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INTRODUCTION

Many studies on community organisation have ex-
amined the extent of overlap of some niche dimen-
sions, such as macrohabitat, microhabitat, prey type
and size, time of day and seasonality of activity
(Schoener 1974). Seabird communities are presently
believed to be one of the most evident examples of
trophic resource partitioning (Ashmole & Ashmole
1967, Croxall & Prince 1980, Diamond 1983, Weimers-

kirch et al. 1986, Ridoux 1994, Croxall et al. 1997,
Spear & Ainley 1998). Segregation of the spatial com-
ponent of trophic niches by observation of seabirds at
sea has been studied (e.g. Weimerskirch et al. 1988,
Ballance et al. 1997), but is complicated by the lack of
knowledge of the status and the population of origin of
the birds observed. In the last decade, satellite-track-
ing studies have allowed new insight into the spatial
component of trophic niches of seabirds, complement-
ing and extending observational studies. Movements
and foraging areas of birds of known status and popu-
lation can now be recorded, so that the nature of spa-
tial and temporal overlaps between species living sym-
patrically can be evaluated accurately and objectively
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(e.g. Waugh et al. 1999, Wood et al. 2000).
Questions requiring a knowledge of de-
tailed aspects of foraging ecology, such as
the precise locations of feeding grounds
(e.g. Weimerskirch et al. 1994, Rodhouse
et al. 1996, Prince et al. 1998) and sexual
differences in foraging ecology (Prince
et al. 1992, Weimerskirch 1995, Weimer-
skirch et al. 1997a, González-Solís et al.
2000), can now be addressed.

Satellite-tracked foraging ranges also
contribute substantially to studying spatial
and temporal overlaps with fisheries (e.g.
Croxall & Prince 1996, Weimerskirch et al.
1997b, Brothers et al. 1998). For giant
petrels Macronectes spp., a particular con-
cern is their relationship with Southern
Ocean longline fisheries. Longline fish-
eries are suspected to be the main cause of
population decreases of some seabird spe-
cies (e.g. Croxall et al. 1990, de la Mare & Kerry 1994,
Weimerskirch et al. 1997b, 1999), but giant petrels,
whose ship-following habits make them particularly
susceptible, have been little studied in this regard.

Identification of mechanisms for reducing inter-
species competition between the northern Macro-
nectes halli and southern M. giganteus giant petrel
species has been particularly elusive. The 2 giant
petrel species fulfil all criteria to predict potential inter-
specific competition for resources: (1) They are closely
related and so similar morphologically that until
recently they were considered conspecific (Bourne &
Warham 1966). Indeed, intersexual differences in size
are greater than interspecific ones, with males being
between 20 and 30% heavier and between 5 and 15%
larger than females (Table 1). (2) Although southern
giant petrels breed further south (on the Antarctic
Peninsula and at a very few sites on the Antarctic Con-
tinent), and further north (in Patagonia, Gough Island
and Chatham Islands) than do northern giant petrels,
both species coexist at least at several sub-Antarctic
islands near the Antarctic Polar front (APF), including
South Georgia (Warham 1990). Indeed, they often
breed close together, sometimes intermingled and
small-scale hybridisation is known, with some success-
ful interbreeding recorded at Marion Island (Burger
1978), Macquarie Island (Johnstone 1978) and South
Georgia (Hunter 1983a). (3) Despite extensive study of
potential ecological differences, only 1 major differ-
ence, that of a 6 wk difference in the timing of breed-
ing, has been identified (Hunter 1987). Indeed, studies
on diet composition suggest a substantial overlap in
resource utilisation (Hunter 1983b).

Despite the potential suitability of giant petrels for
satellite-tracking studies and the success of the initial

pilot studies (Parmelee et al. 1985, Strikwerda et al.
1986), the delimitation of foraging ranges through such
studies has not yet been undertaken. In addition to
contributing to the understanding of species isolating
mechanisms in seabirds in general, and giant petrels in
particular, such information may be relevant to current
concerns about population decreases in giant petrels
(Rootes 1988, Jouventin & Weimerskirch 1990, Woehler
& Johnston 1991, SCAR 1992, Woehler & Croxall 1997).
Thus, our aims in this study were: (1) to characterise
the foraging areas of both sexes during the incubation
period in order to assess spatial and ecological segre-
gation at this time; and (2) to interpret our results
in terms of factors potentially affecting population
changes at South Georgia.

METHODS

Fieldwork was undertaken at Bird Island, South
Georgia (54° 03’ S, 38° 36’ W) between 1 November
and 31 December 1998. We deployed eleven 30 g Plat-
form Terminal Transmitters (PTTs) from Microwave,
Columbia, Maryland, USA, and 10 g radio transmitters
on 28 breeding adult northern and southern giant
petrels. At Bird Island, the mean incubation period of
the northern giant petrel Macronectes halli is from 20
September to 10 December whereas for the southern
giant petrel M. giganteus it extends from 30 October to
20 January. The satellite transmitters were deployed
during the incubation period of each species, particu-
larly when incubation periods of both species over-
lapped, that is between 1 November and 10 December.
We tracked only 1 foraging trip per bird to ensure inde-
pendence among trips. Overall, we deployed satellite
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Table 1. Tarsus, wing and culmen length and mass (mean ± SD and range) of
male and female northern and southern giant petrels of the study area at
Bird Island, South Georgia, and percentage difference between sexes for
each measurement. Mean and range mass for each category are calculated 

on mean individual values from November 1998

Mass (kg) Tarsus (mm) Wing (mm) Culmen (mm)

Northern giant petrel
Males (n = 36) 4.7 ± 0.3 99.8 ± 2.5 528 ± 12 103.5 ± 2.60
Range 4.2 – 5.3 94.1 – 104.2 505 – 554 98.3 – 109.7
Females (n = 38) 3.8 ± 0.2 90.3 ± 2.1 501 ± 90 89.5 ± 2.1
Range 3.2 – 4.2 86.9 – 94.4 467 – 519 85.1 – 94.0
Sex difference (%) 19.1 9.5 5.1 13.5

Southern giant petrel
Males (n = 19) 5.1 ± 0.4 100.1 ± 2.30 539 ± 80 102.3 ± 2.50
Range 4.0 – 5.9 95.4 – 105.1 527 – 555 98.4 – 108.6
Females (n = 20) 3.6 ± 0.3 91.1 ± 1.9 508 ± 12 87.7 ± 2.7
Range 3.1 – 4.1 87.4 – 94.1 485 – 527 84.4 – 94.9
Sex difference (%) 29.4 9.0 5.8 14.3
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transmitters on 17 foraging trips (8 females and 9 males)
by 17 northern giant petrels and 11 (5 females and
6 males) by 11 southern giant petrels. We caught the
birds on the nest, attached the PTT and returned the
bird to the nest. To minimise nest desertion after
deployment, the bird was placed in a cage over the
nest. The cage (135 ×× 84 ×× 55 cm) was made from
wooden posts and 5 ×× 5 cm plastic mesh. Birds usually
calmed down within 1 min of release and proceeded
with incubation. Afterwards, the cage was removed
without any obvious disturbance to the bird. By using
this method, we did not record any desertion in rela-
tion to the deployment of the PTT. We attached the
PTTs to the mid-dorsal mantle feathers using Tesa®

tape (Wilson & Wilson 1989). All birds equipped with
PTTs were also provided with a radio transmitter. We
installed an antenna in the middle of the breeding
area, on the top of a hill, whence we could clearly
receive signals from the deployed radio transmitters.
In this way, accurate times of departures and arrivals
of foraging trips from the breeding area could be ob-
tained. The female-male ratio of culmen length ranges
from 0.86 to 0.87 in 4 localities (Hunter 1987) and cul-
men length range does not overlap between sexes
(Hunter 1984a, Table 1). Thus, we sexed study birds
of both species by culmen length measurement. We
confirmed the assigned sex with reference to the sex of
its partner; there were no instances of misassignment.

Data on the position of tracked birds were obtained
from the ARGOS system. Initial data validation
involved calculating velocities between successive
satellite uplinks (ARGOS class A, B, Z and from 0 to 3),
and rejecting those where the velocity exceeded a
threshold of 30 m s–1, and where a manual inspection
of the data indicated an unlikely movement away from
and back to the normal track as defined by the preced-
ing and following uplinks. This can remove up to 15%
of uplinks per trip, all of which are the low quality,
unclassifiable type according to the ARGOS system
(class A, B, Z). Mean velocities for each
trip were estimated by averaging the
velocities between validated locations.
Kernel analysis to characterise spatial
distribution followed Wood et al. (2000).
Validated positions from the same trip
were not truly independent, but it should
be noted that De Solla et al. (1999)
showed that assessing ranges using ker-
nel density procedures does not require
serial independence of data. We defined
3 categories of activity ranges as the
areas encompassing 50, 30 and 10% of
validated locations. Overlap was calcu-
lated for each category but also for each
species, that is, the percentage of the

activity range of northern giant petrel which over-
lapped that of southern giant petrel, and the percent-
age of the activity range of southern giant petrel which
overlapped that of northern giant petrel. Calculation of
overlap is needed for each species because any given
area of overlap will represent a different percentage
for each species depending on the total area of that
species’ activity range. Each overlap value was cal-
culated by averaging the overlap value obtained at
2 density levels, one defined by the southern giant
petrel area and the other defined by the northern
giant petrel area.

Results are shown as medians unless otherwise indi-
cated. All tests were 2-tailed and the significance level
was set to p < 0.05.

RESULTS

Locations (validated as described above) received for
all trips are shown in relation to sex and species in
Fig. 1. The respective activity ranges derived from
kernel analyses on validated locations in relation to
gender and species are shown in Fig. 2. There is a clear
concentration of validated locations from male north-
ern giant petrels around South Georgia, whereas the
main foraging area of male southern giant petrels was
south and east of South Georgia. Females from both
species tended to forage at sea, far from South Geor-
gia, mainly to the west.

Mean values of latitude and longitude of northern
and southern giant petrel foraging trips during the
incubation period, and the maximum limits of these
trips, are shown in Table 2. Each species of giant
petrel exploited largely separate areas, with southern
giant petrels foraging significantly farther south than
northern giant petrels (2-way ANOVA of northern and
southern giant petrel foraging trips; mean latitude,
sex: F1, 24 = 0.40, p = 0.53, species: F1, 24 = 8.66, p < 0.01;
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Table 2. Mean values (± SD) of mean latitude (° S) and longitude (° W) of
northern and southern giant petrel foraging trips during the incubation pe-
riod, and of the maximum limits of these trips. n = number of trips. Significant
differences between species or sexes for each row are indicated with dif-

ferent letters (2-way ANOVA)

Northern giant petrels Southern giant petrels
Males Females Males Females
(n = 9) (n = 8) (n = 6) (n = 5)

Mean latitude 53.1 ± 3.5a 53.4 ± 1.5a 56.8 ± 2.0b 55.3 ± 1.2b

Mean longitude 38.0 ± 3.9 44.7 ± 11.6 32.5 ± 9.4 36.7 ± 13.3
Maximum south 55.4 ± 1.4a 56.6 ± 2.0a 60.0 ± 3.1b 59.7 ± 1.9b

Maximum north 51.2 ± 5.8 50.6 ± 2.6 53.6 ± 0.5 50.4 ± 4.0
Maximum west 43.2 ± 9.5a 53.7 ± 12.7b 39.5 ± 1.6a 47.4 ± 13.0b

Maximum east 33.6 ± 3.6 33.5 ± 7.0 28.5 ± 12.9 25.6 ± 11.5
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maximum south, sex: F1, 24 = 0.20, p = 0.66, species:
F1, 24 = 22.03, p < 0.001; maximum north, sex: F1, 24 =
1.61, p = 0.22, species: F1, 24 = 0.51, p = 0.48; inter-
actions not significant). Likewise, there was a spatial
segregation in longitude between northern giant petrel
females, northern giant petrel males, southern giant
petrel females and southern giant petrel males, from
west to east, respectively (Table 2). In particular the
ranges of female giant petrels extended significantly
further west than did those of males (Table 2; 2-way
ANOVA of northern and southern giant petrel forag-
ing trips; mean longitude, sex: F1, 24 = 2.16, p = 0.15,
species: F1, 24 = 3.27, p = 0.08; maximum west, sex:
F1, 24 = 5.33, p < 0.05, species: F1, 24 = 1.60, p = 0.22; max-
imum east, sex: F1, 24 = 0.20, p = 0.66, species: F1, 24 =
3,70, p = 0.07; interactions not significant).

The sizes of activity ranges, as expressed by total area
encompassed by 50, 30 and 10% of validated locations,
are presented in Table 3 in relation to sex and species.
The total size of the areas of activity of northern giant
petrel males was, on average, about 18% that of females.
The total size of the comparable areas of activity of
southern giant petrel males was, on average, about 68%
that of females. The size of the activity ranges of northern
giant petrels was, on average, 29% that of southern giant
petrels. Females of both species showed a very similar
size of activity range whereas that of northern giant
petrel males was, on average, 28% that of southern giant
petrel males. Thus, the interspecific difference in the
size of the activity range arose mainly from the smaller
size of the activity range of male northern compared
to male southern giant petrels.

To measure the degree of overlap of the activity
range between northern and southern giant petrels we

performed an overlap analysis on each of the areas
revealed by kernel analysis for density levels which
encompassed 50, 30 and 10% of locations of the 2
species. The mean overlap of northern and southern
giant petrels at the 3 density levels was 25%; for south-
ern and northern giant petrels the mean overlap was
29% (Table 3).

Estimated flying speeds were significantly greater
for females than for males in both species (Fig. 3a).
Estimated total distances covered were greater for
females than for males, although differences were only
significant for southern giant petrels (Fig. 3b). The
maximum foraging range (the furthest point away from
the nest) was also substantially greater for females
than for males, although the difference was not sig-
nificant for northern giant petrels and only marginally
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Table 3. Sizes and interspecific overlaps of the activity ranges
of northern and southern giant petrels. The total areas en-
compassed by 50, 30 and 10% of locations and differences be-
tween sexes and species are shown. NGP: northern giant 

petrel; SGP: southern giant petrel

Locations encompassed Mean
50% 30% 10%

Size of activity range (km2)
Northern giant petrel 97.4 17.1 3.4
Males 17.4 7.1 2.0
Females 151.4 49.3 6.9
Male to female area (%) 11 14 29 18
Southern giant petrel 214.4 63.2 8.0
Males 81.2 30.1 4.9
Females 153.3 43.8 5.9
Male to female area (%) 53 69 83 68
NGP to SGP area (%) 21 24 41 29

Overlap of activity range (%)
NGP with SGP (%) 36 29 10 25
SGP with NGP (%) 28 37 22 29

Fig. 3. (a) Estimated median speeds and (b) distances covered
during foraging trips by males and females of the northern
(NGP) and southern giant petrels (SGP). Differences between
sexes were significant for both species for median speed
(NGP: Mann-Whitney U-test, Z = –2.31, p < 0.05; SGP: Z =
2.00, p < 0.05) and significant only for southern giant petrels
for distance covered (NGP: Mann-Whitney U-test, Z = –0.8,
p = 0.44; SGP: Z = 2.0, p < 0.05). Asterisks are extreme values;
circles are outlier values; the length of the box is the inter-
quartile range; the length of the bar is the range, excluding 

extreme and outlier values.
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significant for southern giant petrels (median of the
maximum foraging range for northern giant petrel
males: 180 km; range, 127 to 2396; northern giant
petrel females: 1226 km; range 950 to 2073; Mann-
Whitney U-test, Z = –1.0, p = 0.29; southern giant petrel
males: 818 km; range, 57 to 2253; southern giant petrel
females: 1348 km; range, 942 to 1810; Mann-Whitney
U-test, Z = –1.8, p = 0.07).

DISCUSSION

Resource partitioning

Males of both species foraged near South Georgia,
whereas females made longer and more distant forag-
ing trips at sea. Foraging effort, measured as distance
covered and flight velocities of the foraging trips, was
clearly greater for females than for males for both spe-
cies. Differences in foraging areas and foraging efforts
for males and females support results of previous
observations on diet and on attendance at seal car-
casses: during the breeding season, males feed mainly
on penguin and seal carcasses on shore while females
forage at sea and thus show a higher proportion of
krill, squid and fish in their diet (Hunter 1983b, Hunter
& Brooke 1992). Differences in the exploitation of food
resources between northern giant petrel males and
females also involved important differences in the for-
aging strategies and are probably related to the sexual
size dimorphism in these species (González-Solís et
al. 2000). Thus intersexual differences in trophic niche
seem greater than interspecific ones. Indeed, similari-
ties in trophic ecology and morphology between sexes
of both species suggest that intersexual differences in
trophic ecology actually evolved before the speciation
of the 2 taxa.

Some observational studies (Johnstone 1974, Wei-
merskirch et al. 1988, Ballance et al. 1997) on seabird
distribution at sea suggest that spatial partitioning
while foraging may be a common mechanism to avoid
ecological overlap in seabirds. However, in some cases
the segregation suggested by observational studies
may reflect differences in breeding distributions (ob-
served birds may belong to different populations) or
may be confounded by birds of unknown status
(e.g. adults, juveniles, breeders and non-breeders
can rarely be distinguished at sea) rather than reflect-
ing foraging partitioning of, for instance, populations
breeding at the same location. On the other hand, sev-
eral studies on dietary segregation among congeneric
seabird species in the Southern Ocean (e.g. Berruti
1978, Weimerskirch et al. 1986, Ridoux 1994, Croxall et
al. 1997) detected substantial interspecific differences
in diet composition which were likely to be associated

with foraging partitioning. Currently, satellite tracking
allows diet composition and spatial partitioning to be
studied simultaneously. Recently, Waugh et al. (1999)
combined diet sampling and satellite tracking of black-
browed Diomedea melanophrys and grey-headed D.
chrysostoma albatrosses breeding at Campbell Island.
Interspecific differences in time spent in neritic and
oceanic waters were related to differences in the pro-
portion of fish and squid in the diet, showing that
foraging partitioning and dietary segregation were
associated.

In the case of giant petrels, ship surveys showed that
northern giant petrels occur mostly to the north of the
APF whereas southern giant petrels are most common
to the south, suggesting that the APF may act as an
ecological barrier (Bourne & Warham 1966, Johnstone
1974). At South Georgia this might be the case for
females, but not for males. Southern giant petrel
females showed an activity range mostly south of
the APF and farther east than northern giant petrel
females. In contrast, males of both species foraged
south of the APF, but there was a sharp spatial segre-
gation between the species, with northern giant petrel
males foraging almost exclusively at South Georgia
whereas southern giant petrel males foraged farther
south and east of South Georgia. This spatial segrega-
tion agrees with the observations of lower consump-
tion of Antarctic fur seal carrion by southern giant
petrels (Hunter 1983b). Most of the Antarctic fur seal
population lives at South Georgia (see below) and the
peak abundance of fur seals and pups on beaches is in
November and December (Boyd 1989, 1993), creating
a simultaneous peak in the availability of dead seals.
These 2 months are coincident with the study period
and with the period when northern giant petrels seem
particularly to scavenge fur seal carcasses (Hunter
1983b, 1985). Thus, the very restricted foraging range
of northern giant petrel males at this time is consistent
with their strong dependence on fur seal carcasses on
South Georgia beaches.

The demonstration of niche differentiation, however,
does not explain the processes involved in partitioning,
i.e. whether it is an outcome of interspecific competi-
tion or not. Spatial segregation of the foraging areas
between closely related species breeding sympatri-
cally on subantarctic islands may reflect not only inter-
specific competition but also the outcome of former
allopatric speciation. This may be the case in giant
petrels. Observations of birds scavenging fur seal car-
casses indicate that southern giant petrels are more
successful than northern giant petrels in interspecific
disputes (Johnstone 1979), suggesting that southern
giant petrels could benefit as much as northern giant
petrels from this resource at South Georgia and thus
breed similarly early. This apparent contradiction sug-
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gests that ecological segregation between the 2 sibling
species may be maintained mostly by differences in
foraging area rather than by dietary segregation.

Changes in population size

South Georgia is an important breeding site for both
species of giant petrels. Hunter (1985) estimated that
approximately 16 and 29% of the world breeding po-
pulations of southern and northern giant petrels, re-
spectively, occur there. At the beginning of the 1980s,
Bird Island was thought to hold about 9 and 52% of the
South Georgia populations of southern and northern
giant petrels, respectively (Hunter 1984a). It was sug-
gested then that the southern giant petrel population
had remained stable since at least about 1958, whereas
northern giant petrels had increased greatly over the
same period. Recent population estimates for breeding
giant petrels at Bird Island (Table 4) suggest a continu-
ation of those trends over the last 2 decades. The con-
tinuing increase in population of northern giant petrels
at Bird Island is probably linked to the continued expo-
nential increases in fur seal populations at South Geor-
gia. Elephant and fur seals breed on beaches, and thus,
when dead, are readily available for scavenging by
giant petrels. Elephant seal carrion, however, is less
important than fur seal carrion in the diet of northern
giant petrels during the chick-rearing period (Hunter
1983b). Elephant seal carrion is probably important
for northern giant petrels during incubation, since
southern elephant seals Mirounga leonina are most
abundant at South Georgia at the end of October (Boyd
et al. 1996). However, fur seal carrion is probably more
important than elephant seal carrion, since northern
giant petrel energy demands increase during the
hatching period in the first week of December, coincid-
ing with peak abundance on beaches of fur seals and
pups (Boyd 1989, 1993). Three surveys in the last 4
decades indicate that the southern elephant seal popu-
lation at South Georgia has not changed significantly
in this period, with approximately 110 000 breeding
females present annually (Boyd et al. 1996). In con-

trast, Antarctic fur seals have increased in population
consistently over the last 50 yr. Despite being hunted
to virtual extinction in the 18th century the fur seal
population was rediscovered at South Georgia in the
1930s and has recovered rapidly since the 1950s at an
annual rate of increase of between 10 and 17% (Payne
1977); by 1992, South Georgia was estimated to hold
more than 1.5 million Antarctic fur seals (Boyd 1993),
and current populations are probably double this num-
ber. It is likely that this increase in fur seal population
has resulted in enhanced food availability for northern
giant petrels over the last 50 yr, which may be related
to the reported increase of the population. In contrast,
breeding populations of southern giant petrel over the
last 2 decades have remained essentially stable. This
may reflect their less extensive use of seal carrion and
more pelagic habits than those of northern giant
petrels.

Interactions with longline fisheries

The foraging areas of the satellite-tracked giant
petrels suggests that their distribution at sea overlaps
extensively with that of local longline fisheries, which,
around South Georgia, are mainly distributed over
shelf-slope areas at depths of 1000 to 2000 m (see
Croxall & Prince 1996, Prince et al. 1998). Giant petrels
are attracted to vessels and are well known for follow-
ing longline fishing vessels (Ashford et al. 1995, Cherel
& Weimerskirch 1996, Barnes et al. 1997), making
them highly susceptible to accidental capture on long-
line hooks. Direct evidence of mortality of giant petrels
from Bird Island associated with fishery activities
comes from analyses of death circumstances and re-
cent direct observations. From 133 rings recovered
from dead giant petrels with known circumstances of
death, Hunter (1984b) indicated that 12 (9%) were re-
ported as resulting from fishing, comprising 3 caught
in nets and 9 caught on fishing lines. These numbers
and percentages are clearly minima, since fishermen
rarely report birds killed whilst fishing. Since Hunter’s
(1984b) study, longline fisheries for Patagonian tooth-
fish Dissostichus eleginoides have increased substan-
tially in the South Atlantic Ocean, especially around
southern South America, the Falkland Islands and
South Georgia (Croxall & Prince 1996, Prince et al.
1998). In these areas, reports from scientific observers
on licenced fishing vessels indicate that giant petrels
are the third most common species caught, after black-
browed albatrosses Diomedea melanophris and white-
chinned petrels Procellaria aequinoctialis (Ashford
et al. 1995, CCAMLR 1996, 1997, 1998). When giant
petrels were recorded, southern giant petrels outnum-
bered northern giant petrels by 2 to 1 (e.g. CCAMLR
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Table 4. Estimated breeding pairs of northern and southern
giant petrels at Bird Island, South Georgia. Data from Hunter
(1984a) for the years 1979, 1980 and 1981, and D. R. Briggs & 

R. Humpidge (unpubl.) for 1996

Year Northern giant petrel Southern giant petrel

1979 1521 602
1980 1341 592
1981 1003 480
1996 2062 521
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1997). This accords well with the more pelagic habits
of the former species. Giant petrel females seem to be
at the highest risk of being caught accidentally on
longline hooks because of their larger activity ranges
and longer foraging trips; northern giant petrel fe-
males show the greatest overlap between their forag-
ing areas and the main areas of longline fishing in the
region.

Conclusions

For these 2 sibling species of giant petrel, within
their area of breeding sympatry, foraging ranges at sea
are strongly segregated spatially between species as
well as between sexes. Thus, although southern giant
petrels forage further south than northern giant pe-
trels, males of both species (but particularly the north-
ern giant petrel) forage mainly close inshore, relating
to their feeding on seal and penguin carcasses. Fe-
males of both species foraged offshore, which relates
to capture of live marine prey and scavenging at
vessels. The foraging ranges of females, even while
breeding, are much greater than previously realised,
regularly traversing the APF, which clearly does not
function as a constraint or barrier, as previously sug-
gested. The ability to exploit inshore as well as off-
shore habitats and versatility to exploit live prey and
carrion predisposes both species, but especially fe-
males, towards interactions with existing or potential
anthropogenic threats, ranging from longline vessels
to inshore pollutants.
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