Extensive dissolution of live pteropods in the Southern Ocean

Bednaršek N₁, Tarling GA₁*, Bakker DCE₂, Fielding S₁, Jones EM₃, Venables HJ₁, Ward P₁, Kuzirian A₄, Lézé B₂, Feely RA₅, Murphy EJ₁

*corresponding author: gant@bas.ac.uk

- 1. British Antarctic Survey, Natural Environment Research Council, Madingley Rd, Cambridge, CB3 0ET, UK
- 2. School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- 3. Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands
- 4. Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- 5. NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA

Please note that this is a copy of the author's accepted manuscript of the paper. Minor changes may have been made to the text and certain details of the figures during the proof stage.

This document is stored on the NERC Open Research Archive at <u>http://nora.nerc.ac.uk/20728/</u> and a copy of the final published article can be found at <u>http://dx.doi.org/10.1038/NGEO1635</u>

1 Extensive dissolution of live pteropods in the Southern

2 Ocean

3

4	Bednaršek N ₁ .	Tarling	GA1*,	Bakker	DCE ₂ ,	Fielding	S_1 , Jones	5 EM3,	Venables 1	HJ_{1}
4	Deullaisek N1,	, rannig	UA_{1} ,	Dakkei	DCE_2 ,	riciumg	S_1 , Junes	Σ Σ 1 V 13 ,	v chaules	

5	Ward P1	Kuzirian	A ₄ Lézé	B ₂ Feelv	RA5 M	urphy EL
0	mara 1	1 Suzili luli	114, LULU	D_2 , 1 cory	111, 11	uping Lor

- 6 *corresponding author: <u>gant@bas.ac.uk</u>
- 7 1. British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Rd, Cambridge, CB3
 8 0ET, UK
- 9 2. School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- 10 3. Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands
- 4. Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts,
 USA
- 13 5. NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA
- 14

15 The carbonate chemistry of the surface ocean is rapidly changing as a result of 16 human activities¹. In the Southern Ocean, aragonite (a metastable form of 17 calcium carbonate with rapid dissolution kinetics) may become undersaturated $(\Omega_A < 1)$ in the upper layers by 2050². This places at risk aragonite-shelled 18 19 organisms such as euthecosome pteropods, which can dominate surface water 20 communities in polar regions³. We provide field evidence that Southern Ocean 21 pteropods are already showing signs of dissolution. Conditions where $\Omega_A \approx 1$, 22 caused by mixing of upwelled deep-water with surface water containing 23 anthropogenic CO₂, were found within 200 m of the surface. We extracted live 24 specimens of the pteropod Limacina helicina antarctica from these 25 undersaturated surface waters, as well as from supersaturated regions 26 elsewhere, and compared their shell structure under SEM. Laboratory

27 incubations with a range of Ω_A saturation levels were carried out for up to 14 d. 28 Severe levels of shell dissolution were observed in the undersaturated region but 29 not elsewhere. 8 days of incubation in Ω_A 0.94-1.12 produced similar levels of 30 dissolution. Both deep-water upwelling and CO₂ absorption by surface waters is 31 likely to increase as a result of human activities^{2,4}, making upper ocean regions 32 where aragonite is undersaturated more widespread.

33

34 Aragonite skeletons and tests are important components of the oceanic carbon system 35 because they contribute a significant fraction of the global flux of particulate calcium 36 carbonate (CaCO₃) settling to the ocean floor⁵. They are especially important in the short term buffering of the ocean absorption of anthropogenic $CO_2^{6, 7}$. The surface 37 38 ocean is generally saturated with respect to aragonite ($\Omega_A > 1$) but the level of 39 saturation decreases with depth. The point at which Ω_A falls below 1 is called the 40 saturation horizon, and this generally occurs around 1000 m but has shoaled by 41 between 40 and 200 m as a direct consequence of the uptake of anthropogenic $CO_2^{2,8}$. 42 Dissolution of shelled organisms mainly occurs when Ω falls below 1 but it has also been found in pteropods incubated in conditions where Ω_A was $\approx 1^{9,10}$. 43

44

There are already reports of surface waters occasionally being undersaturated with respect to aragonite, including those of the Arctic Basin in 2008 after extensive melting of sea-ice¹¹ and along the California continental shelf after seasonal upwelling of deep-water¹. South of the polar front in the Southern Ocean, winter cooling and strong persistent winds are believed to be responsible for the ventilation of deeper waters to the surface, resulting in a natural decrease of carbonate ions of approximately 25% (35 µmol/kg) relative to summer¹². When combined with

52 increases in anthropogenic CO₂, ocean models predict that the Southern Ocean will 53 begin to experience widespread aragonite undersaturation in surface waters after the 54 year $2050^{2,13}$.

55

56 Euthecosome pteropods are amongst a small number of taxa that make their shells 57 principally from aragonite. The effects of Ω_A undersaturation on pteropods have 58 mainly been investigated by laboratory incubations under enhanced partial pressures 59 of CO_2 (p CO_2), simulating future atmospheric CO_2 scenarios. Pteropods have been found to exhibit shell malformations¹⁴, lower rates of CaCO₃ precipitation¹⁵ and 60 61 dissolution of the shell exterior². Effects have also been described on dead specimens collected in deep sediment traps¹⁶, where shells exposed to aragonite undersaturation 62 had an opaque and pitted appearance. Byrne et al.⁹ demonstrated that sinking dead 63 64 pteropods dissolved rapidly as they dropped below the saturation horizon. Feely et al.¹⁰ further found that dissolution in dead specimens starts at Ω_A levels at or just 65 66 below 1 across a range of North Pacific pteropod communities. Until the present 67 study, such effects have not been documented on live animals extracted directly from 68 the natural environment.

69

Sampling was carried out in the Scotia Sea, located in the Atlantic Sector of the Southern Ocean, where the strong flow of the Antarctic Circumpolar Current (ACC) is constricted in width. It is a physically dynamic region where deep water upwelling occurs¹⁷ and eddies from frontal regions are frequently encountered¹⁸. The interaction of strong ACC flows coupled with bottom topography leads to greater micronutrient availability and hence extensive phytoplankton blooms downstream of topographic features^{19,20}.

78	Live pteropods from this region were collected in January and February 2008 during
79	cruise JR177 on RRS James Clark Ross as part of the British Antarctic Survey
80	Discovery 2010 program. Water sampling and depth-discrete net-catches of
81	mesozooplankton to 400 m were done along a south to north transect within the Scotia
82	Sea (Fig. 1). The saturation horizon for aragonite was 1000 m across the majority of
83	the transect. However, at station Su9 (52.6°S, 39.1°W), there was a notable incursion
84	of waters with low Ω_A values (minimum of 0.997) into layers above 400 m (Fig. 2).
85	
86	Limacina helicina antarctica dominates mesozooplankton biomass in a number of

87 Southern Ocean regions where it is the principle calcifying organism²¹. It is most 88 commonly found above 400 m depth, particularly concentrating in the layers between 89 200 m and the surface³. It has life-cycle that can last upwards of 2 years, in which time it grows to 1 cm in shell diameter²¹. Analysis was carried out on both freshly 90 91 caught material preserved directly upon collection and on specimens that were 92 incubated under manipulated CO₂ levels (375 to 750 parts per million at 4°C) in order 93 to establish a response index. All freshly-caught and incubated specimens were 94 preserved in 70% ethanol. Subsequently, they were treated to dehydrate shell-layers 95 and to remove the periostracum (Fig. 3) so that the state of the underlying shell matrix 96 could be examined using SEM.

97

Different degrees of dissolution were identified in incubated shells of live pteropods
(see supplementary information). We categorised them into three main levels
according to the degree of encroachment upon the upper prismatic layer and into the
upper shell layer (Fig. 4). Specimens were scored blind and then correlated back to

102	the experimental conditions. Incubations in which even only a slight degree of
103	undersaturation was experienced for 8 d (Ω_A 0.94-1.12, pCO ₂ of 675 µatm) was
104	sufficient to cause substantial dissolution of the shell matrix relative to the
105	supersaturated control (Ω_A 1.62-1.78, Fig. 5). We then examined freshly caught
106	material, preserved directly upon collection, for signs of such shell dissolution.
107	
108	L. helicina antarctica juveniles were found at all sampling stations, with northern
109	stations (<57°S) containing higher abundances (7.2 x 10^4 to 3.4 x 10^4 ind. m ⁻²) than
110	those to the south (>57°S; 2.9 x 10^2 to 1.9 x 10^3 ind. m ⁻²). At station Su9, we found <i>L</i> .
111	helicina antarctica juvenile specimens contained all three levels of dissolution.
112	Juveniles from other stations only contained small patches of the least severe level of
113	dissolution (Figs. 2, 5), probably caused by Ω_A -undersaturated microenvironments
114	close to the exterior surface resulting from the remineralisation of organic matter ²² .
115	
116	Dissolution of live specimens from Su9 was apparent over the entirety of their shells
117	as opposed to just the inner whorls or the growing edge. This indicates firstly that the
118	periostracum (the outer organic layer) provides little if any protection to the
119	underlying shell matrix. If it did so, then parts where the periostracum is thinnest, e.g.
120	at the growing edge, would have been more affected. Secondly, dissolution must have
121	occurred recently, else it would have only been apparent on the oldest, inner whorls

122 and not at the newly deposited growing parts of the shells. We conclude that the

123 observed dissolution was principally a physico-chemical response to the carbonate

- 124 chemistry conditions in a body of water inhabited for the last 4 to 14 d. The
- 125 dissolution response is similar to that found in dead specimens incubated at $\Omega_A \approx 1$
- 126 reported by Byrne et al.⁹ and Feely et al.¹⁰ underlining the fact that live specimens

have little to protect themselves from the effects of Ω_A undersaturation. Furthermore,

in both live and dead specimens, it is apparent that dissolution can occur rapidly even

129 when in just close proximity to the aragonite saturation horizon.

130

131 Regions of upwelling that bring the saturation horizon close to the surface are likely 132 to be repeated through much of the Southern Ocean and are not a modern phenomenon¹². These deep-waters probably came into contact with the atmosphere 133 134 around 1000 years ago and so are unlikely to contain any anthropogenic CO₂. Mixing 135 with surface waters will normally increase Ω_A to above saturation levels but increases 136 in surface concentrations of CO₂ will reduce the effect of this dilution. At station Su9, 137 an Ω_A of around 1 was observed up to a depth of about 200 m despite mixing with 138 surface water. Calculations of the effect of anthropogenic carbon mixing down from 139 surface waters (see supplementary information) showed a reduction of Ω_A values of 140 approximately 0.1 relative to pre-industrial values. Station Su9 was a site of comparatively high phytoplankton biomass (60 to 90 mg C m⁻³)²⁰. However DIC 141 142 levels below 100 m were similar to another site with similar water mass properties but low phytoplankton biomass²⁰, indicating that extensive remineralization had not taken 143 144 place and the carbon export had not significantly lowered values of Ω_A . Therefore, the 145 primary causes of low Ω_A values observed in this instance were mainly from the 146 addition of anthropogenic CO₂ in surface waters mixing with upwelled deep-water. 147 148 Climate models project a continued intensification in Southern Ocean winds throughout the 21st century if atmospheric CO₂ continues to increase⁴. In turn, this 149 150 will increase wind-driven upwelling and potentially make instances of deep-water, 151 under-saturated in aragonite penetrating into the upper mixed layers more frequent.

152 Simultaneously, rising atmospheric concentrations of anthropogenic CO₂ will

continue to reduce aragonite saturation levels in surface waters, particularly in polar
 regions¹². Conditions such as observed at station Su9 are therefore likely to become
 more common in the Southern Ocean, making shell-dissolution an increasing threat to
 pteropod populations.

157

158 Pteropods do not necessarily die as a result of dissolution. Calcification of the inside 159 of the shell probably continues and, to some degree, counteracts the dissolution of the 160 exterior of the shell. Nevertheless, the observed rapidity of the dissolution response 161 means that, in the present instance, there would have been net loss of shell overall, as reported in other experimental manipulations¹⁵. The main consequence of such loss of 162 163 shell is an increased vulnerability to predation and infection, which will in turn impact other parts of the foodweb¹⁵. A drop in their population size will affect the ocean's 164 165 carbonate cycle given the important role of pteropods in balancing oceanic alkalinity budgets⁷. Rates of vertical carbon flux will also decline, as the pteropod shells 166 become less dense and less able to act as ballast for other particulate material²³. 167 168 169 This report documents a dissolution response of live pteropods within their natural environment as a result of exposure to waters where $\Omega_A \approx 1$. The data validate the 170 171 prediction of a wide body of laboratory-based studies on the vulnerability of this

172 important taxon to the acidification of polar oceans^{2,14,24}. The shallow aragonite 173 saturation horizon we observed was at least partially the result of oceanic absorption 174 of anthropogenic CO_2 and demonstrates that the impact of ocean acidification is 175 already occurring in oceanic populations, long before some projected dates of Ω_A

176 undersaturation¹². Regional declines of pteropods populations may occur sooner than

177 presently projected as areas of Ω_A undersaturation in Southern Ocean surface waters 178 become more widespread.

179

180 Methods

181	Field sampling: Samples were collected along a south to north transect within the
182	Scotia Sea region of the Southern Ocean (60°S and 48°W to 50°S 34°W, Fig. 1) in
183	February 2008 on board the RRS James Clark Ross. Full-depth CTD casts and
184	plankton net samples were collected every 60 to 100 km along the transect. Water
185	samples were collected every 50 m down to 200 m depth and then every 200 m down
186	to 1000 m depth during each CTD cast. Juvenile L. helicina antarctica were collected
187	in the upper water column (0-400 m) with a vertically hauled motion compensated
188	Bongo net ($0.5m^2$, 100 µm and 200 µm meshed nets). Captured specimens were either
189	preserved immediately in 70% ethanol or used in incubation analyses.
190	
191	Water analysis: Water samples were used for dissolved inorganic carbon (DIC) and
192	total alkalinity (TA) analysis following the Standard Operating Procedures for oceanic

193 CO_2 measurements (30), detailed in Jones et al.²⁰. A VINDTA (Versatile INstrument

194 for the Determination of Titration Alkalinity, Marianda, Kiel, Germany) was used to

195 measure DIC and TA, with a Certified Reference Material (CRM) analysed in

196 duplicate for DIC and TA at the beginning and end of each sample analysis day. The

197 concentration of DIC was determined using the principles of coulometric analysis²⁵.

198 The accuracy of the DIC measurements was 2.4 μ mol kg⁻¹ and the precision, 1.5 μ mol

199 kg⁻¹. Analysis for TA was carried out by potentiometric titration with hydrochloric

200 acid to the carbonic acid end $point^{26}$. The accuracy and precision of TA values was

201 2.6 μ mol kg⁻¹ and 1.0 μ mol kg⁻¹ respectively.

203 DIC and TA, alongside temperature, salinity, pressure and macronutrient

204	concentrations from all discrete samples, were used to calculate the remaining
205	carbonate chemistry parameters including total pH (pH _T) and Ω aragonite (Ω_A). This
206	was done using the CO ₂ Sys programme ²⁷ with thermodynamic dissociation constants
207	for K_1 and K_2 by Mehrbach et al. ²⁸ and the re-fit by Dickson and Millero ²⁹ .
208	

209 Pteropod analysis: Before further analysis, captured pteropod specimens were 210 inspected to select only those that had not suffered mechanical damage during 211 capture. Two sets of control samples were taken to consider capture and incubation 212 effects – one immediately fixed post capture from an Ω_A supersaturated region 213 (natural control), another after varying lengths of incubation in Ω_A supersaturated 214 conditions (Ω =1.7±0.08; incubation control). There was no evidence of the more 215 advanced stages of dissolution (levels II and III) in either the natural or incubation 216 control samples. Level I dissolution covered just under 10% of the surface area in the 217 natural control sample, and 56% of surface area in the incubation control, indicating 218 an incubation effect. Accordingly, dissolution levels II and III were given most weight 219 as indicators of dissolution when comparing incubated material with that taken 220 directly from the natural environment.

221

222 Incubations were carried out in 0.22 GF/F filtered seawater to remove bacteria and

held in 2 L blacked-out flasks through which was bubbled synthetic air containing one

of four different CO₂ mixing ratios (xCO₂) (BOC Special Products): 375, 500, 750

and 1200 ppm (μ mol/mol). Bubbling was stopped once water reached the correct CO₂

226 mixing ratio and around 50 individuals (principally juveniles) were introduced to the

flask, which was subsequently sealed, with head space kept to a minimum.

228	Incubations were run for between 4 and 14 d, with water samples taken at the start
229	and end of each incubation to verify Ω_A state (as above). Accordingly, each flask was
230	categorised into one of three Ω_A states: supersaturated (1.1 to 1.8), transitional (0.95-
231	1.1) or under-saturated (0.75 to 0.95). All pteropods were preserved in 70% ethanol.
232	
233	Preserved pteropod shells were prepared as detailed in Bednarsek et al. ³⁰ . Firstly,
234	abiogenic crystal precipitates on the shell surface were removed with 6% hydrogen
235	peroxide (H_2O_2), followed by a dehydration method including the use of 2,2-
236	dimethoxypropane (DMP) and 1,1,1,3,3,3-hexamethyldisilazane (HMDS). This
237	procedure was finely tuned to remove the precipitates without damaging any shell
238	layers. The overlying organic layer was then etched to expose the shell microstructure
239	for SEM analysis, using a JEOL JSM 5900LV at an acceleration voltage of 15kV and
240	a working distance of about 10 mm. 15 to 20 SEM photographs were taken across the
241	shell surface area of each specimen in order to determine the proportion of the shell
242	surface covered by each level of dissolution. Each image was analysed using
243	customised image-segmentation software (EDISON software) which estimated the
244	extent of each dissolution level in each image. Images were combined to determine
245	overall coverage for each specimen. Detailed description and user-guidelines on the
246	procedure are given at
247	http://coewww.rutgers.edu/riul/research/code/EDISON/index.html.
248	
249	Acknowledgements

250 This work was supported by the FAASIS (Fellowships in Antarctic Air-Sea-Ice

251 Science), a Marie Curie Early Stage Training Network awarded to NB. G.A.T., S.F.

252	and P.W. carried out this work as part of the Ecosystems core-science programme at
253	the British Antarctic Survey. G.A.T., P.W. and D.B. received further support during
254	the analysis and synthesis stages from the pelagic consortium of the UK Ocean
255	Acidification programme, funded by NERC, Defra and DECC (grant no.
256	NE/H017267/1). D. McCorkle and A. Cohen of Woods Hole Oceanographic
257	Institution helped develop a shell preparation method and commented on previous
258	drafts of the manuscript. Image analysis was carried out at University of East Anglia
259	with the assistance of Roberto Montagna. Sampling operations were supported by the
260	officers and crew of the RRS James Clark Ross with net-sampling equipment support
261	from Peter Enderlein of BAS.

262

263 Author contributions

- 264 G.A.T and D.C.E.B. conceived the project; N.B. carried out the fieldwork, with the
- assistance of G.A.T., S.F. and P.W.; E.M.J. and H.J.V. provided supporting
- 266 environmental data; A.K. helped develop a method of shell preparation for SEM
- 267 analysis; B.L. developed an image analysis method; G.A.T., N.B. and D.C.E.B co-
- 268 wrote the manuscript, with theoretical overviews provided by R.A.F. and all
- remaining authors commenting.
- 270

271 Additional information

- 272 The authors declare no competing financial interests. Supplementary information
- 273 accompanies this paper on www.nature.com/naturegeoscience. Reprints and
- 274 permissions information is available online at www.nature.com/reprints.
- 275 Correspondence and requests for materials should be addressed to G.AT.
- 276

277

278 References

- 279 1. Feely, R.A., Sabine, C.L., Hernandez-Ayon, J.M., Ianson, D. & Hales, B. 280 Evidence for upwelling of corrosive "acidified" water onto the continental 281 shelf. Science 320, 1490-1492 (2008). 282 2. Orr, J.C. et al. Anthropogenic ocean acidification over the twenty-first century 283 and its impact on calcifying organisms. Nature 437, 681-686 (2005). 284 3. Hunt, B.P.V. et al. Pteropods in Southern Ocean ecosystems. Prog. Oceanogr. 285 78, 193-221 (2008). 286 4. Le Quere, C. et al. Saturation of the Southern Ocean CO2 sink due to recent 287 climate change. Science 316, 1735-1738 (2007). 288 5. Fabry, V.J. Shell growth rates of pteropod and heteropod molluscs and 289 aragonite production in the open ocean: implications for the marine carbonate 290 system. J. Mar. Res. 48, 209-222 (1990). 291 6. Broecker, W.S. & Takahashi, T. Neutralization of fossil fuel carbon dioxide 292 by marine calcium carbonate. in *The fate of fossil fuel* CO_2 *in the oceans* (eds. 293 Andersen, N.R. & Malahoff, A.) 213-241 (1977). 294 7. Betzer, P.R. et al. The oceanic carbonate system - a reassessment of biogenic 295 control. Science 226, 1074-1077 (1984). 296 8. Feely, R.A. et al. Impact of anthropogenic CO₂ on the CaCO₃ system in the 297 oceans. Science 305, 362-366 (2004). 298 9. Byrne, R.H., Acker, J.G., Betzer, P.R., Feely, R.A. & Cates, M.H. Water 299 column dissolution of aragonite in the Pacific Ocean. Nature 312, 321-326 300 (1984).
- 301 10. Feely, R.A. et al. Winter-summer variations of calcite and aragonite saturation

302		in the Northeast Pacific. Mar. Chem. 25, 227-241 (1988).
303	11.	Yamamoto-Kawai, M., McLaughlin, F.A., Carmack, E.C., Nishino, S. &
304		Shimada, K. Aragonite undersaturation in the Arctic Ocean: Effects of ocean
305		acidification and sea ice melt. Science 326, 1098-1100 (2009).
306	12.	McNeil, B.I. & Matear, R.J. Southern Ocean acidification: A tipping point at
307		450 ppm atmospheric CO ₂ . P. Natl. Acad. Sci. USA 105 , 18860-18864 (2008).
308	13.	Steinacher, M., Joos, F., Frolicher, T.L., Plattner, G.K. & Doney, S.C.
309		Imminent ocean acidification in the Arctic projected with the NCAR global
310		coupled carbon cycle-climate model. <i>Biogeosciences</i> 6, 515-533 (2009).
311	14.	Comeau, S., Jeffree, R., Teyssie, J.L. & Gattuso, J.P. Response of the Arctic
312		pteropod Limacina helicina to projected future environmental conditions. Plos
313		<i>One</i> 5 (2010).
314	15.	Comeau, S., Gorsky, G., Alliouane, S. & Gattuso, J.P. Larvae of the pteropod
315		Cavolinia inflexa exposed to aragonite undersaturation are viable but shell-
316		less. Mar. Biol. 157, 2341-2345 (2010).
317	16.	Roberts, D. et al. Interannual pteropod variability in sediment traps deployed
318		above and below the aragonite saturation horizon in the Sub-Antarctic
319		Southern Ocean. Polar Biol. 34, 1739-1750 (2011).
320	17.	Heywood, K.J., Garabato, A.C.N. & Stevens, D.P. High mixing rates in the
321		abyssal Southern Ocean. Nature 415, 1011-1014 (2002).
322	18.	Kahru, M., Mitchell, B.G., Gille, S.T., Hewes, C.D. & Holm-Hansen, O.
323		Eddies enhance biological production in the Weddell-Scotia confluence of the
324		Southern Ocean. Geophys. Res. Lett. 34, L14603. DOI:
325		10.1029/2007GL030430. (2007).

326 19. Park, J., Ohb, I.-S., Kim, H.-C. & Yoo, S. Variability of SeaWiFs chlorophyll-

- 327 a in the southwest Atlantic sector of the Southern Ocean: Strong topographic 328 effects and weak seasonality. Deep-Sea Res Pt. I 57, 604-620 (2010). 329 20. Jones, E., Bakker, D., Venables, H. & Watson, A. Dynamic seasonal cycling 330 of inorganic carbon downstream of South Georgia, Southern Ocean. Deep-Sea 331 Res. Pt. II, doi: 10.1016/j.dsr2.2011.08.001 (2012). 332 21. Bednarsek, N., Tarling, G., Fielding, S. & Bakker, D. Population dynamics 333 and biogeochemical significance of Limacina helicina antartica in the Scotia 334 Sea (Southern Ocean). Deep-Sea Res. Pt. II 59-60, 105–116 (2012). 335 22. Jansen, H., Zeebe, R.E. & Wolf-Gladrow, D.A. Modeling the dissolution of 336 settling CaCO3 in the ocean. Global Biogeochem. Cycles 16(2002). 337 23. Francois, R., Honjo, S., Krishfield, R. & Manganini, S. Factors controlling the 338 flux of organic carbon to the bathypelagic zone of the ocean. Glob. 339 Biogeochem. Cycles 16(2002). 340 24. Fabry, V.J., McClintock, J.B., Mathis, J.T. & Grebmeier, J.M. Ocean 341 acidification at high latitudes: the bellweather. Oceanography 22, 160-171 342 (2009).343 25. Johnson, K.M., Sieburth, J.M., Williams, P.J.L. & Brandstrom, L. 344 Coulometric total carbon dioxide analysis for marine studies - automation and 345 calibration. Mar. Chem. 21, 117-133 (1987). 346 26. Dickson, A.G. An exact definition of total alkalinity and a procedure for the 347 estimation of alkalinity and total inorganic carbon from titration data. Deep-348 Sea Res. 28, 609-623 (1981). 349 Lewis, E. & Wallace, D.W.R. CO2SYS-Program developed for the CO2 27. 350 system calculations. in Carbon Dioxide Information and Analysis Centre.
- 351 *Report ORNL/CDIAC-105.* (1998).

352	28.	Mehrbach, C	C., Culberson,	C.H., Hawley,	J.E. & Py	tkowicz, R.M.
		,			-	

- 353 Measurement of the apparent dissociation constants of carbonic acid in
- 354 seawater at atmospheric pressure *Limnol. Oceanogr.* **18**, 897-907 (1973).
- 355 29. Dickson, A.G. & Millero, F.J. A comparison of the equilibrium constants for
- 356 the dissociation of carbonic acid in seawater media. . *Deep-Sea Res.* **34**(1987).
- 357 30. Bednarsek, N. *et al.* Description and quantification of pteropod shell
- 358 dissolution: a sensitive bioindicator of ocean acidification. *Global Change*
- *Biol.* **18**, 2378-2388 (2012).

361 Figure Legends

362 Figure 1: Scotia Sea showing sampling station positions and frontal positions at

363 time of sampling. Dynamic height contours were used to determine the location of

- 364 the following fronts: SB Southern Boundary, SACCF Southern Antarctic Circumpolar
- 365 Current Front, south and north edge of Polar Front (S-PF, N-PF). 15% ice cover
- 366 represented by blue shading.
- 367

368 Figure 2: Vertical profiles of Ω_A across the Scotia Sea (upper) and corresponding

369 dissolution levels in live juvenile *Limacina helicina antarctica* (lower). N is the

370 number of individuals analysed per station. Horizontal bars denote mean proportional

371 shell area per dissolution level across all specimens, error bars represent 1 SD. Level I

dissolution was significantly higher in Su9 specimens compared to all other stations

373 (Mann-Whitney rank sum test, T = 778, 20 and 35 df, P <0.001). Su9 was also the

374 only station in which level II and III dissolution was observed.

375

376 Figure 3: SEM section of the shell of *Limacina helicina antartica* showing the

organic layer (periostracum), prismatic layer and crossed-lamellar matrix of aragonitecrystals.

379

380 Figure 4: SEM images of juvenile *Limacina helicina antarctica* (from which the

381 periostracum has been removed) showing different levels of dissolution. (a,b)

intact animal without any indications of dissolution; (c) level I: the upper prismatic

- 383 layer slightly dissolved and the aragonite crystals of the crossed-lamellar matrix
- 384 starting to become exposed; (d) level II: the prismatic layer partially or completely
- 385 missing and the cross-lamellar matrix almost completely exposed; (e,f) level III: the

- 386 crossed-lamellar matrix showing signs of dissolution across large areas of the shell,
- 387 the shell becoming more porous [High resolution images are available in
- 388 Supplementary Information].
- 389

200	Elemente E.	A Trama and (CD)	man a which a	of different	diagolytion	larvala in	lines inverse
390	Figure 5:	Average (SD)) proportion	of amerent	aissolution	levels in	nve iuvenne

- 391 Limacina helicina antarctica from the natural environment and ship-board
- **incubations.** Supersaturated refers to $\Omega_A > 1.1$, transitional, 0.95-1.1 and
- 393 undersaturated, 0.75 to 0.95. N refers to numbers of specimens analysed. Vertical bars
- denote mean proportional shell area per dissolution level, error bars represent 1 SD.
- 395 14 d incubations in undersaturated conditions caused a significant increase in level III
- 396 dissolution compared to all other groupings (Kruskal-Wallis 1-way ANOVA, H =
- 397 51.7, 4 df, P < 0.001). Amounts of level II and III dissolution were statistically
- indistinguishable between Su9 and 8 d transitional incubations.

Proportion of shell area

Supplementary Information:

Extensive dissolution of live pteropods in the Southern Ocean

Bednaršek N₁, Tarling GA₁*, Bakker DCE₂, Fielding S₁, Jones EM₃, Venables HJ₁, Ward P₁, Kuzirian A₄, Lézé B₂, Feely RA₅, Murphy EJ₁

*corresponding author: gant@bas.ac.uk

1. British Antarctic Survey, Natural Environment Research Council, Madingley Rd, Cambridge, CB3 0ET, UK

2. School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK

3. Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands

4. Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA

5. NOAA, Pacific Marine Environm Lab, Seattle, WA 98115 USA

Sensitivity study of the influence of anthropogenic carbon on surface water aragonite saturation state: To establish if anthropogenic CO₂ altered the carbonate chemistry at station Su9 (52.6°S, 39.1°W), a sensitivity study was conducted assuming that the changes in carbonate chemistry result only from the uptake of anthropogenic CO₂ while the ocean was temporarily invariant in all relevant water parameters, following the approach of Yamamoto-Kawai et al. (2009, Science 326:1098-1100).

An end-member mixing calculation was used to assess the extent of surface water mixing downwards. This was based on physical oceanographic measurements taken at Su9 (Venables et al. 2012, Deep-Sea Res II 59–60: 14–24). At this site, the winter mixed layer (WML) reached a maximum depth of 140 m, while unmodified Circumpolar Deep Water (CDW) reached a minimum depth of around 400 m (at which depth pCO₂ was 571 µatm). Using mixing rates calculated from the salinity profile, and not taking into account any further biological effects, the percentage ratio of WML to CDW water at 204 m (above which depth most pteropods were concentrated) was 58% to 42%. Dissolved inorganic carbon was assumed to mix conservatively following salinity mixing ratios. These calculations agreed with the penetration of CFCs below the mixed layer in data collected from the region on a separate research cruise (Brown, unpublished). Accordingly, the addition of 104 µatm of pCO₂ to surface waters resulting from anthropogenic CO₂ would reduce to 60.3 µatm at 204 m (and to 0 µatm at 400 m where there is no penetration of surface water).

The remaining carbonate chemistry parameters for present day and preindustrial situations were calculated using sysCO₂ (<u>http://cdiac.ornl.gov/ftp/cp2sys</u>) for given input conditions of temperature, salinity, pressure and nutrient concentrations (Supplementary Tables 1 and 2). Comparison of the tables show that, in preindustrial conditions, Ω_A values at, for example, 182 m would have been above 1.167, as opposed to a present day value of 0.997.

Depth	Salinity	Phosph ate	Silicate	Temp	TA	TC	pCO ₂	pH_T	CARBONATE IONS		Omega arag-	
									CO ₂	HCO ₃	CO ₃ ²⁻	onite
(m)		(µmol kg⁻¹)	(µmol kg⁻¹)	(°C)	(µmol kg⁻¹)	(µmol kg⁻¹)	(µatm)		(µmo	l kg⁻¹)		
82	33.91	1.82	28.56	1.24	2290.0	2165.2	385	8.044	23	2047	95	1.418
102	33.99	1.94	44.16	0.00	2286.9	2184.8	430	7.997	27	2075	82	1.220
121	34.03	1.99	49.14	-0.27	2287.4	2190.4	442	7.984	28	2083	80	1.174
142	34.10	2.07	55.57	-0.22	2295.7	2210.7	490	7.943	31	2106	74	1.081
162	34.18	2.14	61.12	0.10	2299.1	2213.4	496	7.938	31	2108	74	1.083
182	34.23	2.19	64.21	0.36	2301.2	2227.3	553	7.894	34	2125	68	0.997
203	34.31	2.24	68.44	0.73	2308.8	2234.2	563	7.888	34	2131	69	1.000
400	34.60	2.28	87.35	1.72	2336.8	2255.6	571	7.880	34	2149	73	1.014

Supplementary Table 1: Carbon chemistry parameters derived using Matlab CO2sys, total pH scale, Mehrbach refit by Dickson and Millero using measurements made at station Su9 (52.6°S, 39.1°W), Scotia Sea, Jan 2008.

Depth	Salinity	Phosph ate	Silicate	Temp	ТА	TC	pCO ₂	pH_T	CARBONATE IONS		Omega arag-	
									CO ₂	HCO ₃	CO ₃ ²⁻	onite
(m)		(µmol kg⁻¹)	(µmol kg⁻¹)	(°C)	(µmol kg⁻¹)	(µmol kg⁻¹)	(µatm)		(µmol kg⁻¹)			
82	33.91	1.82	28.56	1.24	2290.0	2117.2	279	8.169	17	1978	123	1.825
102	33.99	1.94	44.16	0.00	2286.9	2145.5	324	8.108	20	2021	104	1.535
121	34.03	1.99	49.14	-0.27	2287.4	2153.0	336	8.092	21	2032	100	1.468
							38					
142	34.10	2.07	55.57	-0.22	2295.7	2178.5	4	8.040	24	2064	90	1.324
162	34.18	2.14	61.12	0.10	2299.1	2186.4	405	8.020	25	2073	88	1.285
182	34.23	2.19	64.21	0.36	2301.2	2203.5	459	7.969	28	2095	80	1.167
203	34.31	2.24	68.44	0.73	2308.8	2215.5	487	7.947	30	2108	78	1.132
400	34.60	2.28	87.35	1.72	2336.8	2255.6	571	7.880	34	2149	73	1.014

Supplementary Table 2: Carbon chemistry parameters derived using Matlab CO2sys, total pH scale, Mehrbach refit by Dickson and Millero using measurements made at station Su9 (52.6°S, 39.1°W), Scotia Sea, Jan 2008, but assuming preindustrial atmospheric pCO₂ levels.

Supplementary Figure 1. High resolution SEM images of juvenile *Limacina helicina antarctica* showing intact animal without any indications of dissolution.

Supplementary Figure 2. High resolution SEM images of juvenile *Limacina helicina antarctica* showing intact animal without any indications of dissolution.

Supplementary Figure 3. High resolution SEM images of juvenile *Limacina helicina antarctica* showing level I dissolution: the upper prismatic layer slightly dissolved.

Supplementary Figure 4. High resolution SEM images of juvenile *Limacina helicina antarctica* showing level II dissolution: the prismatic layer partially or completely missing and the cross-lamellar matrix partially exposed with increasing porosity in the upper crystalline layer.

Supplementary Figure 5. High resolution SEM images of juvenile *Limacina helicina antarctica* showing level III dissolution: the crossed-lamellar matrix showing signs of dissolution across large areas of the shell, the shell becoming more fragile due to fragmentation. Crystals transform from elongated rods to being more 'cauliflower-like' in appearance.

Supplementary Figure 6. High resolution SEM images of juvenile *Limacina helicina antarctica* showing level III dissolution: the crossed-lamellar matrix showing signs of dissolution across large areas of the shell, the shell becoming more fragile due to fragmentation.