repeat factor. Plant treatment effects on soil inorganic N, potential

N mineralisation rate, shoot biomass, shoot C/N ratio of non-

legume and legume species and soil pH were tested using a GL

Mixed Model with block as random and plant community

composition (the six monocultures and 6-species mixtures) as

fixed factor. Differences between treatment levels were tested using

Tukey HSD post-hoc test. Enrichment with 13C and shoot C/N in

L. perenne in mixtures could not be determined due to the very low

abundance of this species in mixtures. Species identity effects on

relative yield and plant community composition on 13C enrich-

ment in soil were tested using non-parametric Kruskal-Wallis and

Mann-Whitney U tests, and time effects on soil 13C enrichment

were tested using Friedmann ANOVA for multiple dependent

samples. Prior to statistical analysis, data of 13C enrichment in

plants and air and shoot C/N ratios were log transformed, and

total inorganic N data were square root transformed. We used the

software STATISTICA for our statistical analysis.

Supporting Information

Figure S1 Enrichment of shoot tissue with 13C in
individuals grown in monoculture (mono) or 6-species
mixture (mix) at 2 h, 24 h, 48 h and 8 days after the 13C
pulse with test statistics per plant species. Species names

are (A) Tr = Trifolium repens, (B) Lc = Lotus corniculatus, (C)

Pl = Plantago lanceolata, (D) Ao = Anthoxanthum odoratum, (E) Am = A-

chillea millefolium, (F) Lp = Lolium perenne.

(TIF)
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