This report is an official document prepared under contract between the Central Electricity Generating Board and the Natural Environment Research Council. It should not be quoted without the permission of both the Institute of Terrestrial Ecology and the Central Electricity Generating Board.

INSTITUTE OF TERRESTRIAL ECOLOGY
(NATUAAL ETVIRONMENT RESEARCH COUNCII)

CEGB/NERC CONTRACT LC5089
ITE PROJECT 893
Report to Central Electricity Generating Board

[^0]J DIGHTON

Merlewood Research Station
Grange over Sands
Cumbria
LA11 650
Conezits
こコミ゚ ：
1 INTRODUCTION i
2 ROOT SAMPLING AND OBSERVATIONS 2
2．1 Roct harvest 2
2．2 Root sample preparatior． 2
2．3 Mycorrhizal observations 2
3 RESUETS AND OBSERVATIONS 4
3．1 Root biomass 4
3．2 Mycorrinzas 4
\angle DISGJSSION 6
5 ACKNOWLEDGEMENTS 8
6 REFERENCES 9
7 TABLES 10
8 APPENDICES 16
Appendix 1 26
Appercix 2 23
Appendix 3 29

SUMMARY

 mycorrhizai popuiations cf whole tree roct systems excavated iroa the Liphook experinent in October 1985.

Root biomass showed considerabie between plot variability, but this variability in Norway spruce and Scots pine fitted closely with that found in 1st year extension growth. The variability in Sitka spruce, however, deviated somewhat from the 1 st year extension growth and even more from the initial heignt.

Mycorrhizal data for all 3 tree species show considerable within and between plot variability. It is suggested that the effects of the pollutant gases will probably only be able to be reliably assessed on the dominant mycorrhizal types. Full descriptions of the characteristics of the mycorrhizal types identified are provided, although detailed observations of embedded and sectioned material have yet to be carried out.

A further study is seen to be necessary to evaluate future sampling techniques. Due to the rates of growth of the trees it will no longer be possible to excavate whole root systems, but, as a result of site preparation, coring is severely hampered by the distribution of stones in the upper soil horizons.

The ain or the fieid Fumization experinent at lipiook is to study the effects of $\mathrm{SO}_{2}, \mathrm{O}_{3}$ end a combiation of tiese gases or the Erowin ard physiology of a new stocis ot Sitisa spruce, Noway spruce, and Scoউs pine. In addition, abiotic and biotic changes of sotl will also be zonitored in teras of chemistry, decomposition rates and arthropod pocuiations wider these treatments. Details of the main aims, sitie history, site peparation and preliminary background data are to be found in Shaw (1986).

The Merlewood involvement in this project is to examine the changes in mycorrhizal composition of the root system as a result of the pollutant gas treatiments, and to supply some information on the rate of growth of the root system. This epeport provides the baseline, pre-fumigation data on root biomass and mycorrhizal associations of whole root systems excavated at the end of the 1 st year after planting.

2.1 ミoot 2onvest

 treatment blccks on Octocer 28-20 1985. Trees were taken From random co-ordinates on the planting grid pattern, with half the repiicates for each treatment block taken from the southern half by one pair of workers, and the other 5 trees from the northern half of the block by 2 other workers. Root systens were removed by digging around the tree base with a fork and gently easing as much of the root system as possible from the soil. The areas disturbed were dependent upon the extent of lateral spread of the root systems and extended to gpproximated 0.5 m out from the tree base in the larger Sitica spruce trees.

Trees were separated on site into roots and shoots by severing the main axis at ground level. Roots and shoots were placed separately into pre-labelled self-seal polytinene bags for transportation to the laboraむory.

2.2 Root sample preparation

Root samples were stored in their polythene bags at $4^{\circ} \mathrm{C}$ whilst awaiting processing. The root washing and sampling process commenced immediately on return to the laboratory and was completed within 3 weeks.

Root systems were washed free of adhering soil particles using a 'washing machine' consisting of oscillating water jets washing the roots which are held over a series of mesh grids. Coarse particulate matter, stones and dead organic debris were removed from the samples by hand and loose root fragments recovered from the fine mesh screen.

Fresh root material was divided into coarse and fine root fractions, with the division occurring at approximately 2 mm root diameter. Coarse root material was placed in a pre-labelled paper bag and oven dried at $80^{\circ} \mathrm{C}$ to constant dry weight. The fine root fraction of each root was weighed fresh, and 5 random samples (totalling about 2 g of material) were removed and placed into a pre-labelied vial of 1% aqueous glutaraldehyde fixative; the remaining fine root fraction was reweighed, placed in a labelled paper bag and dried at $80^{\circ} \mathrm{C}$ to constant weight. Dry weights of coarse and fine root material were measured, and the latter corrected for the dry weight equivalent of the root samples taken for mycorrhizal observation.

2.3 Mycorrinizal observations

The samples of root fixed in glutaraldehyde were used to quantify the proportional contribution of different mycorrhizal types to the population on the individual tree root systems. A random sample of 5 root systems of each tree species was first observed, to characterize the main mycorrhizal types occurring on each tree species. These types were distinguished by morphological characteristics visible under a stereomicroscope at a magnification of 20-30 times. The mycorrhizas were photographed and a brief list of diagnostic features appended to the photograph to aid subsequent identification. These random samples were returned to their appropriate storage vials.

Bach tree species was assessed for its zycorrizizel popuiation one at a tiye, in orcier to facilitate chanacউerization of the gycorrinas. The

 mycornizas of eaci tye in eaci scuare. Squares containing no fine root waterial were rejocted and a new square selected. From these counts, the percentage contribution of each mycorrhizal type to the total population of mycorrhizas on the root system was calculated.

During the counting of mycorrhizas, examples of all previously determined and new types of mycorrhiza were transferred to storage vials of glutaraldehyde as type specimens. The characteristics of these type specimens were futher investigated by preparing temporary root squashes and free-hand transverse sections for observation by high power microscopy. Root squashes were mounted in lactophenol/glycerol and sections stained in 1\% trypan blue in lactophenol and mounted in lactopehnol/glycerol. These samples were observed for the following characteristics:
(i) degree of sheath development
(ii) nature of sheath development (degree of aggregation of hyphae into pseudoparenchymatous tissue)
(iii) characteristic orientations of surface hyphae
(iv) nature of extramatrical hyphae (hyphal diameter, surface characteristics, presence, absence and nature of clamp connections)
(v) extent of Hartig Net
(vi) presence of other distinguishing ciracters (eg sclerotia)

Extensive observations of embedded and microtome sectioned raterial has not yet been undertaken.

3.1 Roct もiceass

Fine, coarse ane jotai root weights for incividuai trees ane given in
 plot are atyer in Table i and a sumary of an anaiysis of variance on the data.is-given in Table. 2.

These data show that the major difference in root weight is a factor of the tree species, where Sitica spruce is significantly larger ($P<0.001$) than either Norway spruce or Scots pine. The fine root component of Norway spruce was significantly greater ($P<0.001$) than that for Scots pine, but this was not so for the coarse root component. This difference in fine root biomass, however, is enough to cause a significant difference in the total root weights between these 2 species.

Significant differences in root biomass between plots were evident for the fine root component ($P<0.001$) and the total root biomass ($P<0.05$). The ranking of total root weight across plots, for each species can be seen in relation to other parameters (Shaw, 1986) in Table 3.

3.2 Mycorrhizas

The characteristics on which the mycorrhizal types were separated are listed in Appendix 2. Seven types were recognized in Sitka spruce, 8 in Norway spruce and 9 in Scots pine. The mean percentage contribution of each mycorrhizal type to the total population on the root system of each plant is given in Appendix 3 and a table of means for each plot for each tree species is given in Tables 4, 5 and 6. It must be noted here that the classification of the mycorrhizal types was carried out for each tree species separately and, thus, for example, mycormizal type A for Sitka spruce cannot be equated to mycorrhizal type A for either Norway spruce or Scots pine.

From Table 4 it can be seen that type A mycorrhiza is dominant on Sitka spruce with type C being sub-dominant. Mycorrhizal types F and G occur only spasmodically and contribute least to the total population. Variations between plots are shown mainly by a change in the proportions of types A and C. Plots 2, 3, 4 and 5, however, show an elevated contribution of type E to the population, this type is very low in number in the other plots. Plot 7 has an anomalously high proportion of type D mycorrhizas. The proportion of type B mycorrhizas is fairly constant across plots, with an elevated value for plot 4 and lower values for plots 6 and 7.

Table 5 shows the proportional contribution of mycorrhizal types to Norway spruce root systems. These roots are dominated by type A mycorrhizas, with types C and B as sub-dominants. Apart from type H mycorrhizas, all other mycorrhizal types are almost always represented in each-plot. Plots 5, 6 and 7 snow a higher contribution of type A to the mycorrhizal flora than plois 1 to 4 and are balanced by elevated proportions of type C in plot 1, type B in plots 2 and 4 and type F in plot 3.

Table 6 shows the equivalent data for Scots pine in whch 9 mycorrhizal types were identified. Here type C mycorrhizas dominate, with types B, G and A being represented, on average, at greater than 10% of the
population. Type C mycorrizas make a of reanekably constant contribution to tie porulation, except for plot 4 where the vaide rises to neariy 48%. This rise is reflected in a lowering of tie contribution of tyees 1 , $D, ~ \exists$ anc Z to tine powulation of trees of piot 4. A ijziner proccriton oi type A

 Dlots 5 and 7 and low levels in plots óand 3 . Mycorrinzal tjpe I has the lowest irequency of occurrence, being found in only 3 root sampies.

The raw mycorrhizal data given in Appendix 3 show considerable variability in the proportional contribution of mycorrhizal types on the root systems of all tree species. In many instances where the mean proportion of a mycorrhizal type was belo' 10%, only a few replicate plants from each plot supported that type of mycorrhiza.

This report has coilajed the baseine data for the roou biomess and

 witin Dr Kueiler's cieta on ebove-ground biomess of the same piants in orjer to assess the full effect of plot on the growth of the trees. From the nechanics of excavating the root systems, differences in number of stones between plots were evident, with plot 7 being very much less stony than other plots. Due to the drastic disruption of the original soil profile, data on the comparative contribution of stones to the bulk density of the soil in each plot would be of great value. The degree of stoniness will strongly influence the root growth pattern of the trees.

The ranking of plot mean data for 1 st year shoot extension and total root biomass show remarkable similarity for Norway spruce, and reasonable similarity for Scots pine and Sitka spruce. Although some differences were detected between plots at planting (due to variation in planting stock) (Shaw, 1986), a considerable change in the rankings of, particularly, Sitika spruce indicate that variation in site characteristics between plots is an important determinant of tree performance.

The mycorrhizal data show that numerous different mycorrhizal types can be identified by morphological characteristics on each of the tree species. The variability between trees within a plot and between plots is large, particularly for the less frequently occurring types. At this stage it is difficult to find clear patterns in the mycormizal populations and the data will need to be interrogated further in order to plan sampling strategies for future years.

The planning of sampling strategies for future phases in the programme is not only to be based on statistical considerations of variability within plots, but also on the ability to collect suitable samples. The sampling in 1985 was from whole root systems which were excavated by careful digging. Even after one season's growth, however, the degree of spread of the root mass was considerable. Lateral spread of roots was of ten 0.5 m or more from the stem base. On this basis, with trees initially planted on a 1 m grid spacing pattern, by the end of the second season's growth it will be much less practical to sample whole root systems, without incurring considerable site damage and influencing the growth of trees adjacent to the one being harvested. This problem had been partially foreseen and it had been the intention, in October 1985, to run a parallel series of harvesting techniques. This harvesting was to involve removing a series of soil cores from pre-determined distances from the stem base of a tree and to correlate the root biomass from the cores with the total root biomass of the tree. Due to the destruction of the iron pan and redistribution of Carr stones in the upper soil layers during site preparation, it was found impossible to extract 2.5 cm diameter cores from even the least stony plot. It is, therefore, planned to re-visit the site in May 1986 to assess the possibilities of alternative methods of sampling by using either larger diameter corgrs or a hand excavation systea over a limited defined area. Initial trials would be conducted on the unplanted edge of the plot and actual determinations made on a number of edge trees which do not form part of the main experimental area.

In summary, at this stage of the programme it appears that there are considerable differences between plots in the growth and mycorrhizal
status of root systeas of all 3 tree species. it is thought that the efoect oz the pollutant gas treataents on gycorrinzal commitites of the roots will only be detectajle fro tive cominert myrorrīzai types. Eetween

ACKMOWEDGETEYTS

 تycorrinzas and Doreen Eowari Bor her siatistiaal aciviee.

Table 1. Mean root weight of Eine, coarse and total root Enactions of whole root systems harvested from Lijncot in Oetoje in i?85. (Neizhts are dry weights expressed ing after drying at $30^{\circ} \mathrm{C}$, means of 5 individual root systeas).

Plot	Sitika spruce			Norway spruce			Scots pine		
	Fine	Coarse	Total	Fine	Coarse	Total	Fine	Coarse	Total
1 NS	11.84	8.55	20.46	5.81	3.11	8.92	3.16	2.86	6.02
	16.34	16.10	32.44	5.58	3.53	9.12	5.32	2.36	7.68
2	8.57	5.64	14.21	10.92	2.70	13.62	4.24	3.77	8.01
	13.88	20.43	34.32	5.62	4.86	10.48	4.13	4.57	8.70
3	14.60	9.35	23.95	10.08	3.35	13.43	6.12	3.70	9.90
	12.82	10.03	22.85	7.04	7.17	14.21	3.50	1.97	5.47
4	8.69	14.53	23.22	8.60	6.39	14.99	2.11	2.47	
	9.45	16.47	25.92	4.09	2.72	6.81	1.12	1.33	2.45
5	14.07	14.13	28.20	4.44	2.95	7.39	2.79	2.84	5.64
	9.75	12.93	22.68	4.12	3.51	7.62	4.80	2.89	7.69
6	10.62	13.44	24.05	5.85	3.94	9.79	4.61	6.17	10.78
	13.67	19.25	32.92	4.99	4.17	9.16	2.98	3.79	6.77
7 N	13.30	12.47	25.77	14.68	6.18	20.85	4.78	5.43	10.20
	20.51	17.09	37.61	15.77	7.51	23.27	5.18	4.81	10.39

Source of variation	c.f	Fine		Coarse		Totai	
		vr	$?$	vr	P	vr	P
Species	2	36.6	<0.001	57.4	<0.001	73.8	<0.001
Plots	6	3.8	<0.001	1.0		2.6	<0.05
Sub-plots	1	0.0		3.5		1.6	
Species.plots	12	0.9		0.6		0.7	
Species.sub-plots	2	1.9		4.0	<0.05	4.1	<0.05
Plot.sub-plots	6	0.8		1.0		1.0	
Species.plots.sub-plot	12	0.5		0.7		0.8	

Table 3. Fanking of mean total root biomass at the end of the first growing season xith fnitial tree hefait and first year shoot extension for each plot at Lipnoos.

Species	Parameter	Eark orier oi plot nubber in ciescendinc orier of plot wear:						
Sitka spruce	Initial height	3	1	4	2	7	5	6
	Extension (yr1)	2	6	1	5	3	7	4
	Root biomass	7	6	1	5	4	2	3
Norway spruce	Initial heignt	3	7	4	6	1	2	5
	Extension (yri)	7	3	4	2	1	6	5
	Root biomass	7	3	2	4	6	1	5
Scots pine	Initial height	7	6	5	2	1	4	3
	Extension (yr ${ }^{\text {) }}$	7	6	4	3	1	2	5
	Root biomass	7	6	2	3	1	5	4

Table 4. Mean percentage contribution of each mycornizal type to the total popuiation on roots oí Sitica spruce harvested From Liphook in October io85 (aean of 10 root senples).

Mycormizai type

Plot	A	B	C	D	E	F	G
1	71.7	7.9	13.5	6.9	0	0	0
2	47.0	7.3	27.3	3.3	15.2	0	0
3	27.2	8.4	39.4	11.6	13.5	0	0
4	59.7	13.9	10.5	0	15.9	0	0
5	46.7	6.6	19.3	1.4	15.9	10.2	0
6	77.2	4.4	9.6	0	0.9	2.3	5.6
7	54.8	3.6	10.5	20.9	3.0	5.7	0
Overal1	54.9	7.4	18.6	6.3	9.2	2.6	0.8

Tabie 5. Mear percentage contribution of each cycorrizal type to the total population on rocts of Nomey spruse frou Liphook in October io85 (zean of :0 root sampies).

	Mycorrizai type							
Flot	A	\bar{B}	C	D	E	F	G	B
1	49.0	9.0	30.5	6.0	3.4	0	2.1	0
2	46.7	27.2	9.5	5.2	0	0	8.1	3.3
3	43.1	8.5	18.6	3.8	1.0	23.7	1.3	0
4	40.9	23.5	12.5	9.8	2.6	6.7	4.1	0
5	58.6	5.6	18.8	6.6	1.7	0.6	8.1	0
6	59.8	2.1	16.7	4.9	0	6.8	1.4	8.3
7	74.9	1.5	2.0	0.7	0.2	14.3	4.3	2.2
Overall	53.3	11.1	15.5	5.3	1.3	7.4	4.2	2.0

Tajo 6. Mean peraentage cortrifoution of each mycorrijzai type to the toial

	Myccrunizai iype								
Plot	A	3	C	1	E	7	G	日	I
1	5.5	24.1	26.1	8.8	9.4	4.0	19.8	3.6	0
2	33.1	7.0	23.2	0	6.8	13.3	6.8	7.9	0
3	12.1	30.8	29.2	5.6	4.2	9.2	3.7	5.5	0
4	6.6	14.6	47.6	0	2.3	2.9	14.6	10.6	0.8
5	8.3	27.7	21.5	2.0	3.1	0	34.9	2.4	0
6	11.3	17.6	26.8	8.0	15.6	7.6	0.4	7.5	5.5
7	13.8	5.9	23.0	5.1	10.4	9.9	25.5	4.0	2.6
Overall mean	13.0	18.2	28.2	4.2	7.4	6.7	15.1	5.9	1.3

APDEMDIT 1. Root biomass ciata for indivicuai trees harvested frow Liphook in October 1o®̃.

BLOCA	S.BLOCK	CO-ORDINATE	LARGE ROOT DRY' NT (c)	FINE ROOT DRY WT (g)	$\begin{aligned} & \text { TOTAL ROOT } \\ & \text { D?: } \mathrm{WI}(\mathrm{~g}) \end{aligned}$
$\underline{1}$	i	116	7.92	5.45	12.ここ
1	1	$: 27$	5.48	5.10	11.00
I	$!$:0	13.30	6.79	20.29
i	1	133	7.53	14.00	2 i 2\%
1	1	152	8.32	27.78	36.10
1	2	1818	13.78	11.68	25.46
1	2	2120	37.44	27.15	64.59
1	2	2126	18.28	17.54	35.82
,	2	1928	1.97	10.18	12.15
1	2	2028	9.01	15.16	24.17
2	1	134	8.80	7.57	16.37
2		1310	3.50	4.43	7.93
2	1	1211	7.32	8.09	15.41
2	1	104	5.39	12.56	17.95
2	1	152	3.17	10.20	13.37
2	2	- 2523	34.59	23.69	58.28
2	2	2021	45.13	16.38	61.51
2	2	1924	7.23	7.28	14.51
2	2	1928	6.79	8.91	15.70
2	2	2028	8.43	13.15	21.58
3	1	136	13.56	19.14	32.70
3	1	145	6.17	11.92	18.09
3	1	1411	18.78	20.21	38.99
3	1	143	5.43	14.35	19.78
3	1	113	2.80	7.39	10.19
3	2	2126	12.48	14.28	26.76
3	2	1726	12.29	8.37	20.66
3	2	2025	8.80	16.40	25.20
3	2	1928	8.59	10.83	19.42
3	2	2028	8.00	14.23	22.23
4	1	98	13.23	3.95	17.18
4	1	$8 \quad 9$	25.24	8.14	33.38
4	1	710	13.65	6.18	19.83
4	1	153	4.74	9.44	14.18
4	1	104	15.80	15.75	31.55
4	2	1726	6.29	10.44	16.73
4	2	1922	15.45	15.02	30.47
4	2	1926	42.44	7.32	49.76
4	2	1827	8.45	6.10	14.55
4	2	2027	9.71	8.37	18.08
5	1	78	13.94	16.87	30.81
5	1	127	36.02	16.98	53.00
5	1	148	8.22	15.34	23.56
5	,	104	9.59	13.18	22.77
5	1.	75	2.88	7.96	10.84 .
5	-	2423	5.92	23.75	29.67
5	2	2225	11.19	3.27	14.46
5	2	1821	21.25	8.42	29.67
5	2	2326	6.31	5.27	11.58
5	2	2026	20.00	8.02	28.02

1	7	ε
\vdots	13	0
1	9	6
1	11	3
1	14	3
1	21	22
2	10	15
2	18	21
2	\vdots	20
2	21	27
2	14	7
2	14	13
1	8	8
1	15	2
1	11	2
1	23	24
1	18	26
2	21	24
2	17	28
2	20	27

10.87
15.24
24.47
5.65
9.85
24.35
21.45
27.00
3.05
13.27
22.01
18.04
4.97
12.47
4.88
6.90
15.97
34.57
11.95
16.06

7.10	15.03
11.53	27.17
15.50	39.93
9.28	15.93
0.32	10.17
10.92	35.37
22.10	43.97
9.61	37.90
$E .-2$	12.57
10.63	35.00
7.52	29.53
13.74	31.78
5.94	10.91
12.20	24.67
27.10	31.98
7.99	14.89
9.32	25.32
7.38	22.96
11.01	82.93

$\begin{array}{rr}7 & 24 \\ 6 & 24 \\ 11 & 25 \\ 6 & 27 \\ 18 & 28 \\ 23 & 10 \\ 18 & 7 \\ 24 & 7 \\ 26 & 7 \\ 27 & 8\end{array}$
1227
1326
1322
1529
5
227
226
22
19
19
$20 \quad 3$
$\begin{array}{rr}10 & 25 \\ 9 & 24 \\ 14 & 27 \\ 11 & 28 \\ 15 & 29 \\ 21 & 6 \\ 20 & 5 \\ 24 & 7 \\ 27 & 8 \\ 26 & 7\end{array}$
1427
823
1223
1128
1428
189
196
$24 \quad 9$
243
1126
1227
623
1428
928
238
1912
187
$17 \quad 3$

1.09
2.73
7.00
2.50
2.21
2.73
0.73
6.27
2.72
5.21
3.13
1.30
2.64
$3.9!$
2.53
1.08
4.04
5.98
5.67
7.54
2.44
5.56
2.36
2.07
4.32
15.26
6.08
2.81
5.99
5.72
15.12
2.21
3.20
3.03
8.38
3.73
1.50
3.46
2.04
2.88
2.87
1.26
4.59
2.69
3.32
7.32
6.71
1.15
1.23
1.12

FIVE ROOT
DRY WT (g)
TOTAL ROOT DRY: in (g)

5.03	5.12
3.92	6.60
6.83	$1 . .39$
4.75	1.23
8.52	10.73
1.56	4.20
3.06	10.52
4.25	8.60
5.88	18.38

4.39	7.52
6.75	8.05

11.55
31.13
9.86
2.26
14.78
11.35
10.62
13.40
11.53
13.09
9.28
12.38
20.85
23.71
13.86
7.86
16.47
9.15
20.76
7.08
9.13
10.69
27.30
6.97
5.18
9.63
5.40
6.86
5.32
6.23
10.31
6.18
s..0
12.37
14.75
2.66
4.53
3.81

6	1	1312	1.51	3.23	4.75
6	!		2.37	2.68	5.05
6	1		2.33	3.24	5.57
6	$\underline{1}$	727	4.93	6.35	1i. 2 E
6	i	1228	3.54	13.77	22.21
6	2	$25 \quad 5$	4.04	う.た	0.52
6	\cdots	10%	3.05	$5 . \approx 9$	13.04
6	\cdots	20 5	3.30	5.05	©
5	2	25 j	3.70	5.13	0.13
6	2	23 j	1.28	2.78	4.06
7	1	924	4.62	15.37	19.99
	1	922	1 i .41	21.78	33.19
7	1	1320	2.38	8.79	11.17
7	,	1028	8.32	19.60	27.92
	1	1529	4.15	7.85	12.00
7	2	216	2.27	7.11	9.38
7	2	174	8.10	6.85	14.95
7	2	$24 \quad 7$	9.36	27.42	36.78
7	2	213	8.56	22.80	31.36
7	2	234	9.24	14.66	23.90

BLOC:	S.BLOCK	CO-0RDINATE	LARGE ROOT DR: wI (g)	FINE RCOT DR: int (E)	TOTAL ROOT DRY WT (o)
1	1	316	4.15	2.41	6. 0^{0}
!	$\underline{1}$	513	2.22	1.92	4.24
1	1	1215	2.75	$4.5 \overline{3}$	7.29
!	i	310	2.52	2.33	4.35
!	1	321	2.25	4.59	6.84
	2	1916	1.21	2.52	3.73
,	2	2314	1.95	3.30	5.25
1	2	2316	1.62	3.02	4.64
1	2	2915	2.90	6.21	9.11
1	2	2814	4.12	11.54	15.66
2	1	714	3.26	4.57	7.83
2	1	718	0.87	0.79	1.66
2	1	1115	6.21	5.71	11.92
2	1	311	5.14	3.43	8.57
2	1	215	3.35	6.72	10.07
2	2	2812	2.44	3.74	6.18
2	2	2516	6.68	4.69	11.37
$\frac{2}{2}$	2	2818	:0.39	7.82	18.21
2	2	2819	2.53	2.51	5.04
2	2	2916	0.83	1.89	2.72
3	1	615	9.41	17.39	26.80
3	1	4.9	0.70	0.81	1.51
3	1	918	3.65	5.82	9.47
3	1	$3: 0$	3.65	4.44	8.09
3	1	215	1.07	2.57	3.64
3	2	2: 16	1.91	3.60	5.51
3	2	2720	1.14	2.61	3.75
3	2	1916	1.64	2.36	4.00
3	2	2915	2.90	6.05	8.95
3	2	2814	2.26	2.89	5.15
4	1	712	5.04	3.21	8.25
4	1	421	2.15	0.44	2.59
4	1	1015	0.77	2.48	3.25
4	1	312	1.87	1.69	3.56
4	1	216	2.54	2.74	5.28
4	2	2615	0.78	0.80	1.58
4	2	$28: 3$	1.55	0.46	2.01
4	2	2520	1.17	1.11	2.28
4	2	2818	1.34	0.78	2.12
4	2	2817	1.83	2.44	4.27
5	1	1114	5.71	2.99	8.70
5	1	516	1.55	3.04	4.59
5	1	512	0.64	1.08	1.72
5	1	312	4.01	3.09	7.10
5	1	319	2.31	3.76	6.07
j	2	2116	1.99	3.59	5.58
5	2	2514	0.52	2.50	3.02
5	2	2512	3.31	3.81	7.12
5	2	2812	0.73	1.89	2.62
5	2	2814	7.92	12.19	20.11

0	i	011	5.12	4.35	0.47
5	1	316	1.21	2.70	3.91
6	!	411	12.83	3.37	16.20
6	1	422	8. 2 ?	7.34	15.50
6	1	210	3.47	5.30	5.77
6	2	2316	1. 5 i	1.08	2.35
6	2	2413	4 ¢.8ó	4	G. ${ }^{\text {a }}$
5	\because	2514	9.17	¢.	12.6s
5	2	2515	1. 85	2.53	4.38
6	2	2916	2.56	1.81	4.37
7	1	615	7.06	7.71	14.77
7	1	613	3.94	5.82	9.76
7	1	916	1.68	3.49	5.17
7	1	310	2.31	2.92	5.23
7	1	321	12.15	3.94	15.09
7	2	2017	2.59	5.65	8.24
7	2	2415	9.06	8.19	17.25
7	2	1916	3.44	4.09	7.53
7	2	2721	1.04	2.99	4.03
7	2	2722	7.93	4.97	12.90

IEPENIX 2. Characierization of the mycorrinizal types found on Sitisa somice, Norwy soruce and Scots pine from whole root systems nevesjed Erom İjonoos in Ociooer 1985.
i SITRS SPEUCE

PYPE A Slightly swollen short lateral roots of reddish brown colouration and a grained surface texture with some emergent hyphae. In squash and sectional material there was little evidence of organized sheath structure.

TYPE B Cenococcum - slightly thickened black mycorrhiza with distinct black emergent hyphae. Sheath 150 um thick, or organized hyphae tending towards and pseudoparenchymatous structure.

TYPE C Elongate swollen laterals which were somewhat flattened, having a buff brown to grey colour and non-reflective, felt-like surface appearance. A loose weit of surface hypinae was present giving a silver appearance in patches and aggregating into strands. The emergent hyphae have clamps. The sheath was thick (300-400um) and consisted of higily structured pseudoparenchyna of irregularly shaped hyphal cells. The Hartig Net was extensive.

TYPE $D \quad$ Elongate laterals with distal swelling, never extencing cack to subtending axis. Surface was very smootin with no visibie emergent hyphae under the stereomicroscope. Colour was pale creany-yellow with a dull surface texture. The sheath (200-300un thick) was a higily organized pseudoparenchymatous arrangenent of cuboidal and slightly tessellated hyphal cells. Fine reticulate emergent hyphae were present and these had clamp connections. The Hartig Net was extensive but difficult to see.

TYPE S Slightly swollen elongate laterals covered in a mass of hyaline surface hyphae giving a silvery appearance over orange-brown sheath suriace. This extensive extramatrical hyphal outgrowth extended proximally over the subtending root axis and readily aggregated to produce stands in which numerous sclerotia were observed. The emergent hyphae were reticulate and had clamp connections. The sheath was of loose structure (350-400um thicis), of fairly undifferentiated hyphal cells.

TYPE F Very swollen short-intermediate length short roots with a rufous brown colour and smooth (slightly reflective) surface. Sheath was very thick ($300-400 \mathrm{um}$) of very small rounded pseudoparenchymatous ceils tending to run around the root. Numerous sine emergert hyphae, having clagp connections, were evidert in root squash preparations.

TYPE G Elongate, slightly thickened grey-brown coloured mycorrhizas (some appeared dead). Sheath thick (300-350um), pseudoparenchymatous with a looser outer layer consisting of tessellated, cuboidal cells and less differentiated elongate
nypial celis. Some ezergent nyphae were present which have ciarp connections.

ワマミミ

TYPE E Short roots distally swollen with a buff－orange brown coloured sheath．Emergent hyphae fairly prominent，tending occasionally to produce strands．Often secondarily colonized by Cenococcun．Sheath ill structured，consisting of iarge cells and reticulate hyphae with sparse clamp connections．

TYPE F Dense pinnate branching with elongate and thickened short roots．Extensive cover of buff brown surface hyphae which extended proximally along main axis of root．Here，hyphae were hyaline and loosely packed and readily develop into strands．Clamp connections present．Sheath，in section，was a very loose surface arrangement of hyphae，becoming more organized beneath，fairly thick（200－300um）of somewhat undifferentiated cells（not pseudoparenchymatous）．Extensive Hartig Net．

TYPE G Sinilar in appearance to TYPE F but appeared to be less well developed．Surface hyphae buff－brown with a covering of very white hyphae which age to buff．Some development of strands was evident．The emergent hyphae were reticulate and had clamp connections．

TYPE $\ddot{\text { E }}$ Pinately branched, very zreatly thickened and more eionaate

 uniteserentiated and fairiy aiscrganized, witil extensive extramatrical hyphal extension. Extensive.Har.tig Net.

TVES:

TYPE C Dichotomous to loosely coralloid rufous brown or paler form. Thicisening of the short root was slight with a somewhat 'beaded' appearance. There was little evidence of a fungal sheath. As a root squash many roots showed little to no fungal naterial and a number of root hairs. Where fungus was present a thin sheath (100-150um) had formed, with regularly arranged, though poorly differentiated hypial cells wrapoing around the root. Energent hyphae were present and were reticulate with clamps.

TYPE D Elongately coralloid orange-orange/brown coloured mycorrhizas with a smooth surface which sometimes appears scaly. Emergent hyphae scarce. The thin sheath (200-250um) was a well developed pseudoparenchynatous structure with an outer layer of more diffuse cells. Very fine emergent hyphae were present which bore clamps. The Hartig Net was distinctly visible.
TYPE E A dichotomous (rarely more) branching mycorrhiza with pale orange-buff colour. The sheath gave a distinct thickening of the root in the distal portion only. The sheath surface appeared smooth but with short emergent hyphae visible. The sheath was thin (200um) and loose textured.

TYPE F Elongately corolloid and swollen, more or less evenly, along length. Dense covering of loose sheath hyphae of orange-brown colour with a pink-grey surface mat of hyaline hyphae. These emergent hyphae coalesced to form strands and were present not These on short roots, but extend back to proximal root axes. These emergent hyphae bore clamps and were reticulate. The sheath was very thick (300-350um) with a very diffuse and loose structure of zelativeiy undifferentiated hypnal cells.

TYPE G
A closely dichotomous to coralloid mycorrizal form with short, terminal root swellings. Sheath surface was pale buif - hyaline with a woolly appearance given to it by a mass of extramatrical hyphae which aggregate into strands (secondary invasion by Cenococcum was evident on a number of samples).

The sheatin was extreaely thick (450-650ud) of weil organized pseuiovs-orchyme خous tissue.

TYPE I A type very-similar-to D, of loosely coralloid or dichotomous mycorrhizas which were distinctly swollen, brown, and with a rufous tint. The surface was smooth and shiny. The thin sheath ($75-200 \mathrm{um}$) was loose in construction and of relatively :andifferentiated hyphae.

ADOENDIX 3. Eerestage contribution of eacin mycorriszal type to the วoculatior on roots of incivicuni iroes harvested Eron Liphook in Oetcoser 1985 .

 0000000000000.0000

$=$

－ossoncounco

\simeq

 －ーー一－Ninfin：

$000=2000$

0000000000
0.0 .00 .000
～000n
$0.00 N O O O O O$
$O C O C N O O O O$
$0000=0000$
000000000

$\begin{array}{rrr}00000 & 0 & 0 \\ 000000000\end{array}$ $\dot{\circ} \dot{=} \dot{=} \dot{=} \dot{0} \dot{0} \dot{0} \dot{\circ}$

000
000
0000000
0
जcoco
$0 C 00000000$
00000000

000000000
$0000000=0$
0
00000000
00000

0.0000000
$\triangle C 0$
00000
0.0

O～ONONOMO

M～Nロ～～N
かっこのごさえへへべへ
ことへごここここきミ

かのロッヅミロースへ
ヘツ゚ンッミ』さ～へ

ッニニニミニミき』
ここニにニミニへこ

$\stackrel{\substack{\text { 品 } \\ \vdots}}{ }$	000000000 $-\dot{\circ} \dot{0} 0^{\circ} \dot{0} 0^{\circ} 0^{\circ} 0^{\circ}$	0000000000 $\dot{0} 0 \dot{0} 0.0000 .0$	-ーN0000000 $\stackrel{\infty}{\sim} \underset{\sim}{\circ} \dot{\circ} \dot{\circ} \dot{O} \frac{0}{\infty} \dot{C}$
$\underset{N}{\grave{N}}$			
	coopnmoo00 $-\dot{0} 00^{\circ} \approx 0.0$.	0000000000 0.0000000.	$00000-1$ no cóoćmmono

$\checkmark \underset{\sim}{\infty} \dot{m} \dot{m} \dot{\sim}$	- -mincoco -mmnceavmo
<	

$\stackrel{\rightharpoonup}{-}$
$==00=0$
$=0=0$
$=0=0$

$\begin{array}{ll}n=0=0 \\ \text {－}=0=0 & =0 \\ =1 & =0\end{array}$
00000000
codo 000000
$\stackrel{8}{-}$
$=0000000$
$=0000000$

-00000000
00000000

$\begin{array}{r}-0090=0 \\ \dot{0} 0.0000 \\ \hline 000\end{array}$
$0.0 \sim 0.0000$
$\therefore=0.0$
$=1000$

OOOOOOOROO
0000000000
0.0000000
00000000
$00000500 \sim$

$0000-000 \sim$
100.00000

 ここのに～ミーミこ

TYPES

웅 0.0000 .0

ヘOOOQOniNo．

$$
\begin{aligned}
& =000000000 \\
& =00000000
\end{aligned}
$$

OOOOOOOOOO

n MOON～NGO：
 Noosinooro
－onroononoo

n
3
3
3
3
3
3

 $\dot{c} \dot{c} \dot{=} \dot{=} \dot{0} \dot{\Delta} \dot{0}$

$00 \wedge 000000 \mathrm{O}$ $\dot{c} \dot{\sim} \underset{\sim}{\sim} \dot{\sim} \dot{\sim} \dot{\sim}$

0000000000
00 OO 00000

0000000000 $\dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ} \dot{0} \dot{\circ}$

0900000000
000000000
$00000 \subset 0-0$.
$000000 \times \sim 0$

$00000000 m 0$
000000 N． 0.0

0000000000 $\dot{0} \dot{0} \dot{0} \dot{0} \dot{0} 0$
$00000000 n 0$
000000000

$00-0 m 00000$
$\sim 0.0 \dot{\sim} 00000$ ．
 $\dot{\sim} \stackrel{y}{*} \dot{\sim}$
oxooomocom

$00000 N O 00 N$

งOOONOMONT．

 moonovoooo
00000 NOOO

[^0]: ROOT AND MYCORRHIZAL DETERMINATIONS OF THE CERL LIPHOOK FIELD FUMIGATION EXPERIMENT

 1 ST YEAR INTERIM REPORT APRIL 1986

