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Abstract

This paper illustrates the potential for statistical mapping of seabed sediment texture classes.

It reports the analysis of legacy data on the composition of seabed sediment samples from

the UK Continental Shelf with respect to three particle size classes (sand, mud, gravel).

After appropriate transformation for compositional variables the spatial variation of the sed-

iment particle size classes was modelled geostatistically using robust variogram estimators

to produce a validated linear model of coregionalization. This was then used to predict the

composition of seabed sediments at the nodes of a fine grid. The predictions were back-

transformed to the original scales of measurement by a Monte Carlo integration over the

prediction distribution on the transformed scale. This approach allowed the probability to be

computed for each class in a classification of seabed sediment texture, at each node on the

grid. The probability of each class, and derived information such as the class of maximum

probability could therefore be mapped. Predictions were validated at a set of 2000 randomly

sampled locations. The class of maximum probability corresponded to the observed class

with a frequency of 0.7, and the uncertainty of this prediction was shown to depend on the

absolute probability of the class of maximum probability. Other tests showed that this geo-

statistical approach gives reliable predictions with meaningful uncertainty measures. This

provides a basis for rapid mapping of seabed sediment texture to classes with sound quan-

tification of the uncertainty. Remapping to revised class definitions can also be done rapidly,

which will be of particular value in habitat mapping where the seabed geology is an important

factor in biotope modelling.

Keywords: Seabed sediment; texture classes; habitat mapping; cokriging; compositional

data
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1. Introduction

Seabed and habitat mapping is important for a range of activities in the marine en-

vironment, including fisheries, aquaculture, conservation, aggregate extraction, renewable

energy, seabed infrastructure and the extraction of oil and gas. Conservation organizations,

resource managers, marine spatial planners and policy-makers need to understand seabed

habitats. As a result, benthic habitat mapping is a growing focus of activity for scientists,

driven by scientific, economic and political factors (Harris and Baker, in press). The compo-

sition of the substrate is recognized as an important property to map, not least because of

its importance in determining the distribution of benthic marine organisms, and its value as

a proxy variable in habitat mapping and the assessment of biotopes (Connor et al., 2006;

Howell, 2010; Cameron and Askew, 2011). Geoscientists are therefore producing substrate

maps to assist habitat mapping, and are using a variety of methods to do so. These in-

clude classical hand interpretation in which several geophysical and geotechnical datasets

are integrated; and the semi-automated interpretation of geophysical datasets.

The Marine Environmental Mapping Programme (MAREMAP) of the United Kingdom

Natural Environment Research Council (NERC) is concerned with combined seabed and

habitat mapping at national scale, integrating existing data sets and exploiting new tech-

nologies. Among the data sets available is the British Geological Survey’s (BGS) database

on seabed sediments and their particle size distribution, collected in a series of surveys

from 1967 to 2009. Typically these sediment samples have been used in conjunction with

geophysical data to produce regional seabed sediment and shallow geological maps and

interpretations (Cameron et al., 1992; Gatliff et al., 1994). Such traditional geological map-

ping is valuable. However, since the legacy data are extensive, there is the potential to use

statistical methods for spatial prediction to map seabed texture continuously or according to

established classifications. This is potentially useful for three reasons. First, statistical map-

ping provides a quantitative account of the uncertainty in the predictions, which is inevitable

given the spatial variability of the phenomena we are considering. Second, a statistical ap-

proach to mapping can be semi-automated, at least with respect to the generation of spatial

predictions after the initial statistical modelling. This is useful because it means that maps

can be revised relatively easily. The classification schemes that best predict benthic habi-

tats are regularly being refined and improved, and statistical mapping, as described in this
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paper, can be used to generate maps according to modified classifications in a relatively

short time frame. Third, statistical mapping from the extensive data available allows us to

generate maps rapidly. EU legislation, such as the Marine Strategy Framework Directive

and the Habitats and Species Directive increase the requirement for broad-scale mapping,

covering the UK Continental Shelf. Recent reviews suggest just 10% of the UKCS habitat

map coverage is derived from survey data (Department for Environment, Food and Rural

Affairs, 2010). Because of this, it is extremely valuable to have semi-automated statistical

mapping methods to underpin habitat prediction.

This paper is concerned with how a set of point observations can be used to map the

spatial variations of seabed texture by geostatistical prediction. Geostatistical prediction by

the method of kriging requires that we first model the spatially correlated variations of a set

of variables and then to use this model to form predictions at unsampled sites (Webster and

Oliver, 2007). The predictions have minimized error variance, conditional on the model, and

this variance can be reported as a measure of the uncertainty of mapped values. This is

a valuable feature of geostatistical prediction, because a rational and robust decision about

habitat management at a particular location must be guided not only by the best prediction

of the conditions at that location, but also by the uncertainty of those predictions, and the

resulting probabilities that other conditions occur.

Geostatistical prediction by kriging is long-established (Matheron, 1963; Journel and

Huijbregts, 1978; Webster and Oliver, 2007) and has been applied across the earth and

environmental sciences including mining (Costa et al., 2000), hydrology (Zimmermann et

al., 2008), soil survey (Burgess and Webster, 1980), regional geochemistry (Rawlins et al,

2003), agronomy (Bishop and Lark, 2007), entomology (Carbajo et al., 2006) and fisheries

(Maravelias and Haralabous, 1995). One particular feature of particle size data, not gener-

ally encountered in geostatistics, is that they are compositional. That is to say, the percent-

ages of sand, gravel and mud in a given sample sum to 100 by definition, and so these vari-

ables are not drawn from an unconstrained three-dimensional sample space but rather are

drawn from the constrained simplex space which can be represented as a two-dimensional

ternary diagram such as our Figure 1. This has various implications for the statistical prop-

erties of the data, and so for their correct analysis (Aitchison, 1986), and this extends to

geostatistical analysis and prediction (Pawlowsky-Glahn and Olea, 2004). Lark and Bishop
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(2006) demonstrated the geostatistical modelling and prediction of compositional data on

particle size distributions in soil.

In this study our basic data are measurements of the percentages of mud, sand

and gravel in the composition of the seabed sediment, but our predictions are of sediment

classes. The primary set of classes on which we report here are simplified from the fifteen-

class system of Folk (1954) into four broader classes as proposed by Long (2006). These

simplified classes are commonly used as the substrate element for habitat mapping and in-

form at level 3 of the EUNIS classification system (Connor et al., 2006). These classes are

shown, projected onto a ternary diagram, in Figure 1. However, because the basic geosta-

tistical modelling is done on the underlying data on the mud, sand and gravel percentages,

it is relatively quick to re-map the data according to a modified classification, and we also

demonstrate this here.

Our objective in geostatistical mapping according to a legend of classes is to calculate,

for any unsampled site, the probability of observing each of the four textural classes there.

This enables the data user to identify the most probable class at any location, but also to

take account of the probability that other classes occur there. In this paper we use the BGS

data set on seabed sediments to generate geostatistical predictions at a denser network

of points where direct observations of sediment were not available. We use appropriate

transformations of the data to deal with their compositional form, and use the results to

compute the probability of occurrence of each of the four texture classes of Long (2006).

2. Methods

2.1. Data collection

The BGS conducted a systematic programme of regional geological surveys during the

1970s and 1980s (Fannin, 1989) which resulted in the production of a series of 1:250,000

scale maps covering the UK shelf, and a set of offshore regional reports e.g. Cameron et

al. (1992). Particle-size data from more than 30 000 locations were accumulated during this

programme and later project-driven surveys, the locations are shown in Figure 2.

Sediment samples for particle size analysis were recovered from sediment grabs, cor-

ers, and dredges. The larger part of the samples were recovered with a Shipek Grab,

but analysis was also routinely made on sub-samples from the tops of cores and dredged
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samples. If sufficient material was available the samples were separated into working and

archive portions, where between 25 g and 150 g of sand (larger samples for more gravelly

or muddy sediments) were required for analysis (Balson, 1983). Each sample was analyzed

to determine the relative proportions of material in the gravel, sand, and mud particle size

classes as defined on the logarithmic Wentworth scale (Wentworth, 1922). The material

from each sample was separated into these particle-size classes by both wet and dry siev-

ing on 2-mm and 63-µm sieves. Gravel is classed as the portion which is retained at 2 mm,

sand is the portion which passes through 2 mm but is retained at 63 µm, and mud is the

portion which passes through 63 µm.

Most samples in the database were acquired prior to the standard use of Global Po-

sitioning System (GPS) and Differential GPS (DGPS). Locations for samples collected up

to the mid 1980s were based on the Decca Navigator Mainchain and were accurate to ap-

proximately 100 m. The Syledis system was then used, with accuracies better than 10 m.

The locations of samples collected since the mid 1990s were obtained by GPS and DGPS

and are accurate to less than 5 m. The data from the samples held by BGS are stored in an

Oracle database and for this study have been projected to UTM zone 30 with reference to

the WGS-84 datum.

2.2. Statistical analysis: overview

The following sections of this paper provide a complete account of the methodology

developed and applied in this paper. This section offers an overview for the reader who does

not wish to engage with the detail of the statistics. We have a set of data on the composi-

tion of seabed sediments, percentages of sand, gravel and mud. From these we require

predictions of the composition at nodes on a dense grid to provide a map. Predictions have

uncertainty, and this must be quantified. The first problem (section 2.3) is to transform the

data. When analysing data on two or more variables we model their correlations, but the cor-

relations between percentages include artefacts because the percentages must sum to 100,

and so if, for example, the percentage of mud is 80 we know that the percentage of gravel

cannot be larger than 20. We use the additive log-ratio (ALR) transform which converts data

on proportions in three size classes (which sum to 1) to values of two new variables. The

transform can be inverted to find the percentages in each of the three original classes that
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correspond to any two given values of the transformed variables. We transformed the per-

centages of gravel, mud and sand to ALR-gravel and ALR-mud; we could choose to transform

any two of the three original variables, the effect on our final predictions of the proportions

of gravel, mud and sand is the same.

Our next task is to model statistically the spatial variability of the transformed variables.

This is explained in section 2.4. We compute what is called a linear model of coregional-

ization (LMCR). The LMCR for two or more variables allows us to compute the correlation

between any two observations of a variable, as a function of the distance in space between

them, and similarly to compute the correlation between observations of the different vari-

ables that are modelled. We describe in section 2.4 how the LMCR was estimated and

validated, including the use of robust estimators that reduce the effects of outlying observa-

tions.

When we have an LMCR we can use it to generate statistical predictions of our vari-

ables at unsampled locations as functions of the observed values at neighbouring sites. The

method is called cokriging. We did this at nodes of a dense grid across the UK Continental

Shelf. In addition to the predictions we obtain the variances and covariances of the predic-

tion errors, which quantify the uncertainty about any prediction. This is described in section

2.5. The next step is to obtain predictions of the seabed sediment texture class at the grid

nodes (section 2.6). We use a Monte Carlo method to generate a large number of possible

values of the true ALR-mud and ALR-gravel at each site, and back-transform each set of

values to the original scales of proportions of gravel, mud and sand. The sediment texture

class can be identified for each set of values, and the proportion of all the simulated values

for a site that belong to a particular class is our estimated probability that that is the true

class at the site. We can therefore map the probability of finding each class at our prediction

sites, the maximum probability over all the classes and the class of maximum probability.

The maximum probability is a measure of how uncertain the prediction is. It takes values

from just over 1/k, where k is the number of classes, to 1. If the maximum probability is near

the bottom of this scale then the uncertainty of the prediction is large.

We then tested this prediction method by extracting 2000 sites at random, and com-

puting the probability of each class from the remaining data by the cokriging method. In

section 2.7 we describe this procedure, and the statistics that we computed to evaluate the
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method. First, we observed the frequency with which the observed class at each validation

site belonged to a prediction set of classes defined as either the class of maximum proba-

bility, the first- and second-most probable class or the first-, second- or third-most probable

class. Second, we compared the values of the maximum probability between the set of sites

where the class of maximum probability was the observed class, and the set of sites where

it was not. Third, for each class in turn we divided the test sites into groups defined by per-

centiles of the predicted probability of that class and compared the proportion of sites within

each set where the specified class was the observed one with the mean of the predicted

probability of that class.

2.3. Exploratory analysis and data transformation

A total of 31 235 sample sites were available from the seabed sediment database.

Sites without complete data on the percent mud, gravel and sand in the sample and sites

where the recorded percentages in the mud, gravel and sand classes did not sum to 100

were discarded. Some sites had particle size classes defined on non-standard threshold

sizes and these were also discarded. There were also some groups of observations with

the same co-ordinates recorded on the UTM-30 projection. Of any set of observations with

common co-ordinates just one, randomly selected, observation was retained. After this ex-

ploratory editing 28 763 observations remained for analysis. Table 1 shows summary statis-

tics for these observations. Note that all the variables are strongly skewed, with coefficients

of skewness outside the interval [−1, 1].

Each observation in our data set is a composition with d = 3 components, the percent-

ages of gravel, mud and sand. We represent these by a vector y = {y1, . . . , yd}T, where

the superscript ‘T’ denotes the transpose of a matrix or vector. In the compositional geosta-

tistical analysis proposed by Pawlowsky-Glahn and Olea (2004) these three variables are

transformed to their additive log-ratios (ALR):

x =

{
ln
y1
yd
, . . . , ln

yd−1
yd

}
. (1)

Note that the transform replaces a d-dimensional variate with a d− 1-dimensional one. The

choice of which variable goes into the denominator of the transformation is arbitrary. Most

important is to note that the elements of x, x1, . . . , xd−1 are now unbounded negative or

positive values. The ALR transform is invertible by the additive generalized logistic transform
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(AGL):

y =

{
exp(x1)

1 +
∑d−1

i=1 exp(xi)
, . . . ,

exp(xd−1)

1 +
∑d−1

i=1 exp(xi)
,

1

1 +
∑d−1

i=1 exp(xi)

}
. (2)

Note that the AGL transform returns proportions that sum to one and must be multiplied by

100 if percentages are required.

The ALR transformation used on compositional variables is undefined if any observed

value is zero. Our data contained zero values in all the particle size classes, so an ap-

propriate strategy was needed to deal with these. Martı́n-Fernandéz and Thió-Henestrosa

(2006) discuss the problem that is presented by zero values in compositional data. Although

ordinary multivariate statistical methods, which ignore the compositional constraints on the

observations, can deal with zero values with no difficulty, they run into problems when the

assumptions they entail about the sample space from which the data are drawn do not

hold. If we are dealing with a compositional phenomenon which we can reasonably treat

as continuous (the composition of seabed sediments around the UK varies spatially, but in

a continuous way, not with sharp boundaries at discrete locations) then, where reasonable,

the best approach following Martı́n-Fernandéz and Thió-Henestrosa (2006) is to assume

that zero values arise from rounding error, and can be assumed to represent very small

non-zero values not resolved by measurement.

The smallest non-zero value recorded for any size fraction was 0.01 percent. After

discussion with the data managers it seemed reasonable to assume that the zero values

arise from rounding error, and that the true value corresponding to an recorded value of

zero is somewhere in the interval (0,0.01). A method of imputation is needed to replace zero

values with a non-zero value. We used the simple replacement method discussed by Martı́n-

Fernandéz and Thió-Henestrosa (2006). Let y = {y1, . . . , yd}T be a single observation of

a compositional variate, percentages summing to 100. Each of these values yi, where i

represents any component of the composition, is replaced by a new value y′i where

y′i = yi if y > 0,

= yi + δr if y = 0, (3)

where δr is some small value. The values are then renormalized to give a new composition

8



z = {z1, . . . , zd} with no zero values, and with terms summing to 100

zi = 100× y′i∑d
j=1 y

′
j

(4)

An obvious choice of δr in our case is 0.005, half the smallest non-zero value in the

data, 0.01 which we treat as a limit of resolution for our measurements. Following the rec-

ommendation of Martı́n-Fernandéz and Thió-Henestrosa (2006) we examined the effect of

using a range of values, 0 < δr < 0.01 on basic statistics of the modified values after trans-

formation to additive log-ratios, with the sand content used as the denominator variable.

Figure 3 shows the coefficient of variation (the ratio of the standard deviation to the absolute

value of the mean) for the ALR transform of mud and gravel content, and the correlation

between these values with different values of δr. The sensitivity is small, so δr = 0.005 was

used.

Table 1 shows summary statistics for the ALR-transformed mud and gravel content.

Note that the transformed variables are much more symmetrically distributed than the origi-

nal ones, with small coefficients of skew.

2.4. Variograms, cross-variograms and the linear model of coregionalization

After the ALR transformation of our data we have two values, zm and zg, the trans-

formed content of mud and gravel respectively, at any sampled location s. It is beyond the

scope of the present paper to give a full discussion of the geostatistical model, and we re-

fer the reader to the books by Webster and Oliver (2007) and Pawlowsky-Glahn and Olea

(2004) for more detail. To summarize, in geostatistics we treat these values as realizations of

two random variables, Zm(s) and Zg(s) respectively. Under the assumption of weak station-

arity it is assumed that the variables Zm(s) and Zg(s) fluctuate about constant mean values,

µm and µg. Further, it is assumed that observations of these variables at any two locations,

s and s′, have a covariance which can be expressed as a function simply of the lag interval

s− s′. Thus:

Cov
[
Zm(s), Zm(s

′)
]

= E
[
{Zm(s)− µm}

{
Zm(s

′)− µm
}]

= Cm
(
s− s′

)
, (5)

where Cov[.] and E[.] denote, respectively, the covariance and the statistical expectation

of the terms in brackets, and C(.) denotes a covariance function. The covariance of Zg(s)
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could similarly be defined. The covariance function expresses the spatial dependence of the

variation of some property. It declines to zero at some separation (the range of the process),

but joint observations of the variable at locations closer together than the range are spatially

correlated. We are also interested in the joint variation of Zm(s) and Zg(s) and its spatial

dependence. This is expressed by the cross-covariance function

Cm,g(h) = E [{Zm(s)− µm} {Zg(s + h)− µg}] . (6)

Note that, in general, Cm,g(h) 6= Cm,g(−h).

The cross-covariance function is not necessarily symmetrical. However, it is common

to assume symmetry, unless there is strong evidence to the contrary (Webster and Oliver,

2007), because this allows us to use the linear model of coregionalization, described below,

to model the joint spatial variation of two or more variables for their joint spatial prediction

by kriging (Journel and Huijbregts, 1978). We may also weaken the assumption of second

order stationarity to the intrinsic hypothesis of stationarity. Under this assumption:

E
[
{Zm(s)− Zm(s + h)}2

]
= 2γm(h), ∀s. (7)

where γm(h) the variogram function depends only on the lag vector h. Again, a variogram

function is defined similarly for Zg. Under the assumption of symmetry we can express the

joint spatial variation of our variables by the cross variogram:

γm,g(h) =
1

2
E [{Zm(s)− Zm(s + h)} {Zg(s)− Zg(s + h)}] . (8)

Webster and Oliver (2007) describe how estimates of the variograms and cross-variogram

can be made from data. For any pair of observation sites, si, sj the lag-vector si − sj is as-

signed to a lag bin centred on h if si − sj ≈ h to some degree of approximation. We denote

the number of pairs of observations in the lag bin by Nh. For notational convenience we

write the pair difference as a new variable:

wm,i,j = zm(si)− zm(sj), (9)

and put the Nh pair comparisons wm,i,j , ∀ si − sj ≈ h into the vector wm(h). We can then

write the standard variogram and cross-variogram estimators as:

γ̂m(h) =
1

2Nh
wT

m(h)wm(h), (10)
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and

γ̂m,g(h) =
1

2Nh
wT

m(h)wg(h). (11)

The definition of a lag bin may be simplified further if we can assume that the variogram is

isotropic and so depends only on the lag distance, |s| and not the direction.

It is well-known (e.g. Cressie and Hawkins, 1980) that these standard variogram

and cross-variogram estimators are susceptible to the effects of outlying observations on

the data, be these marginal outliers (observations that appear unusual by comparison to

the overall distribution of observations) or spatial outliers (observations that are unusual

compared to their neighbours). Lark (2003) presented two robust estimators for the cross-

variogram, which reduce the effects of outlying observations on the estimates. In this paper

we used one of these estimators, adapted for our large data set. The estimator requires a

robust estimator of the standard deviation applied to a vector of n observations, v, and in

this study we used the median absolute deviation from the median:

MAD(v) = 1.4826×median
(
{|v1 −median(v)|, . . . |vn −median(v)|}T

)
, (12)

where median() denotes the median value of the elements of the vector in the brackets.

Following Ma and Genton (1998), we can define a robust estimator of the covariance of two

variables with observations in vectors v and u by:

ĈR(u,v) =
MAD(u)MAD(v)

4

{
MAD2

(
u

MAD(u)
+

v

MAD(v)

)
− MAD2

(
u

MAD(u)
− v

MAD(v)

)}
.(13)

Following Lark (2003) we can then obtain a robust estimator of the cross-variogram by

γ̂Rm,g(h) =
1

2
ĈR(wm,wg). (14)

The corresponding variogram estimator:

γ̂Rm(h) =
1

2
ĈR(wm,wm), (15)

is equivalent to the robust estimator proposed by Dowd (1984). In practice we select be-

tween robust estimators of variograms and the standard estimator by a cross-validation pro-

cedure, which is described below.

The empirical cross-covariances of the ALR-transformed mud and gravel content did

not indicate marked asymmetry. Asymmetry might be expected in a study of a relatively
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small region with pronounced trends in composition due to currents, but in a large-scale

study many such local trends are averaged. There was no evidence for anisotropy in the

empirical variograms (dependence on the direction as well as the lag distance) so lag bins

were defined with respect to distance only.

In order to do kriging we require continuous functions of lag distance for the variograms

and cross-variograms. These are obtained by fitting appropriate models to the estimates for

different lag distances. We cannot use any function for this purpose, but only ‘authorized’

functions. This is necessary because the variogram function can be used to compute the

variance of some linear function of a random variable, and using an authorized function is a

sufficient condition to ensure that this variance is not negative. One such authorized function

is the spherical function:

Sph(h|a) =

{
3h

2a
− 1

2

(
h

a

)3
}
, h ≤ a

= 1, h > a, (16)

where a is a parameter of the function, the range. The function increases from 0 to 1 as h

increases from 0 to a. A typical variogram model may take the form

γ(h) = c0 + c1Sph(h|a1) + c2Sph(h|a2) h > 0

= 0, h = 0. (17)

This model requires some explanation. First, it is a discontinuous function, equal to zero

at lag 0, but approaching a non-zero intercept, c0 as h goes to zero. This is the ‘nugget’

effect in geostatistics. The variance, c0, is a component of the overall variance of the ran-

dom variable, and arises from sources of variation that show no spatial dependence over

lag distances larger than or equal to the finest interval between observations in our data. Its

spatial structure is therefore not resolved. Note that this may include measurement error. As

h increases so the variogram increases to a maximum value of c0 + c1 + c2. This is called

the sill variance. Two observations separated by a distance greater than a2 are spatially

independent of each other, but two observations separated by a shorter distance are likely

to be more similar, hence the smaller value of the variogram. The two components with spa-

tial dependence at lags up to a1 and a2 respectively are modelled as independent additive

components of the variable. One shows spatial dependence at rather shorter distances than
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the other. In some circumstances just one spatially dependent component of the variogram

model is needed, but any number of nested components can be used. This flexibility means

that the variogram model can represent variables in which the variation is driven by disparate

processes at very different spatial scales.

For co-kriging it is necessary to model jointly the variograms and cross-variograms of

the variables. The model for our case with two variables can be expressed as a 2× 2 matrix

Γ (h) =

[
γm(h) γm,g(h)
γm,g(h) γg(h)

]
= b0 + g1(h)b1 + g2(h)b2, (18)

where the functions g1(h), g2(h) are authorized variogram functions and the matrices b0,b1, . . .

are covariance matrices for the components of variation represented by the variogram func-

tions which provide their scalar multipliers. Note, therefore, that b0 is a covariance matrix

of nugget components. This is the linear model of coregionalization (LMCR) (Journel and

Huijbregts, 1978) which is the standard way to model joint spatial dependence, ensuring

validity.

Estimates of the variograms and cross-variogram of ALR-transformed gravel and mud

content were obtained by the standard estimators, Eq[10] and Eq[11] above, and the robust

alternatives, Eq[14] and Eq[15]. An LMCR was fitted to each set of estimates using the sim-

ulated annealing algorithm presented by Lark and Papritz (2003). The two sets of variogram

models for ALR-transformed mud and gravel content were then used in a cross-validation.

Each datum in turn was excluded from the data set and predicted by ordinary kriging from

the remaining observations. The corresponding kriging error at a site could then be cal-

culated as the difference between the prediction and the known value. Furthermore, the

kriging variance, the expected mean-squared error of the kriging prediction, was computed

for each prediction. The standardized squared kriging error was calculated by dividing the

square of the kriging error by the kriging variance. If the kriging variances give a good ac-

count of the uncertainty, then the mean of this statistic over all observations should be close

to 1.0. However, Lark (2000) showed that the average squared standardized kriging error

over validation points is a poor diagnostic in the presence of outliers since these can affect

both the observed kriging error and the kriging variance (via the variogram). The median

standardized squared kriging error is a better diagnostic, (Lark, 2000) and should be close

to 0.455 if the distribution of kriging errors can be assumed to be normal. On this basis a

choice was made between the LMCR based on the standard estimator and the robust alter-
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native for further use in cokriging. Standardized kriging errors were also calculated from the

cross validation output, this is the prediction error divided by the square root of the kriging

variance.

2.5. Cokriging and back-transformation

A detailed account of ordinary co-kriging is presented by Webster and Oliver (2007)

and by Pawlowsky-Glahn and Olea (2004). In summary, the ordinary co-kriging estimate of

Zg(s0) at some location,s0, denoted Z̃g(s0) is given by a weighted average of the observed

values of the primary variable, zg and any secondary variables, in our case zm, at locations

s1, s2, . . . , sN in some set of N neighbouring sample sites

Z̃g(s0) =
N∑
i=1

λgg,izg(si) +
N∑
i=1

λgm,izm(si), (19)

where the values of λgg,i and λgm,i are the ordinary cokriging weights, the superscript, g, in

each case is an index not a power, indicating that the weight is for the prediction of Zg,

and the subscript g or m indicates whether the weight is applied to observed values of the

transformed gravel or mud content respectively. The values of these weights are found that

will minimize the expected squared error of the cokriging estimate:

σ2g(s0) = E
[{
Z̃g(s0)− Zg(s0)

}]
, (20)

subject to the constraint that
∑N

i=1 λ
g
g,i = 1 and

∑N
i=1 λ

g
g = 0. The weights are found by

solution of the ordinary cokriging equations, which can be set up in terms of the values

of the variograms and cross-variograms for the lag intervals between the N neighbouring

sites, and between these sites and the target site s0. Along with the cokriging prediction we

also obtain a calculated value of the cokriging variance, defined in Eq (20). The cokriging

prediction can also be obtained for Z̃m(s0) with Zm now the secondary variable. The full

covariance matrix of cokriging prediction errors for both sets of variables, Cx(s0) is also

obtained. Element {i, i} of this matrix contains the variance of the cokriging errors for the

ith variable, and element {i, j} contains the covariance of the cokriging errors for the ith and

jth variable, see Pawlowksky-Glahn and Olea (2004).

We used ordinary cokriging, as encoded in the COKB3DM program of Deutsch and

Journel (1992), to compute predictions of Zg and Zm, the ALR-transformed percentages of

gravel and mud at a set of target points corresponding to the nodes of the BGS’s bathy-
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metric data set Digibath. All the 28 763 observations available after the exploratory analysis

described in section 2.3 were used for cokriging. At each location the covariance matrix of

cokriging errors, Cx was also calculated and recorded.

At any location, s0, where cokriging estimates of the ALR-transformed percentages of

gravel and mud have been computed it is possible to back-transform these estimates to the

original scale of measurement by applying the AGL transform, Eq. [2], and then multiplying

by 100 to convert proportions to percentages. However, while the cokriged estimates are

best linear unbiased predictions, because the mean square error is minimized by kriging,

the back-transformed values are not the best linear unbiased predictions on the original

scale of measurement. Pawlowsky-Glahn and Olea (2004) report that an unbiased back-

transformation is not available for kriged predictions of ALR-transformed variables. This is

not a concern here since our objective is to predict the seabed texture class according to the

classification of in Figure 1a, and to quantify its uncertainty.

2.6. Computing the local probability of each texture class

Zg(s0) and Zm(s0) are random variables with a joint probability distribution. The

cokriged estimates, Z̃g(s0) and Z̃m(s0) respectively, are estimates of the mean value of

these random variables, conditional on the neighbouring observations from which they have

been computed. The covariance matrix Cx(s0) gives the variances and covariances of the

distribution. If it is reasonable to assume that the prediction errors have a bivariate nor-

mal distribution, then these statistics wholly characterize the conditional joint distribution of

Zg(s0) and Zm(s0). This provides us with an approach to estimate the probability that the

sediment at location s0 belongs to any particular class in Figure 1a by Monte Carlo integra-

tion of the joint probability density function over each class. We did this as follows.

Because the covariance matrix Cx(s0) is necessarily symmetrical and positive-definite,

it can be factorized by a Lower-Upper decomposition:

Cx(s0) = LLT.

If the vector g contains two independent normal random variables with mean zero and vari-

ance 1.0, then w = Lg is a vector containing two random variables drawn from the normal

distribution with mean zero and covariance matrix Cx(s0) and[
Z̃g(s0), Z̃m(s0)

]T
+ w
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is a random realization from the conditional joint distribution of Zg(s0) and Zm(s0). These

values can be back-transformed to the corresponding proportions of gravel, mud and sand

by the AGL transform. We used the RNMVN subroutine in the IMSL numerical library to

generate 5 000 independent realizations of Zg(s0) and Zm(s0) for each location where kriging

predictions had been obtained. Each realization was back-transformed to percent gravel,

mud and sand, and the corresponding texture class from Figure 1a was identified. At each

location the proportion of simulated values falling in each of the four classes was treated as

an estimate of the conditional probability of each of those classes’ occurring at the site.

2.7. Validation by jacknifing

As a test of this procedure a set of 2 000 sites from the seabed sediment data were

selected independently and at random and removed from the main data set. The ordinary

kriging predictions, Z̃g(s0) and Z̃m(s0), and their covariance matrix, Cx(s0), were obtained

at each site, using the remaining data, and the procedure described in section 2.5 was used

to compute the conditional probability of the occurrence of each class at each site. These

results were then assessed in three ways.

First, we noted the frequency over all validation sites with which the recorded sediment

texture class corresponded to each of three prediction sets of classes. By a prediction set

we mean simply a set of one or more classes offered as predictions of the class at a site,

and the observed class is held to correspond to the prediction set if it is one member of

the set. The first prediction set was simply the class with the largest probability at the site

estimated as described in section 2.5. The second set comprised the class with the largest

probability and that class with the second-largest probability. The third set comprised all but

the class with the smallest probability. Clearly as the number of classes in the prediction

set increases then the probability that the observed class belongs to the set is expected

to increase, but the practical value of the prediction diminishes. To assess the value of

the information provided by the geostatistical procedure we also computed the frequency

with which the observed class corresponded to prediction sets which are the same at all

locations, and are based on the overall proportions of the different classes in the validation

set — i.e. at all cases the most probable class is the most frequent one (Sand and Muddy

Sand), the second-most probable class is the second-most frequent overall (Coarse) and the
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third-most probable class is Mud and Sandy Mud. These results indicate the confidence that

we can place in predicting that the class at a location is the class with maximum probability,

and how often we will be correct if our prediction is that the class is either the most probable

or the second-most probable.

Second, we evaluated the probability of the class of maximum probability at a site as

a measure of uncertainty. To do this we divided the observations into those for which the

class of maximum probability corresponded to the observed class, and those where it did

not. We then compared the summary statistics for the maximum probability between these

two groups.

Finally, we attempted a direct assessment of the locally computed probabilities for all

three classes. For each class in turn the sites were then divided into five groups by the

quintiles (20th, 40th, 60th and 80th percentiles) of the conditional probability of finding the

class under consideration. The average value of the conditional probability within each group

was computed. This can be treated as an approximation to the probability of an observation

in that group belonging to the class in question. The proportion of the sites in that group

at which the class under consideration actually occurred was then noted. A plot of the

proportion of sites with the group against the average probability, for over all five groups was

made for each class. If the computed probabilities are reliable then these should fall near

the bisector.

3. Results

Table 2 shows the cross-validation results for ordinary kriging of ALR-transformed mud

and gravel using the variogram models from the LMCRs fitted, respectively, to the standard

and robust estimates. Note that in all cases the mean kriging error was close to zero. The

median value of the standardized squared kriging error was closest to the expected value for

normal kriging errors (0.455) when the robust estimator was used. The mean standardized

squared kriging error was rather larger than 1.0 for the robust estimator, this is expected

because outliers inflate the observed squared kriging errors in their vicinity, but do not in-

flate the kriging variances based on a robustly estimated variogram (Lark, 2000). For this

reason the robust estimator was selected. Figure 4 shows the robust point estimates of the

variograms and cross-variogram for ALR-transformed gravel and mud content, and the fitted
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functions from the LMCR, the parameters of the fitted LMCR are presented in Table 3. A

double-spherical variogram model with three nested components was selected among the

standard models used for this purpose on the basis of the Akaike information criterion as a

measure of model fit (Webster and Oliver, 2007). The covariance components in the matri-

ces b0, b1 and b2 are also rescaled to correlations (structural correlations). These express

the strength of the linear relationship between the three modelled components of the spatial

variation of ALR-transformed gravel and mud content. Note the scale-dependence of this re-

lationship. There is a positive correlation between the components of the two variables that

are not spatially correlated at the scales resolved by the data set. There is a weaker, but still

positive, correlation between the components that are correlated up to about 4 km, and a

weak negative correlation between the components at the coarsest spatial scale, correlated

up to about 18 km.

Figure 5 shows the empirical probability density function (pdf) of the standardized krig-

ing errors for the two variables, estimated by a kernel estimator using the KERNELDENSITY

procedure in GenStat (Payne, 2010) and the method of Sheather and Jones (1991) to select

the kernel bandwidth. A standard normal pdf is superimposed. This shows that the distri-

bution of the kriging errors appears approximately normal, but with more observations than

would be expected in the tails of the distribution, probably reflecting the effects of outliers

in the cross-validation procedure. This result gives us confidence in the assumption of nor-

mality made when computing the conditional probabilities for the texture classes from the

cokriging output as described in section 2.6.

Figure 6a–d shows the local conditional probability for each of the texture classes,

and Figure 6e shows the local class with maximum probability. Note that the class of Mixed

sediment is sparse and not distributed in large patches, so the sites at which it is the class

of maximum probability are not evident on a map at this scale. Figure 7 shows the value of

the maximum probability at each location.

In Figure 8 is plotted the probability that the observed class at each site is included

in increasingly broad prediction sets, formed by including classes sequentially in reverse

order of probability, estimated from the co-kriging results. Also plotted are the probabilities of

inclusion when the prediction sets are defined by the overall frequencies of the classes in the

validation set. Note that the probability that the class with maximum probability obtained from
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the kriging is the class observed at the validation site is 0.71, and that the probability that

the observed class is the class of maximum probability or the second-most probable class

is 0.92. The corresponding values when the prediction sets are determined by the overall

probabilities are 0.46 and 0.77 respectively. These results indicate the additional information

that the cokriging procedure provides on the expected texture class at an unsampled site.

Note that the probability that the class at a site is either the most probable or the second

most probable as determined by cokriging is large (0.92), and larger than the probability that

the class at a site is either the most frequent or second most frequent class overall (0.77).

Table 4 provides summary statistics for the computed probability of the class of max-

imum probability at sites divided into those where the class of maximum probability was

the one observed, and those where some other class was observed. Note that the median

value of the maximum probability among the correctly allocated classes is 0.64, which is

equal to the third quartile among the incorrectly allocated classes. This suggests that the

maximum probability may be an informative indicator of local uncertainty. A threshold value

to distinguish between the sites where the class is correctly predicted by the class of maxi-

mum probability and those where it is not, corresponding to the discriminant function is 0.6.

Note that the proportion of correctly allocated sites among those with a maximum probability

greater than or equal to 0.6 is 0.82, and among those with a smaller maximum probability it

is 0.6. This suggests that we might treat the class of maximum probability as the predicted

class at a site with some confidence where the maximum probability exceeds 0.6, but at sites

where it is smaller we may wish take greater account of the uncertainty, perhaps examining

the implications for any management decision we make of the true class being the one with

the second-largest probability.

In Figure 9 are plotted, for each class, the observed proportions of sites that belong

to the class within the quintile groups of the predicted probabilities of that class. This is

plotted against the average value of that probability in each group. For the two largest

classes the observed proportions and the average probabilities are strongly associated with

the observations close to the bisector. There is a tendency for the average probabilities

somewhat to under-predict the observed proportions where these values are large, and

over-predict them where they are small. For the two less-frequent classes the tendency for

the average probability of the class to over-predict the observed proportions where these

19



are smaller is more pronounced.

In Figure 10 is plotted the class of maximum probability and the probability of the class

of maximum probability for the alternative seabed sediment texture class proposed by James

et al. (2010) and illustrated in Figure 1b.

4. Discussion

The geostatistical analysis of the sediment data shows that there is complex multiscale

variability in the composition of seabed sediments. Variation was found at three nested

scales. There is significant variation at the coarsest scale, with spatial dependence up to

about 18 km. It is interesting to note that the correlation between the mud and gravel content

(as transformed to log ratios) is weak (and slightly negative) at this coarsest scale. There

is also variation at a rather finer scale, spatially dependent up to about 4 km. The variation

of the mud and gravel components is rather more strongly and positively correlated at this

scale. The strongest correlation is seen in the third component, which is variation which is

not spatially correlated at scales resolved by the sampling scheme that gives rise to our data.

This suggests that different processes are causing the variation in sediment composition at

the contrasting scales. Further work to estimate and map separately the nested components

of variation by factorial cokriging may help to elucidate those processes.

The complex multiscale processes that determine the composition of seabed sedi-

ments give rise to the pattern of variation represented by the map of the most probable

classes, shown in Figure 6e. A map to the same legend classes was produced for the UK-

Seamap project (Figure 11), which incorporated physical and biological data to produce a

habit map for the UK marine area according to the EUNIS classification system (Connor

et al., 2006; McBreen et al., 2010). This seabed sediment layer, as part of UKSeamap,

facilitates habitat mapping at level 3 of the EUNIS classification, and was produced primar-

ily by modifying the existing BGS seabed sediment map of the UK (Cooper et al., 2010)

which is based on the classes of Folk (1954). The map in Figure 6e is consistent with the

UKSeamap layer in Figure 11. Note that the ‘rock’ layer within UKSeamap (Figure 11) is

defined where rock is present within 0.5 m of the seabed, therefore this class incorporates

an element of sub-seabed interpretation and is more widespread than in Figure 6e where

‘rock’ is recorded where this is the substrate indicated in the DigiBath data. The advantages
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of the geostatistical map are as follows.

First, the geostatistical mapping procedure generates directly an indication of the un-

certainty in the predictions. This study has shown that the uncertainty measures arising

from the geostatistical model are reliable. The representation of uncertainty in the map (e.g.

Figure 7) shows that a map based on the most probable local class is not uniformly accurate.

Consider, for example, the English Channel which is almost all allocated to ‘Coarse’ with the

exception of the waters of the south-west coast. If one examines the map for probability

of class Coarse (Figure 6a), then it is apparent that our uncertainty about this allocation is

greater in the West than is is around the Isle of Wight. Similarly the North Sea is largely

in ‘Sand and Muddy Sand’ but Fig 6d shows substantial variations in the confidence of this

allocation. Comparable uncertainty will underly maps produced by other methodologies,

the advantage of the geostatistical approach is that the uncertainty is minimized in that the

cokriging predictions of the transformed proportions of the different size classes are the best

linear unbiased predictions, and the uncertainty is quantified directly as part of the modelling

procedure.

Second, the geostatistical mapping procedure is based on a spatial model and cok-

riging estimates of the basic particle size fractions, and the results of these initial steps can

be rapidly processed to generate maps according to different classifications on the Ternary

diagram. This is illustrated by Figure 9 which is based on a quite different classification to

that of Long (1996); the extent of the class ‘Sand’ according to the classification of James

et al. (2001) is much more extensive than the class named ‘Sand’ in the scheme of Long

(1996). Note that the probability of the class of maximum probability in Figure 9(b) shows

that this map has rather greater uncertainty attached to its predictions, particularly near the

coast. This is because the class Mixed in the classification of James et al. (2010) tends to

occur in fine-scale assemblages with other classes, it only occurs as the class of maximum

probability over a restricted region, but its probability of occurring is quite large over much

of the mapped area. This suggests that scientists, when considering which classification

to use, should consider not only its inherent properties (e.g. for representing the effects of

substrate on ecological communities), but also the confidence with which it can be mapped

from available data.

The geostatistical maps of sediment classes are based only on the particle size data
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and the spatial model. The conventional maps of seabed sediment made by geologists use

other data (geophysical measurements) and geological interpretation. However, it would be

possible to incorporate these other sources of information into the geostatistical approach.

This is because the geostatistical model is a particular case of the linear mixed model (Lark

et al, 2006). The variograms describe spatially correlated random variables in the model, but

the model can also include fixed effects, such as a continuous geophysical covariate which

is correlated with the target property (e.g. the gravel content of the sediment) or a categor-

ical variable, such as a set of geological units delineated by boundaries. The relationship

between the fixed effects and the target variable is exploited to improve prediction, and the

cokriging component of prediction exploits the spatial correlation of the variation in the target

properties that remains unexplained. The potential to combine geostatistical prediction and

these additional sources of information is a topic for further investigation.

In this study we discarded data with particle-size classes defined on non-standard

thresholds. In some circumstances, particularly in international areas where data have been

collected by different organizations, it may be necessary to work with such data. The recently

published method of Weltje and Robinson (2012) could be used to this end.

The jacknifing exercise to validate the geostatistical predictions and the measures of

uncertainty showed that the overall ‘purity’ of the legend units in Figure 6e is about 0.7, i.e.

the probability that the class of maximum probability is the observed class at a randomly

located site is 0.7. This figure is quite respectable (at least by comparison to other types

of spatial information in the geosciences, such as soil maps), but it might surprise the av-

erage policy or regulatory ‘consumer’ of spatial information. Overall the probability that the

observed class is the most probable or second-most probable is 0.92.

The jacknifing also showed that the probability of the class of maximum probability is a

useful measure of uncertainty. When this is less than 0.6 then the probability that the class

of maximum probability is the observed class is just 0.6 (0.82 otherwise). This probability

(Fig 7) may therefore be used as a guide to interpreting the predictions, where it is small we

may wish to account for the possibility that the second-most probable class occurs at a site

in any decision making. Fig 7 also shows where the uncertainty is greatest, for example of

the South-West and coastal waters up the East Coast.
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5. Conclusions

To conclude, geostatistical prediction of the composition of seabed sediment texture,

based on additive log-ratio transforms and cokriging can be used to produce maps of the

probability that different texture classes are found at locations around the UK continental

shelf. This method produces results consistent with conventional mapping, but the semi-

automated nature of statistical mapping means that maps to alternative classifications can

be produced rapidly. Furthermore, statistical mapping generates measures of uncertainty in

the final map, which have been shown in this paper to be reliable. There is scope to develop

the methodology in this paper further. In particular, it may be fruitful to attempt to combine

geostatistical prediction with conventionally-mapped geological boundaries and geophysical

data.
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Table 1. Summary statistics for data on the percentages of gravel, mud and sand, and on

the ALR-transform of the gravel and sand contents.

Gravel Mud Sand ALR-gravel ALR-mud

Mean 14.65 12.54 72.81 −4.12 −3.55
Median 1.49 2.14 85.90 −3.96 −3.56
Standard Deviation 24.08 23.41 29.52 3.54 2.94
Skewness 1.81 2.41 −1.02 0.00 0.16
Quartile 1 0.08 0.40 54.6 −6.79 −5.16
Quartile 2 19.05 10.58 97.06 −1.30 −1.83
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Table 2. Results from cross-validation.

Statistic Standard estimator Robust estimator
ALR-gravel ALR-mud ALR-gravel ALR-mud

Mean error −0.015 −0.007 −0.012 −0.005
Mean standardized 0.895 0.859 2.024 2.171
squared error
Median standardized 0.225 0.172 0.475 0.427
squared error
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Table 4. Summary statistics on the probability of the class of maximum probability for 1500

randomly selected sites, divided into those where the observed class was the class of max-

imum probability and those where it was not.

Statistic Sites where observed Sites where observed
class is not the class is the

class of maximum class of maximum
probability probability

Number of observations 580 1420
Mean∗ 0.55 0.64
Median 0.53 0.64
Quartile 1 0.44 0.52
Quartile 3 0.64 0.75
Standard 0.14 0.14
deviation
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Figure Captions

1(a). Ternary diagram showing the four simplified sediment classes that are often used in

habitat mapping (Long, 2006; Connor et al., 2006). (b) An alternative classification

proposed by James et al. (2010).

2. Spatial distribution of sample sites where seabed sediment data are held by BGS.

3. Effect of the value of δr for imputing non-zero values on (top) the coefficient of varia-

tion and (bottom) the correlation coefficient between ALR-transformed gravel and mud

content.

4. Robust point estimates of the variograms and cross-variogram of ALR-transformed gravel

and mud content (symbols) and the fitted functions (lines) constituting the Linear Model

of Coregionalization (parameters in Table 2).

5. Kernel-estimated density function of the standardized kriging errors (heavy line) with a

robustly-fitted normal probability density function (fine line) for (top) ALR-transformed

gravel content and (bottom) ALR-transformed mud content.

6. Local conditional probability that the texture class is (a) Coarse (b) Mixed (c) Mud and

Sandy Mud (d) Sand and Muddy Sand and (e) the local class of maximum probability

along with a category where DigiBath indicates that the substrate is rock.

7. Probability of the class of maximum probability.

8. Estimated probability, from 2 000 independent validation locations, that prediction sets of

classes, defined increasingly broadly, include the observed class. Solid symbols: pre-

diction sets are determined from the local probabilities computed from ALR-cokriging

output. Open symbols: prediction sets are determined from the overall proportions of

each class in the validation set.

9. For each class the proportion of observations belonging to that class in subsets of the

2 000 validation sites defined by the 20th percentiles of the conditional probability of

belonging to the class. The proportion is plotted against the mean probability in each

subset. The straight line is the bisector: x = y.
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10. The class of maximum probability (a) and the probability of the class of maximum

probability (b) according to the classification of James et al. (2000).

11. UK SeaMap seabed texture sediment map produced with the methodology described

by Cooper et al. (2010) according to the classification of Long (1996) along with cate-

gory ‘rock and reef’.
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