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26 ABSTRACT  

 

 

 

27 The symposium ‘What is Macroecology?’ was held in London on 20 June 2012. The event 
 

28 was the inaugural meeting of the Macroecology Special Interest Group of the British 
 

29 Ecological Society, and was attended by nearly 100 scientists from  11 countries. The 
 

30 meeting  reviewed  the  recent  development  of  the  macroecological  agenda.  The  key 
 

31 themes  that  emerged  were  a  shift  towards  more  explicit  modelling  of  ecological 
 

32 processes, a growing synthesis across systems and scales and new opportunities to apply 
 

33 macroecological concepts in other research fields. 

 
34 



57 such as variation in body size, geographic range dynamics and the role of neutral processes. 

 

 

 

35 1.   INTRODUCTION 
 

36 The idea of macroecology as a distinct field of research has been around for more than two 
 

37 decades [1], and  was conceived  as  a  response  to  the realization  that  small  scale  local 
 

38 processes alone were not able to fully explain the abundance and distribution of species. 
 

39 This led to a broader perspective that searched for generalized patterns at large spatial and 
 

40 temporal scales [2], characterised by the search for statistical relationships to explain the 
 

41 distribution of biodiversity from a historical and geographical perspective [2,3]. Ten years 
 

42 ago, a symposium of the British Ecological Society (BES) was convened with the aim of 
 

43 reconciling  divergent  perspectives  on  large‐scale  ecological  patterns.  This  ‘Causes  and 
 

44 Consequences’ symposium set the tone for a decade of research in macroecology [4]. 
 
 

45 Recently, a macroecology special interest group of the BES was formed. The inaugural 
 

46 meeting  brought  together  a  diverse  group  of  researchers  to  review  the  evolution  of 
 

47 macroecology as a research discipline, highlight recent notable developments and explore 
 

48 new applications. Nick Isaac described the aims of BES macroecology group, which include 
 

49 providing  a  forum  to  share ideas  and  concepts, promoting  data  access and  standards, 
 

50 showcasing methodological advances and setting the agenda for future research. This was 
 

51 followed by a keynote address from Ian Owens, who presented a personal perspective on 
 

52 the  development  of  macroecology  throughout  the  past  decade.  Owens  argued  that 
 

53 macroecology  has  been  revolutionised  by  a  combination  of  the  availability  of  large 
 

54 molecular  phylogenies,  high  resolution  datasets  on  geographic  distribution,  extensive 
 

55 computational power, and new analytical approaches. As a result, rapid advances have been 
 

56 made towards answering many of the questions that originally occupied macroecologists, 



 

 

58 These advances have brought with them a new set of opportunities and challenges [5], 
 

59 many of which were recurrent themes during the day. These themes are summarised below. 
 
 
 

60 2.   FROM PATTERN TO PROCESS 
 

61 The strongest theme that percolated all of the talks was the increased emphasis on the 
 

62 processes that drive biodiversity patterns [see also 5]. This theme was introduced by Owens, 
 

63 who described a shift from describing patterns to a search for mechanistic understanding. In 
 

64 other words, the way we address key research questions has changed, notably by the 
 

65 increased  use  of  process‐based  conceptual  models  of  biodiversity  [6].  This  theme  was 
 

66 further developed by Sean Connolly, who identified a mismatch between the biological 
 

67 reasoning that underpins hypotheses about the drivers of macroecological patterns and the 
 

68 statistical models that are actually fitted to data. Connolly illustrated how this has hindered 
 

69 progress in our understanding of large‐scale species richness gradients, and demonstrated 
 

70 how models based on biological processes can be used to derive testable hypotheses [8]. 
 

71 Although  macroecology  is  relatively  advanced  in  its  use  of  statistical  methods,  the 
 

72 theoretical  basis  of  the  predictions  involved  is  sometimes  poorly  developed.  Connolly 
 

73 argued that the explicit formulation of theoretical models, and the robust derivation of 
 

74 statistical  expectations  from  those  models,  is  one  of  macroecology’s  most  significant 
 

75 challenges. 
 
 

76 Katrin Böhning‐Gaese provided a clear demonstration of how incorporating local 
 

77 processes  can   influence   large‐scale   patterns   of   species   distributions.   For   example, 
 

78 projections of the impact of climate change on bird species richness yielded very different 
 

79 results when biotic interactions with tree species were taken into account [8]. Similarly, 
 

80 Trevor Price emphasised that both biotic and abiotic factors can explain large‐scale diversity 



 

 

81 gradients. He showed how niche conservatism is not enough to explain diversity gradients 
 

82 of  Himalayan  birds,  unless  competitive  interactions  were  incorporated.  Kate  Jones  and 
 

83 David Redding showed how the spread of a zoonotic disease (Lassa fever) can only be 
 

84 understood with reference to the distribution of the host (a rat). Moreover, Nicholas Dulvy 
 

85 described how the thermal tolerance of individual organisms underpins the distribution of 
 

86 poikilothermic animals in the oceans, and their responses to recent climate change, but that 
 

87 this was not the case on land [9]. Dulvy speculated that gross differences between marine 
 

88 and   terrestrial   environments   can   be   attributed   to   the   importance   of   behavioural 
 

89 thermoregulation and interspecific competition on land, contrasting with the dominance of 
 

90 size‐based competition in marine systems. 
 
 

91 The increasing focus on mechanistic understanding in macroecology is not confined 
 

92 to this meeting [5,10], and many of the recent attempts to build unified theories in ecology 
 

93 have been process‐based [11–14]. A key challenge now is to derive general and testable 
 

94 predictions  via  robust  theoretical  modelling,  underpinned  by  biologically  reasonable 
 

95 assumptions. Recent progress in this area has been substantial [6], although many current 
 

96 theories may not be testable even for data‐rich taxa such as mammals [15]. Thus, further 
 

97 research to  bridge  the  gap  between theory, predictions  and  data  is  a  priority  for  the 
 

98 development of macroecology in the future. 
 
 
 

99 3.   BREAKING DOWN BARRIERS 
 

100 Traditionally,  macroecology  focused  on  processes  operating  at  large  (e.g.  climatic  and 
 

101 phylogenetic) scales, largely ignoring the potential for small‐scale processes to generate a 
 

102 coherent signal in macroecological patterns [16]. One reason is the deficit of fine‐grained 
 

103 (e.g. population‐level) datasets that are replicated over large spatial extent [5]: national 



 

 

104 monitoring  schemes  have  great  potential  in  this  regard  [e.g.  17].  A  growing  body  of 
 

105 evidence, both theoretical and empirical, suggests such signals can be detected (see above). 
 

106 Conversely, Böhning‐Gaese showed large‐scale abiotic gradients can influence community 
 

107 assembly.  One  striking  example  is  that  the  degree  of  specialisation,  identified  using 
 

108 interaction networks among pollinator and frugivore species, is greater in temperate than in 
 

109 tropical communities, contrary to expectation [18,19]. Böhning‐Gaese argued that advances 
 

110 in understanding how ecological patterns are generated at multiple spatial scales, and how 
 

111 they are interrelated, are important steps towards a multi‐scale synthesis across ecology. 
 
 

112 An additional barrier to progress within ecology in general is the lack of synthesis 
 

113 across taxonomic groups and biomes. Historically, macroecology was no exception, being 
 

114 predominantly focussed on terrestrial vertebrates [5], although marine macroecology was 
 

115 well‐represented at this meeting. A feature of the presentations by marine ecologists was 
 

116 that the concepts and analyses they use are not exclusive to the marine environment. 
 

117 Connolly’s process‐based models of species richness are wholly transferrable to terrestrial 
 

118 cases. Dulvy went further, arguing that contrasts between realms can discriminate amongst 
 

119 hypotheses. For instance, equator‐ward range limits on land were previously explained as 
 

120 an artefact of under‐sampling in the tropics, but the contrast with changing marine range 
 

121 limits in the tropics, where scientific capacity is also low, suggested that stagnant terrestrial 
 

122 ranges are real [9]. More generally, inter‐realm comparative analyses provide many novel 
 

123 opportunities to test mechanistic macroecological hypotheses [20]. 
 
 
 

124 4.   NEW APPLICATIONS 
 

125 The  meeting  demonstrated  well  how  macroecology  has  influenced  diverse  research 
 

126 agendas, further reinforcing its application to public policy on biodiversity [21,22]. Owens 



 

 

127 argued that  the influence of  macroecology has  been unusually  broad  and  deep at  the 
 

128 interface of science and policy, especially around land‐use, climate change and biodiversity 
 

129 loss. Thus, a significant opportunity exists for macroecology to remain influential and adapt 
 

130 to changing priorities of stakeholders and funding bodies. Two talks focussed specifically on 
 

131 the  extent  to  which  macroecological  ideas  are  gaining  traction  in  mapping  ecosystem 
 

132 services and epidemiology. 
 
 

133 Mapping ecosystem services (MES), and the potential tradeoffs among them, is ripe 
 

134 for  the  application  of  macroecological  approaches.  Like  macroecology,  MES  examines 
 

135 correlations in space over large scales, for example calculating the degree of spatial overlap 
 

136 of multiple services. Felix Eigenbrod argued MES should adopt macroecological tools to 
 

137 identify the mechanisms underpinning the distributions of ecosystem services. A further 
 

138 challenge for MES lies in the necessity to consider linkages between the distribution of 
 

139 biophysical  stocks  and  their  potential  beneficiaries,  which  is  somewhat  analogous  to 
 

140 modelling  overlapping  geographic  ranges  of  interacting  species.  For  example,  Böhning‐ 
 

141 Gaese  incorporated  species  richness  of  fig  trees  (the  stock)  into  predictive  models  for 
 

142 frugivorous birds (the beneficiaries) [23]. Therefore, the incorporation of co‐occurrence and 
 

143 subsequent interactions within both research agendas may be an area that would benefit 
 

144 from collaboration. 
 
 

145 A  further  case  study  was  presented  by  Jones  and  Redding,  who  argued  that 
 

146 biodiversity may provide an ecosystem service of disease regulation, thereby contributing to 
 

147 human health. They contrasted traditional epidemiology, which is highly mechanistic and 
 

148 often treats diseases in isolation, with the emerging field of 'disease macroecology', which 
 

149 searches for general patterns in the emergence of novel diseases [24,25]. Jones described 



 

 

150 how this approach can address policy‐relevant questions about emerging infectious diseases 
 

151 and provide a context for mechanistic models of epidemiology at large spatial scales. 
 
 
 

152 5.   CONCLUSIONS 
 

153 Macroecology has clearly matured from its descriptive, pattern‐based, roots and now strives 
 

154 for explicit mechanistic ecological understanding. Key questions about the distribution of 
 

155 organisms in space and time remain central to the research agenda, but the conceptual and 
 

156 analytical approaches have changed markedly [5]. The growth of macroecology as both 
 

157 applied science and theoretical endeavour is also remarkable. In conclusion, we identify 
 

158 three key ways in which macroecology could progress: (1) close the conceptual gap between 
 

159 data and theory; (2) enhance integration of replicated field (i.e. fine‐grained) studies across 
 

160 the macroecological scale; (3) deepen and extend collaboration across realms, biomes and 
 

161 taxonomic groups (including microbes [26]), in order to determine the extent to which 
 

162 patterns and processes are truly general across all biodiversity. 
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